Nutritional Management Enhances the Recovery of Swallowing Ability in Older Patients with Sarcopenic Dysphagia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. Diagnostic Criteria for Sarcopenic Dysphagia
2.3. Determination of the Amount of Energy Provided and Calculation of Energy Intake
2.4. Main Outcome Measurements
2.5. Other Variables
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Payne, M.A.; Morley, J.E. Dysphagia: A new geriatric syndrome. J. Am. Med. Dir. Assoc. 2017, 18, 555–557. [Google Scholar] [CrossRef]
- Ortega, O.; Martín, A.; Clavé, P. Diagnosis and management of oropharyngeal dysphagia among older persons, state of the art. J. Am. Med. Dir. Assoc. 2017, 18, 576–582. [Google Scholar] [CrossRef] [PubMed]
- Fujishima, I.; Fujiu-Kurachi, M.; Arai, H.; Hyodo, M.; Kagaya, H.; Maeda, K.; Mori, T.; Nishioka, S.; Oshima, F.; Ogawa, S.; et al. Sarcopenia and dysphagia: Position paper by four professional organizations. Geriatr. Gerontol. Int. 2019, 19, 91–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogawa, N.; Mori, T.; Fujishima, I.; Wakabayashi, H.; Itoda, M.; Kunieda, K.; Shigematsu, T.; Nishioka, S.; Tohara, H.; Yamada, M.; et al. Ultrasonography to measure swallowing muscle mass and quality in older patients with sarcopenic dysphagia. J. Am. Med. Dir. Assoc. 2018, 19, 516–522. [Google Scholar] [CrossRef] [PubMed]
- Mori, T.; Fujishima, I.; Wakabayashi, H.; Oshima, F.; Itoda, M.; Kunieda, K.; Kayashita, J.; Nishioka, S.; Sonoda, A.; Kuroda, Y.; et al. Development, reliability, and validity of a diagnostic algorithm for sarcopenic dysphagia. JCSM Clin. Rep. 2017, 2, 1–10. [Google Scholar]
- Nagano, A.; Maeda, K.; Shimizu, A.; Nagami, S.; Takigawa, N.; Ueshima, J.; Suenaga, M. Association of sarcopenic dysphagia with underlying sarcopenia following hip fracture surgery in older women. Nutrients 2020, 12, 1365. [Google Scholar] [CrossRef] [PubMed]
- Maeda, K.; Ishida, Y.; Nonogaki, T.; Shimizu, A.; Yamanaka, Y.; Matsuyama, R.; Kato, R.; Mori, N. Development and predictors of sarcopenic dysphagia during hospitalization of older adults. Nutrients 2019, 12, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maeda, K.; Takaki, M.; Akagi, J. Decreased skeletal muscle mass and risk factors of sarcopenic dysphagia: A prospective observational cohort study. J. Gerontol. A Biol. Sci. Med. Sci. 2017, 72, 1290–1294. [Google Scholar] [CrossRef]
- Wakabayashi, H.; Takahashi, R.; Murakami, T. The prevalence and prognosis of sarcopenic dysphagia in patients who require dysphagia rehabilitation. J. Nutr. Health Aging 2019, 23, 84–88. [Google Scholar] [CrossRef]
- Maeda, K.; Akagi, J. Treatment of sarcopenic dysphagia with rehabilitation and nutritional support: A comprehensive approach. J. Acad. Nutr. Diet. 2016, 116, 573–577. [Google Scholar] [CrossRef]
- Wakabayashi, H.; Uwano, R. Rehabilitation nutrition for possible sarcopenic dysphagia after lung cancer surgery: A case report. Am. J. Phys. Med. Rehabil. 2016, 95, e84–e89. [Google Scholar] [CrossRef]
- Hashida, N.; Shamoto, H.; Maeda, K.; Wakabayashi, H.; Suzuki, M.; Fujii, T. Rehabilitation and nutritional support for sarcopenic dysphagia and tongue atrophy after glossectomy: A case report. Nutrition 2017, 35, 128–131. [Google Scholar] [CrossRef]
- Yoshimura, Y.; Wakabayashi, H.; Nagano, F.; Bise, T.; Shimazu, S.; Shiraishi, A. Chair-stand exercise improves post-stroke dysphagia. Geriatr. Gerontol. Int. 2020, 20, 885–891. [Google Scholar] [CrossRef]
- Nagano, A.; Maeda, K.; Koike, M.; Murotani, K.; Ueshima, J.; Shimizu, A.; Inoue, T.; Sato, K.; Suenaga, M.; Ishida, Y.; et al. Effects of physical rehabilitation and nutritional intake management on improvement in tongue strength in sarcopenic patients. Nutrients 2020, 12, 3104. [Google Scholar] [CrossRef]
