Animal Protein versus Plant Protein in Supporting Lean Mass and Muscle Strength: A Systematic Review and Meta-Analysis of Randomized Controlled Trials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy and Inclusion Criteria
2.2. Article Selection
2.3. Data Extraction and Quality Assessment
2.4. Calculations and Statistical Analyses
3. Results
3.1. Characteristics of Selected Studies
3.2. Quality of Selected Studies
3.3. Results of Systematic Review
3.4. Results of Meta-Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
1-RM | One repetition maximum |
ADP | Air displacement plethysmography |
DXA | Dual-energy X-ray absorptiometry |
EAA | Essential Amino Acid |
FMM | Fat-free mass |
MPB | Muscle protein breakdown |
MPS | Muscle protein synthesis |
mTORC1 | Mammalian target of rapamycin complex 1 |
RCT | Randomized controlled trial |
RDA | Recommended dietary allowance |
RET | Resistance exercise training |
SMI | Skeletal muscle index |
References
- Wolfe, R.R. The underappreciated role of muscle in health and disease. Am. J. Clin. Nutr. 2006, 84, 475–482. [Google Scholar] [CrossRef]
- Meyer, C.; Dostou, J.M.; Welle, S.L.; Gerich, J.E. Role of human liver, kidney, and skeletal muscle in postprandial glucose homeostasis. Am. J. Physiol. Metab. 2002, 282, E419–E427. [Google Scholar] [CrossRef] [Green Version]
- Prado, C.M.; Purcell, S.A.; Alish, C.; Pereira, S.L.; Deutz, N.E.; Heyland, D.K.; Goodpaster, B.H.; Tappenden, K.A.; Heymsfield, S.B. Implications of low muscle mass across the continuum of care: A narrative review. Ann. Med. 2018, 50, 675–693. [Google Scholar] [CrossRef] [Green Version]
- Newman, A.B.; Kupelian, V.; Visser, M.; Simonsick, E.M.; Goodpaster, B.H.; Kritchevsky, S.B.; Tylavsky, F.A.; Rubin, S.M.; Harris, T.B. Strength, But Not Muscle Mass, Is Associated With Mortality in the Health, Aging and Body Composition Study Cohort. J. Gerontol. Ser. A: Boil. Sci. Med Sci. 2006, 61, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Xia, J.I.; Zhang, X.; Gathirua-Mwangi, W.G.; Guo, J.; Li, Y.; McKenzie, S.; Song, Y. Associations of Muscle Mass and Strength with All-Cause Mortality among US Older Adults. Med. Sci. Sports Exerc. 2018, 50, 458–467. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Nelson, D.R.; Zhao, Y.; Cui, Z.A.; Johnston, J. Relationship between muscle mass and muscle strength, and the impact of comorbidities: A population-based, cross-sectional study of older adults in the United States. BMC Geriatr. 2013, 13, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landi, F.; Calvani, R.; Tosato, M.; Martone, A.M.; Fusco, D.; Sisto, A.; Ortolani, E.; Savera, G.; Salini, S.; Marzetti, E. Age-Related Variations of Muscle Mass, Strength, and Physical Performance in Community-Dwellers: Results From the Milan EXPO Survey. J. Am. Med Dir. Assoc. 2017, 18, 88.e17–88.e24. [Google Scholar] [CrossRef]
- Hayashida, I.; Tanimoto, Y.; Takahashi, Y.; Kusabiraki, T.; Tamaki, J. Correlation between Muscle Strength and Muscle Mass, and Their Association with Walking Speed, in Community-Dwelling Elderly Japanese Individuals. PLoS ONE 2014, 9, e111810. [Google Scholar] [CrossRef] [PubMed]
- Bauer, J.; Biolo, G.; Cederholm, T.; Cesari, M.; Cruz-Jentoft, A.J.; Morley, J.E.; Phillips, S.; Sieber, C.; Stehle, P.; Teta, D.; et al. Evidence-Based Recommendations for Optimal Dietary Protein Intake in Older People: A Position Paper From the PROT-AGE Study Group. J. Am. Med Dir. Assoc. 2013, 14, 542–559. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Sayer, A.A.; Syddall, H.; Martin, H.; Patel, H.; Baylis, D.; Cooper, C. The developmental origins of sarcopenia. J. Nutr. Heal. Aging 2008, 12, 427–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norman, K.; Otten, L. Financial impact of sarcopenia or low muscle mass—A short review. Clin. Nutr. 2019, 38, 1489–1495. [Google Scholar] [CrossRef]
