Adequate Vitamin D Intake Cannot Be Achieved within Carbon Emission Limits Unless Food Is Fortified: A Simulation Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Linear Modelling Methods
2.2. Scenario 1: Optimizing the Current Diet for Vitamin D without Energy Constraints
2.3. Scenario 2: Optimizing the Current Diet for Vitamin D within Energy Constraints
2.4. Scenario 3: Optimizing the Current Diet with Additional Fortified Foods for Vitamin D
2.5. Scenario 4: Optimizing the Current Diet with Additional Fortified Foods for Vitamin D and CO2
2.6. Food and Nutrition Data Used in the Model
2.7. Nutrient Density of the Diet
2.8. Fortified Foods Used in the Model
2.9. Carbon Footprint Data Used in the Model
3. Results
3.1. Scenario 1: Optimizing the Current Diet for Vitamin D without Energy Constraints
3.2. Scenario 2: Optimizing the Current Diet for Vitamin D within Energy Constraints
3.3. Scenario 3: Optimizing the Current Diet with Additional Fortified Foods for Vitamin D
3.4. Scenario 4: Optimizing the Current Diet with Additional Fortified Foods for Vitamin D and CO2
3.5. Nutrient Density of the Current Diet and the Optimized Diets
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
RNI 1 or AI 2 | UL 3 or MRV 4 | ||
---|---|---|---|
Energy | kcal | 2000 | 2000 |
Protein 5 | g | 58.1 | 125 |
Polyunsaturated fatty acids | g | 13.3 | 26.6 |
Linoleic acid | g | 8.9 | 19.4 |
α-Linolenic acid | g | 0.9 | 4.8 |
Fiber | g | 25 | |
Water | g | 2300 | 3800 |
Alcohol | g | 0 | 10 |
DHA+EPA 6 | mg | 250 | 1000 |
Vitamin A | µg RAE | 624 | 3000 |
Thiamin (B1) | mg | 0.84 | |
Riboflavin (B2) | mg | 1.43 | |
Niacin (B3) | mg NE | 13.4 | |
Vitamin B6 | mg | 1.52 | 25 |
Folate (B9) | µg FE | 294 | 1000 |
Vitamin B12 | µg | 3.57 | |
Vitamin C | mg | 91 | |
Vitamin D | µg | 13.4 | 100 |
Vitamin E | mg | 10.7 | 300 |
Vitamin K | µg | 62 | |
Calcium | mg | 847 | 2500 |
Copper | mg | 1.3 | 5 |
Iodine | µg | 156 | 600 |
Iron | mg | 10.9 | 70 |
Magnesium | mg | 290 | 530 |
Phosphorus | mg | 490 | 3000 |
Potassium | mg | 3121 | |
Selenium | µg | 62 | 300 |
Zinc | mg | 10.2 | 25 |
Tryptophan | g | 0.3 | |
Threonine | g | 1.1 | |
Isoleucine | g | 1.5 | |
Leucine | g | 3.0 | |
Lysine | g | 2.3 | |
Methionine | g | 0.8 | |
Valine | g | 2.0 | |
Histidine | g | 0.8 | |
Carbohydrates | g | 300 | |
Added sugar | g | 50 | |
Total fat | g | 78 | |
Saturated fatty acids | g | 22 | |
Trans-fatty acids | g | 2.2 | |
Cholesterol | mg | 300 | |
Sodium | mg | 2000 |
References
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef] [Green Version]
- van Dooren, C. A Review of the Use of Linear Programming to Optimize Diets, Nutritiously, Economically and Environmentally. Front. Nutr. 2018, 5, 48. [Google Scholar] [CrossRef] [Green Version]
- Lang, T. Re-Fashioning Food Systems with Sustainable Diet Guidelines: Towards a SDG Strategy. Available online: https://foodresearch.org.uk/publications/re-fashioning-food-systems-with-sustainable-diet-guidelines/ (accessed on 10 February 2021).