- Nakahara, S.; Takasaki, M.; Abe, S.; Kakitani, C.; Nishioka, S.; Wakabayashi, H.; Maeda, K. Aggressive nutrition therapy in malnutrition and sarcopenia. Nutrition 2020, 84, 111109. [Google Scholar] [CrossRef]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e2. [Google Scholar] [CrossRef]
- Kunieda, K.; Ohno, T.; Fujishima, I.; Hojo, K.; Morita, T. Reliability and validity of a tool to measure the severity of dysphagia: The Food Intake LEVEL Scale. J. Pain Symptom Manag. 2013, 46, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Utanohara, Y.; Hayashi, R.; Yoshikawa, M.; Yoshida, M.; Tsuga, K.; Akagawa, Y. Standard values of maximum tongue pressure taken using newly developed disposable tongue pressure measurement device. Dysphagia 2008, 23, 286–290. [Google Scholar] [CrossRef] [PubMed]
- Lemmens, H.J.; Brodsky, J.B.; Bernstein, D.P. Estimating ideal body weight—A new formula. Obes. Surg. 2005, 15, 1082–1083. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, Y.; Sakai, M.; Nishimura, K.; Fujiwara, K.; Fujisaki, K.; Shimpo, M.; Akamatsu, R. Criterion validity of the visual estimation method for determining patients’ meal intake in a community hospital. Clin. Nutr. 2016, 35, 1543–1549. [Google Scholar] [CrossRef] [PubMed]
- Kidd, D.; Stewart, G.; Baldry, J.; Johnson, J.; Rossiter, D.; Petruckevitch, A.; Thompson, A.J. The Functional Independence Measure: A comparative validity and reliability study. Disabil. Rehabil. 1995, 17, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Beninato, M.; Gill-Body, K.M.; Salles, S.; Stark, P.C.; Black-Schaffer, R.M.; Stein, J. Determination of the minimal clinically important difference in the FIM instrument in patients with stroke. Arch. Phys. Med. Rehabil. 2006, 87, 32–39. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Kaiser, M.J.; Bauer, J.M.; Ramsch, C.; Uter, W.; Guigoz, Y.; Cederholm, T.; Thomas, D.R.; Anthony, P.; Charlton, K.E.; Maggio, M.; et al. Validation of the Mini Nutritional Assessment short-form (MNA-SF): A practical tool for identification of nutritional status. J. Nutr. Health Aging 2009, 13, 782–788. [Google Scholar] [CrossRef] [PubMed]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. ‘Mini-mental state’. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Austin, P.C.; Stuart, E.A. Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies. Stat. Med. 2015, 34, 3661–3679. [Google Scholar] [CrossRef] [PubMed]
- Maeda, K.; Koga, T.; Akagi, J. Tentative nil per os leads to poor outcomes in older adults with aspiration pneumonia. Clin. Nutr. 2016, 35, 1147–1152. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Arai, H.; Wakabayashi, H.; Yoshimura, Y.; Yamada, M.; Kim, H.; Harada, A. Chapter 4 Treatment of sarcopenia. Geriatr. Gerontol. Int. 2018, 18 (Suppl. 1), 28–44. [Google Scholar] [CrossRef]
- Burkhead, L.M.; Sapienza, C.M.; Rosenbek, J.C. Strength-training exercise in dysphagia rehabilitation: Principles, procedures, and directions for future research. Dysphagia 2007, 22, 251–265. [Google Scholar] [CrossRef]
- Azzolino, D.; Damanti, S.; Bertagnoli, L.; Lucchi, T.; Cesari, M. Sarcopenia and swallowing disorders in older people. Aging Clin. Exp. Res. 2019, 31, 799–805. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maeda, K.; Koga, T.; Akagi, J. Nutritional variables predict chances of returning home and activities of daily living in post-acute geriatric care. Clin. Interv. Aging 2018, 13, 151–157. [Google Scholar] [CrossRef] [Green Version]