- Tipton, K.D.; Wolfe, R.R. Exercise, protein metabolism, and muscle growth. Int. J. Sport Nutr. Exerc. Metab. 2001, 11, 109–132. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Atherton, P.; Smith, K.; Rennie, M.J. Human muscle protein synthesis and breakdown during and after exercise. J. Appl. Physiol. 2009, 106, 2026–2039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Vliet, S.; Burd, N.A.; Van Loon, L.J.C. The Skeletal Muscle Anabolic Response to Plant- versus Animal-Based Protein Consumption. J. Nutr. 2015, 145, 1981–1991. [Google Scholar] [CrossRef] [Green Version]
- Gorissen, S.H.M.; Witard, O.C. Characterising the muscle anabolic potential of dairy, meat and plant-based protein sources in older adults. Proc. Nutr. Soc. 2018, 77, 20–31. [Google Scholar] [CrossRef]
- Berrazaga, I.; Micard, V.; Gueugneau, M.; Walrand, S. The Role of the Anabolic Properties of Plant- versus Animal-Based Protein Sources in Supporting Muscle Mass Maintenance: A Critical Review. Nutrients 2019, 11, 1825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhubi-Bakija, F.; Bajraktari, G.; Bytyçi, I.; Mikhailidis, D.P.; Henein, M.Y.; Latkovskis, G.; Rexhaj, Z.; Zhubi, E.; Banach, M.; Alnouri, F.; et al. The impact of type of dietary protein, animal versus vegetable, in modifying cardiometabolic risk factors: A position paper from the International Lipid Expert Panel (ILEP). Clin. Nutr. 2021, 40, 255–276. [Google Scholar] [CrossRef]
- Fasolin, L.; Pereira, R.; Pinheiro, A.; Martins, J.; Andrade, C.; Ramos, O.; Vicente, A. Emergent food proteins—Towards sustainability, health and innovation. Food Res. Int. 2019, 125, 108586. [Google Scholar] [CrossRef] [Green Version]
- Langer, H.; Carlsohn, A. Effects of Different Dietary Proteins and Amino Acids on Skeletal Muscle Hypertrophy in Young Adults after Resistance Exercise. Strength Cond. J. 2014, 36, 33–42. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.M.; Tang, J.E.; Moore, D.R. The Role of Milk- and Soy-Based Protein in Support of Muscle Protein Synthesis and Muscle Protein Accretion in Young and Elderly Persons. J. Am. Coll. Nutr. 2009, 28, 343–354. [Google Scholar] [CrossRef] [PubMed]
- Janssen, I.; Heymsfield, S.B.; Wang, Z.; Ross, R. Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J. Appl. Physiol. 2000, 89, 81–88. [Google Scholar] [CrossRef] [Green Version]
- Messina, M.; Lynch, H.; Dickinson, J.M.; Reed, K.E. No Difference between the Effects of Supplementing With Soy Protein Versus Animal Protein on Gains in Muscle Mass and Strength in Response to Resistance Exercise. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 674–685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int. J. Surg. 2010, 8, 336–341. [Google Scholar] [CrossRef] [Green Version]
- Buckinx, F.; Landi, F.; Cesari, M.; Fielding, R.A.; Visser, M.; Engelke, K.; Maggi, S.; Dennison, E.; Al-Daghri, N.M.; Allepaerts, S.; et al. Pitfalls in the measurement of muscle mass: A need for a reference standard. J. Cachexia Sarcopenia Muscle 2018, 9, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Hames, K.C.; Anthony, S.J.; Thornton, J.C.; Gallagher, D.; Goodpaster, B.H. Body composition analysis by air displacement plethysmography in normal weight to extremely obese adults. Obesity 2013, 22, 1078–1084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Josephs, H.; Huston, R. Dynamics of Mechanical Systems, 1st ed.; CRC Press: Boca Raton, FL, USA, 2002; p. 10. [Google Scholar]
- Yu, S.; Visvanathan, T.; Field, J.; Ward, L.C.; Chapman, I.; Adams, R.; Wittert, G.; Visvanathan, R. Lean body mass: The development and validation of prediction equations in healthy adults. BMC Pharmacol. Toxicol. 2013, 14, 53. [Google Scholar] [CrossRef] [Green Version]
- Eriksen, E.F. Cellular mechanisms of bone remodeling. Rev. Endocr. Metab. Disord. 2010, 11, 219–227. [Google Scholar] [CrossRef] [Green Version]
- Toh, D.W.K.; Koh, E.S.; Kim, J.E. Incorporating healthy dietary changes in addition to an increase in fruit and vegetable intake further improves the status of cardiovascular disease risk factors: A systematic review, meta-regression, and meta-analysis of randomized controlled trials. Nutr. Rev. 2019, 78, 532–545. [Google Scholar] [CrossRef]