- Macdiarmid, J.I.; Douglas, F.; Campbell, J. Eating like there’s no tomorrow: Public awareness of the environmental impact of food and reluctance to eat less meat as part of a sustainable diet. Appetite 2016, 96, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Tyszler, M.; Kramer, G.; Blonk, H. Just eating healthier is not enough: Studying the environmental impact of different diet scenarios for Dutch women (31–50 years old) by linear programming. Int. J. Life Cycle Assess 2016. [Google Scholar] [CrossRef]
- Hilger, J.; Friedel, A.; Herr, R.; Rausch, T.; Roos, F.; Wahl, D.A.; Pierroz, D.D.; Weber, P.; Hoffmann, K. A systematic review of vitamin D status in populations worldwide. Br. J. Nutr. 2014, 111, 23–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mertens, E.; Kuijsten, A.; Dofkova, M.; Mistura, L.; D’Addezio, L.; Turrini, A.; Dubuisson, C.; Favret, S.; Havard, S.; Trolle, E.; et al. Geographic and socioeconomic diversity of food and nutrient intakes: A comparison of four European countries. Eur. J. Nutr. 2018, 58, 1475–1493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spiro, A.; Buttriss, J.L. Vitamin D: An overview of vitamin D status and intake in Europe. Nutr. Bull. 2014, 39, 322–350. [Google Scholar] [CrossRef] [Green Version]
- Amrein, K.; Scherkl, M.; Hoffmann, M.; Neuwersch-Sommeregger, S.; Kostenberger, M.; Tmava Berisha, A.; Martucci, G.; Pilz, S.; Malle, O. Vitamin D deficiency 2.0: An update on the current status worldwide. Eur. J. Clin. Nutr. 2020, 74, 1498–1513. [Google Scholar] [CrossRef]
- Meems, L.M.; de Borst, M.H.; Postma, D.S.; Vonk, J.M.; Kremer, H.P.; Schuttelaar, M.L.; Rosmalen, J.G.; Weersma, R.K.; Wolffenbuttel, B.H.; Scholtens, S.; et al. Low levels of vitamin D are associated with multimorbidity: Results from the LifeLines Cohort Study. Ann. Med. 2015, 47, 474–481. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Dietary reference values for vitamin D. EFSA J. 2016, 14, 4547. [Google Scholar]
- Ross, A.C.; Manson, J.E.; Abrams, S.A.; Aloia, J.F.; Brannon, P.M.; Clinton, S.K.; Durazo-Arvizu, R.A.; Gallagher, J.C.; Gallo, R.L.; Jones, G.; et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: What clinicians need to know. J. Clin. Endocrinol. Metab. 2011, 96, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Charoenngam, N.; Holick, M.F. Immunologic Effects of Vitamin D on Human Health and Disease. Nutrients 2020, 12, 2097. [Google Scholar] [CrossRef] [PubMed]
- United States Department of Agriculture (USDA). Scientific Report of the 2015 Dietary Guidelines Advisory Committee. In Appendix E-3.3: Meeting Vitamin D Recommended Intakes in USDA Food PatternsI; United States Department of Agriculture (USDA), Agricultural Research Service: Washington, DC, USA, 2015. [Google Scholar]
- European Food Safety Authority (EFSA). The EFSA Comprehensive European Food Consumption Database. Available online: https://www.efsa.europa.eu/en/food-consumption/comprehensive-database (accessed on 28 March 2015).
- Dutch Food Composition Database. NEVO online Version 2016/5.0. Available online: https://nevo-online.rivm.nl/ (accessed on 28 March 2016).
- European Food Safety Authority (EFSA). Dietary Reference Values for nutrients Summary report. EFSA Supporting Publ. 2017, e15121. [Google Scholar] [CrossRef] [Green Version]
- European Food Safety Authority (EFSA). Scientific Opinion on Dietary Reference Values for energy. EFSA J. 2013, 11, 3005. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (WHO); Food and Agriculture Organization of the United Nations (FAO). Joint WHO/FAO Expert Consultation on Diet, Nutrition and the Prevention of Chronic Diseases; WHO: Geneva, Switzerland, 2003. [Google Scholar]
- Fern, E.B.; Watzke, H.; Barclay, D.V.; Roulin, A.; Drewnowski, A. The Nutrient Balance Concept: A New Quality Metric for Composite Meals and Diets. PLoS ONE 2015, 10, e0130491. [Google Scholar] [CrossRef] [PubMed]
- Cashman, K.D.; O’Dea, R. Exploration of strategic food vehicles for vitamin D fortification in low/lower-middle income countries. J. Steroid Biochem. Mol. Biol. 2019, 195, 105479. [Google Scholar] [CrossRef]
- Jahn, S.; Tsalis, G.; Lahteenmaki, L. How attitude towards food fortification can lead to purchase intention. Appetite 2019, 133, 370–377. [Google Scholar] [CrossRef]
- Jenab, M.; Salvini, S.; van Gils, C.H.; Brustad, M.; Shakya-Shrestha, S.; Buijsse, B.; Verhagen, H.; Touvier, M.; Biessy, C.; Wallstrom, P.; et al. Dietary intakes of retinol, beta-carotene, vitamin D and vitamin E in the European Prospective Investigation into Cancer and Nutrition cohort. Eur. J. Clin. Nutr. 2009, 63 (Suppl. 4), S150–S178. [Google Scholar] [CrossRef]
- Sobiecki, J.G.; Appleby, P.N.; Bradbury, K.E.; Key, T.J. High compliance with dietary recommendations in a cohort of meat eaters, fish eaters, vegetarians, and vegans: Results from the European Prospective Investigation into Cancer and Nutrition-Oxford study. Nutr. Res. 2016, 36, 464–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, R.R.; Hall, M.B. Nutritional and greenhouse gas impacts of removing animals from US agriculture. Proc. Natl. Acad. Sci. USA 2017, 114, E10301–E10308. [Google Scholar] [CrossRef]