- Nishiyama, A.; Wakabayashi, H.; Nishioka, S.; Nagano, A.; Momosaki, R. Energy intake at admission for improving Activities of Daily Living and nutritional status among convalescent stroke patients. Neurol. Med. Chir. 2019, 59, 313–320. [Google Scholar] [CrossRef]
- Kokura, Y.; Wakabayashi, H.; Nishioka, S.; Maeda, K. Nutritional intake is associated with activities of daily living and complications in older inpatients with stroke. Geriatr. Gerontol. Int. 2018, 18, 1334–1339. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, Y.; Bise, T.; Shimazu, S.; Tanoue, M.; Tomioka, Y.; Araki, M.; Nishino, T.; Kuzuhara, A.; Takatsuki, F. Effects of a leucine-enriched amino acid supplement on muscle mass, muscle strength, and physical function in post-stroke patients with sarcopenia: A randomized controlled trial. Nutrition 2019, 58, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Schuetz, P.; Fehr, R.; Baechli, V.; Geiser, M.; Deiss, M.; Gomes, F.; Kutz, A.; Tribolet, P.; Bregenzer, T.; Braun, N.; et al. Individualised nutritional support in medical inpatients at nutritional risk: A randomised clinical trial. Lancet 2019, 393, 2312–2321. [Google Scholar] [CrossRef]
- Shimazu, S.; Yoshimura, Y.; Kudo, M.; Nagano, F.; Bise, T.; Shiraishi, A.; Sunahara, T. Frequent and personalized nutritional support leads to improved nutritional status, activities of daily living, and dysphagia after stroke. Nutrition 2020, 83, 111091. [Google Scholar] [CrossRef]
n = 110 | Amount of Energy Provided during 1 Week of Hospitalization | ||
---|---|---|---|
≥30 kcal/IBW/Day (kg) | <30 kcal/IBW/Day (kg) | ES (p-Value) | |
Participants, n (%) | 69 (62.7) | 41 (37.3) | |
Age, years | 84.9 ± 7.1 | 84.9 ± 8.1 | 0.00 (0.979) |
Female, n (%) | 28 (67.6) | 5 (79.5) | 0.12 (0.178) |
Primary disease, n (%) | 0.10 (0.736) | ||
-Hip fracture | 46 (62.2) | 28 (69.9) | |
-Compression fracture | 5 (2.7) | 5 (12.3) | |
-Other fractures | 8 (13.5) | 8 (8.2) | |
-Deconditioning | 10 (21.6) | 10 (9.6) | |
Onset-to-admission duration, days | 20 (14.5–33.5) | 24 (19–31) | −0.10 (0.319) |
Charlson Comorbidity Index, points | 0 (0–2) | 2 (0–3) | −0.16 (0.105) |
Body mass index, kg/m2 | 19.8 ± 3.0 | 18.9 ± 2.8 | 0.31 (0.114) |
Handgrip strength, kg | 12.1 ± 4.9 | 13.2 ± 6.1 | 0.20 (0.324) |
Skeletal muscle mass index, kg/m2 | 4.7 ± 0.8 | 4.9 ± 1.0 | 0.23 (0.352) |
Mini Nutritional Assessment-Short Form, points | 6 (5–8) | 5 (3–7) | −0.23 (0.016) |
Mini-Mental State Examination, points | 22 (15.5–26) | 24 (16–26.5) | −0.10 (0.304) |
Functional Independence Measure, points | 75 (64.5–81) | 72 (54–90.5) | −0.01 (0.958) |
Food Intake LEVEL Scale, points | 8 (7,8) | 8 (7,8) | −0.03 (0.719) |
Maximum tongue pressure, kPa | 18.4 ± 9.1 | 17.2 ± 9.2 | 0.13 (0.515) |
Possible sarcopenic dysphagia, n (%) | 40 (58.0) | 24 (58.5) | 0.00 (0.954) |
Mean energy intake during one week of hospitalization/IBW (kg) | 26.3 ± 7.2 | 20.5 ± 5.3 | 0.88 (<0.001) |
n = 219 | Amount of Energy Provided during 1 Week of Hospitalization | ||
---|---|---|---|
≥30 kcal/IBW/Day (kg) | <30 kcal/IBW/Day (kg) | ES (p-Value) | |
Participants, n (%) | 113 (51.6) | 106 (48.4) | |
Age, years | 85.5 ± 6.9 | 85.7 ± 8.1 | 0.01 (0.934) |
Female, n (%) | 78 (69.0) | 74 (69.8) | 0.00 (0.900) |
Primary disease, n (%) | 0.05 (0.862) | ||
-Hip fracture | 78 (69.0) | 72 (67.9) | |
-Compression fracture | 10 (8.8) | 12 (11.3) | |
-Other fractures | 10 (8.8) | 7 (6.6) | |
-Deconditioning | 15 (13.3) | 15 (14.2) | |
Onset-admission duration, days | 24 (16–33) | 24 (18–30) | −0.03 (0.638) |
Charlson Comorbidity Index, points | 2 (0–2) | 1 (0–2) | −0.04 (0.542) |
Body mass index, kg/m2 | 19.5 ± 2.8 | 19.8 ± 3.0 | 0.10 (0.481) |