- Borenstein, M.; Hedges, L.V.; Higgins, J.P.T.; Rothstein, H.R. Fixed-Effect versus Random-Effects Models. In Introduction to Meta-Analysis; Wiley: New York, NY, USA, 2009; pp. 77–86. [Google Scholar]
- Banaszek, A.; Townsend, J.R.; Bender, D.; Vantrease, W.C.; Marshall, A.C.; Johnson, K.D. The Effects of Whey vs. Pea Protein on Physical Adaptations Following 8-Weeks of High-Intensity Functional Training (HIFT): A Pilot Study. Sports 2019, 7, 12. [Google Scholar] [CrossRef] [Green Version]
- Basciani, S.; Camajani, E.; Contini, S.; Persichetti, A.; Risi, R.; Bertoldi, L.; Strigari, L.; Prossomariti, G.; Watanabe, M.; Mariani, S.; et al. Very-Low-Calorie Ketogenic Diets With Whey, Vegetable, or Animal Protein in Patients with Obesity: A Randomized Pilot Study. J. Clin. Endocrinol. Metab. 2020, 105, 2939–2949. [Google Scholar] [CrossRef]
- Candow, D.G.; Burke, N.C.; Smith-Palmer, T.; Burke, D.G. Effect of whey and soy protein supplementation combined with resistance training in young adults. Int. J. Sport Nutr. Exerc. Metab. 2006, 16, 233–244. [Google Scholar] [CrossRef]
- DeNysschen, C.A.; Burton, H.W.; Horvath, P.J.; Leddy, J.J.; Browne, R.W. Resistance training with soy vs whey protein supplements in hyperlipidemic males. J. Int. Soc. Sports Nutr. 2009, 6, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartman, J.W.; Tang, J.E.; Wilkinson, S.B.; Tarnopolsky, M.A.; Lawrence, R.L.; Fullerton, A.V.; Phillips, S.M. Consumption of fat-free fluid milk after resistance exercise promotes greater lean mass accretion than does consumption of soy or carbohydrate in young, novice, male weightlifters. Am. J. Clin. Nutr. 2007, 86, 373–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haub, M.D.; Wells, A.M.; Tarnopolsky, M.A. Campbell, W.W. Effect of protein source on resistive-training-induced changes in body composition and muscle size in older men. Am. J. Clin. Nutr. 2002, 76, 511–517. [Google Scholar] [CrossRef]
- Hill, A.M.; Jackson, K.A.H.; Roussell, M.A.; West, S.G.; Kris-Etherton, P.M. Type and amount of dietary protein in the treatment of metabolic syndrome: A randomized controlled trial. Am. J. Clin. Nutr. 2015, 102, 757–770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joy, J.M.; Lowery, R.P.; Wilson, J.M.; Purpura, M.; De Souza, E.O.; Mc Wilson, S.; Kalman, D.S.; Dudeck, J.E.; Jäger, R. The effects of 8 weeks of whey or rice protein supplementation on body composition and exercise performance. Nutr. J. 2013, 12, 86. [Google Scholar] [CrossRef] [Green Version]
- Kjølbæk, L.; Sørensen, L.B.; Søndertoft, N.B.; Rasmussen, C.K.; Lorenzen, J.K.; Serena, A.; Astrup, A.; Larsen, L.H. Protein supplements after weight loss do not improve weight maintenance compared with recommended dietary protein intake despite beneficial effects on appetite sensation and energy expenditure: A randomized, controlled, double-blinded trial. Am. J. Clin. Nutr. 2017, 106, 684–697. [Google Scholar] [CrossRef]
- Lynch, H.M.; Buman, M.P.; Dickinson, J.M.; Ransdell, L.B.; Johnston, C.S.; Wharton, C.M. No Significant Differences in Muscle Growth and Strength Development When Consuming Soy and Whey Protein Supplements Matched for Leucine Following a 12 Week Resistance Training Program in Men and Women: A Randomized Trial. Int. J. Environ. Res. Public Heal. 2020, 17, 3871. [Google Scholar] [CrossRef]
- Maltais, M.L.; Ladouceur, J.P.; Dionne, I.J. The Effect of Resistance Training and Different Sources of Postexercise Protein Supplementation on Muscle Mass and Physical Capacity in Sarcopenic Elderly Men. J. Strength Cond. Res. 2016, 30, 1680–1687. [Google Scholar] [CrossRef]
- Mobley, C.B.; Haun, C.T.; Roberson, P.A.; Mumford, P.W.; Romero, M.A.; Kephart, W.C.; Anderson, R.G.; Vann, C.G.; Osburn, S.C.; Pledge, C.D.; et al. Effects of Whey, Soy or Leucine Supplementation with 12 Weeks of Resistance Training on Strength, Body Composition, and Skeletal Muscle and Adipose Tissue Histological Attributes in College-Aged Males. Nutrients 2017, 9, 972. [Google Scholar] [CrossRef] [PubMed]