- Springmann, M.; Wiebe, K.; Mason-D’Croz, D.; Sulser, T.B.; Rayner, M.; Scarborough, P. Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: A global modelling analysis with country—level detail. Lancet Planet Health 2018, 2, e451–e461. [Google Scholar] [CrossRef] [Green Version]
- Black, L.J.; Walton, J.; Flynn, A.; Kiely, M. Adequacy of vitamin D intakes in children and teenagers from the base diet, fortified foods and supplements. Public Health Nutr. 2014, 17, 721–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehmann, U.; Gjessing, H.R.; Hirche, F.; Mueller-Belecke, A.; Gudbrandsen, O.A.; Ueland, P.M.; Mellgren, G.; Lauritzen, L.; Lindqvist, H.; Hansen, A.L.; et al. Efficacy of fish intake on vitamin D status: A meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2015, 102, 837–847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laaksi, I.T.; Ruohola, J.P.; Ylikomi, T.J.; Auvinen, A.; Haataja, R.I.; Pihlajamaki, H.K.; Tuohimaa, P.J. Vitamin D fortification as public health policy: Significant improvement in vitamin D status in young Finnish men. Eur. J. Clin. Nutr. 2006, 60, 1035–1038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, R.E.; Dangour, A.D.; Tedstone, A.E.; Chalabi, Z. Does fortification of staple foods improve vitamin D intakes and status of groups at risk of deficiency? A United Kingdom modeling study. Am. J. Clin. Nutr. 2015, 102, 338–344. [Google Scholar] [CrossRef] [Green Version]
- Harika, R.K.; Dotsch-Klerk, M.; Zock, P.L.; Eilander, A. Compliance with Dietary Guidelines and Increased Fortification Can Double Vitamin D Intake: A Simulation Study. Ann. Nutr. Metab. 2016, 69, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Madsen, K.H.; Rasmussen, L.B.; Andersen, R.; Molgaard, C.; Jakobsen, J.; Bjerrum, P.J.; Andersen, E.W.; Mejborn, H.; Tetens, I. Randomized controlled trial of the effects of vitamin D-fortified milk and bread on serum 25-hydroxyvitamin D concentrations in families in Denmark during winter: The VitmaD study. Am. J. Clin. Nutr. 2013, 98, 374–382. [Google Scholar] [CrossRef]
- Pilz, S.; Marz, W.; Cashman, K.D.; Kiely, M.E.; Whiting, S.J.; Holick, M.F.; Grant, W.B.; Pludowski, P.; Hiligsmann, M.; Trummer, C.; et al. Rationale and Plan for Vitamin D Food Fortification: A Review and Guidance Paper. Front. Endocrinol. (Lausanne) 2018, 9, 373. [Google Scholar] [CrossRef]
- Jaaskelainen, T.; Itkonen, S.T.; Lundqvist, A.; Erkkola, M.; Koskela, T.; Lakkala, K.; Dowling, K.G.; Hull, G.L.; Kroger, H.; Karppinen, J.; et al. The positive impact of general vitamin D food fortification policy on vitamin D status in a representative adult Finnish population: Evidence from an 11-y follow-up based on standardized 25-hydroxyvitamin D data. Am. J. Clin. Nutr. 2017, 105, 1512–1520. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Lovegrove, J.A.; Givens, D.I. 25(OH)D3-enriched or fortified foods are more efficient at tackling inadequate vitamin D status than vitamin D3. Proc. Nutr. Soc. 2018, 77, 282–291. [Google Scholar] [CrossRef] [Green Version]
- Pittaway, J.K.; Ahuja, K.D.; Beckett, J.M.; Bird, M.L.; Robertson, I.K.; Ball, M.J. Make vitamin D while the sun shines, take supplements when it doesn’t: A longitudinal, observational study of older adults in Tasmania, Australia. PLoS ONE 2013, 8, e59063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Current | Scenario 1 Usual Diet Vitamin D Goals No Energy Limits | Scenario 2 Usual Diet Maximum Vitamin D 2000 kcal Limits | Scenario 3 Extra Fortified Foods Vitamin D Goals 2000 kcal Limits | Scenario 4 Extra Fortified Foods Vitamin D Goals CO2 Goals 2000 kcal Limits | |
---|---|---|---|---|---|
Mean adequacy ratio (MAR) | 86% | 100% | 100% | 100% | 100% |
Mean excess ratio (MER) | 120% | 242% | 154% | 112% | 100% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bruins, M.J.; Létinois, U. Adequate Vitamin D Intake Cannot Be Achieved within Carbon Emission Limits Unless Food Is Fortified: A Simulation Study. Nutrients 2021, 13, 592. https://doi.org/10.3390/nu13020592
Bruins MJ, Létinois U. Adequate Vitamin D Intake Cannot Be Achieved within Carbon Emission Limits Unless Food Is Fortified: A Simulation Study. Nutrients. 2021; 13(2):592. https://doi.org/10.3390/nu13020592
Chicago/Turabian StyleBruins, Maaike J., and Ulla Létinois. 2021. "Adequate Vitamin D Intake Cannot Be Achieved within Carbon Emission Limits Unless Food Is Fortified: A Simulation Study" Nutrients 13, no. 2: 592. https://doi.org/10.3390/nu13020592
APA StyleBruins, M. J., & Létinois, U. (2021). Adequate Vitamin D Intake Cannot Be Achieved within Carbon Emission Limits Unless Food Is Fortified: A Simulation Study. Nutrients, 13(2), 592. https://doi.org/10.3390/nu13020592