Handgrip strength, kg | 13.0 ± 5.2 | 12.7 ± 5.6 | 0.06 (0.672) |
Skeletal muscle mass index, kg/m2 | 4.8 ± 0.8 | 4.8 ± 1.0 | 0.01 (0.892) |
Mini Nutritional Assessment Short Form, points | 6 (5–7) | 5 (4–9) | −0.01 (0914) |
Mini-Mental State Examination, points | 23 (17–27) | 24 (16–25) | −0.01 (0.930) |
Functional Independence Measure, points | 73 (65–81] | 73 (55–91) | −0.02 (0.780) |
Food Intake LEVEL Scale, points | 8 (8–8) | 8 (7,8) | −0.07 (0.290) |
Maximum tongue pressure, kPa | 18.5 ± 8.4 | 19.1 ± 9.6 | 0.07 (0.572) |
Possible sarcopenic dysphagia, n (%) | 61 (54.0) | 52 (49.0) | 0.04 (0.466) |
Mean energy intake during one week of hospitalization/IBW (kg) | 26.4 ± 6.7 | 20.7 ± 5.3 | 0.94 (<0.001) |
n = 219 | Amount of Energy Provided during 1 Week of Hospitalization | ||
---|---|---|---|
≥30 kcal/IBW/Day (kg) | <30 kcal/IBW/Day (kg) | ES (p-Value) | |
Length of hospital stay, days | 57 (40–73) | 59 (42–78) | −0.09 (0.189) |
Duration of rehabilitation, units/day | 5.8 ± 1.4 | 5.6 ± 1.6 | 0.13 (0.233) |
Body mass index, kg/m2 | 19.7 ± 2.9 | 19.2 ± 3.5 | 0.16 (0.343) |
Handgrip strength, kg | 14.6 ± 5.6 | 13.9 ± 5.4 | 0.13 (0.308) |
Skeletal muscle mass index, kg/m2 | 5.0 ± 0.9 | 4.9 ± 1.0 | 0.11 (0.361) |
Functional Independence Measure, points | 101 (80–110) | 95 (78–111) | −0.08 (0.237) |
Food Intake LEVEL Scale, points | 8 (8–9) | 8 (8–8) | −0.20 (0.004) |
Improvement of Food Intake LEVEL Scale ≥ 1 points, n (%) | 56 (49.6) | 39 (36.8) | 0.12 (0.065) |
Improvement of Food Intake LEVEL Scale ≥ 2 points, n (%) | 28 (24.8) | 7 (6.6) | 0.25 (<0.001) |
Maximum tongue pressure, kPa | 20.4 ± 8.1 | 20.1 ± 10.2 | 0.03 (0.804) |
Functional Independence Measure gain | 23.2 ± 12.7 | 18.9 ± 12.4 | 0.34 (0.013) |
Achieved the MCID of Functional Independence Measure, n (%) | 59 (52.2) | 28 (26.4) | 0.26 (<0.001) |
Mean energy intake before one week at discharge/IBW (kg) | 30.3 ± 5.7 | 24.9 ± 7.0 | 0.85 (<0.001) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shimizu, A.; Fujishima, I.; Maeda, K.; Wakabayashi, H.; Nishioka, S.; Ohno, T.; Nomoto, A.; Kayashita, J.; Mori, N., The Japanese Working Group on Sarcopenic Dysphagia; The Japanese Working Group on Sarcopenic Dysphagia. Nutritional Management Enhances the Recovery of Swallowing Ability in Older Patients with Sarcopenic Dysphagia. Nutrients 2021, 13, 596. https://doi.org/10.3390/nu13020596
Shimizu A, Fujishima I, Maeda K, Wakabayashi H, Nishioka S, Ohno T, Nomoto A, Kayashita J, Mori N The Japanese Working Group on Sarcopenic Dysphagia, The Japanese Working Group on Sarcopenic Dysphagia. Nutritional Management Enhances the Recovery of Swallowing Ability in Older Patients with Sarcopenic Dysphagia. Nutrients. 2021; 13(2):596. https://doi.org/10.3390/nu13020596
Chicago/Turabian StyleShimizu, Akio, Ichiro Fujishima, Keisuke Maeda, Hidetaka Wakabayashi, Shinta Nishioka, Tomohisa Ohno, Akiko Nomoto, Jun Kayashita, Naoharu Mori The Japanese Working Group on Sarcopenic Dysphagia, and The Japanese Working Group on Sarcopenic Dysphagia. 2021. "Nutritional Management Enhances the Recovery of Swallowing Ability in Older Patients with Sarcopenic Dysphagia" Nutrients 13, no. 2: 596. https://doi.org/10.3390/nu13020596
APA StyleShimizu, A., Fujishima, I., Maeda, K., Wakabayashi, H., Nishioka, S., Ohno, T., Nomoto, A., Kayashita, J., Mori, N., The Japanese Working Group on Sarcopenic Dysphagia, & The Japanese Working Group on Sarcopenic Dysphagia. (2021). Nutritional Management Enhances the Recovery of Swallowing Ability in Older Patients with Sarcopenic Dysphagia. Nutrients, 13(2), 596. https://doi.org/10.3390/nu13020596