- Moeller, L.E.; Peterson, C.T.; Hanson, K.B.; Dent, S.B.; Lewis, D.S.; King, D.S.; Alekel, D.L. Isoflavone-rich soy protein prevents loss of hip lean mass but does not prevent the shift in regional fat distribution in perimenopausal women. Menopause 2003, 10, 322–331. [Google Scholar] [CrossRef] [PubMed]
- Neacsu, M.; Fyfe, C.; Horgan, G.; Johnstone, A.M. Appetite control and biomarkers of satiety with vegetarian (soy) and meat-based high-protein diets for weight loss in obese men: A randomized crossover trial. Am. J. Clin. Nutr. 2014, 100, 548–558. [Google Scholar] [CrossRef] [Green Version]
- Thomson, R.L.; Brinkworth, G.D.; Noakes, M.; Buckley, J.D.; Information, P.E.K.F.C. Muscle strength gains during resistance exercise training are attenuated with soy compared with dairy or usual protein intake in older adults: A randomized controlled trial. Clin. Nutr. 2016, 35, 27–33. [Google Scholar] [CrossRef]
- Tomayko, E.J.; Kistler, B.M.; Fitschen, P.J.; Wilund, K.R. Intradialytic Protein Supplementation Reduces Inflammation and Improves Physical Function in Maintenance Hemodialysis Patients. J. Ren. Nutr. 2015, 25, 276–283. [Google Scholar] [CrossRef] [Green Version]
- Volek, J.S.; Volk, B.M.; Gómez, A.L.; Kunces, L.J.; Kupchak, B.R.; Freidenreich, D.J.; Aristizabal, J.C.; Saenz, C.; Dunn-Lewis, C.; Ballard, K.D.; et al. Whey Protein Supplementation During Resistance Training Augments Lean Body Mass. J. Am. Coll. Nutr. 2013, 32, 122–135. [Google Scholar] [CrossRef] [PubMed]
- Vupadhyayula, P.M.; Gallagher, J.C.; Templin, T.; Logsdon, S.M.; Smith, L.M. Effects of soy protein isolate on bone mineral density and physical performance indices in postmenopausal women-a 2-year randomized, double-blind, placebo-controlled trial. Menopause 2009, 16, 320–328. [Google Scholar] [CrossRef]
- Trumbo, P.; Schlicker, S.; Yates, A.A.; Poos, M. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein and Amino Acids. J. Am. Diet. Assoc. 2002, 102, 1621–1630. [Google Scholar] [CrossRef]
- Boye, J.; Wijesinha-Bettoni, R.; Burlingame, B. Protein quality evaluation twenty years after the introduction of the protein digestibility corrected amino acid score method. Br. J. Nutr. 2012, 108, S183–S211. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, J.-A.; Bendsen, N.; Tremblay, A.; Astrup, A. Effect of proteins from different sources on body composition. Nutr. Metab. Cardiovasc. Dis. 2011, 21, B16–B31. [Google Scholar] [CrossRef]
- Fujita, S.; Dreyer, H.C.; Drummond, M.J.; Glynn, E.L.; Cadenas, J.G.; Yoshizawa, F.; Volpi, E.; Rasmussen, B.B. Nutrient signalling in the regulation of human muscle protein synthesis. J. Physiol. 2007, 582, 813–823. [Google Scholar] [CrossRef] [PubMed]
- Volpi, E.; Kobayashi, H.; Sheffield-Moore, M.; Mittendorfer, B.; Wolfe, R.R. Essential amino acids are primarily responsible for the amino acid stimulation of muscle protein anabolism in healthy elderly adults. Am. J. Clin. Nutr. 2003, 78, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Park, B.S.; Yoon, J.S. Relative Skeletal Muscle Mass Is Associated with Development of Metabolic Syndrome. Diabetes Metab. J. 2013, 37, 458–464. [Google Scholar] [CrossRef] [Green Version]
- Bea, J.W.; Thomson, C.A.; Wertheim, B.C.; Nicholas, J.S.; Ernst, K.C.; Hu, C.; Jackson, R.D.; Cauley, J.A.; Lewis, C.E.; Caan, B.J.; et al. Risk of Mortality According to Body Mass Index and Body Composition Among Postmenopausal Women. Am. J. Epidemiology 2015, 182, 585–596. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-Y.; Fang, A.-P.; Ma, W.-J.; Wu, S.-L.; Li, C.-L.; Chen, Y.-M.; Zhu, H.-L. Amount Rather than Animal vs Plant Protein Intake Is Associated with Skeletal Muscle Mass in Community-Dwelling Middle-Aged and Older Chinese Adults: Results from the Guangzhou Nutrition and Health Study. J. Acad. Nutr. Diet. 2019, 119, 1501–1510. [Google Scholar] [CrossRef] [Green Version]
- Morton, R.W.; Murphy, K.T.; McKellar, S.R.; Schoenfeld, B.J.; Henselmans, M.; Helms, E.; Aragon, A.A.; Devries, M.C.; Banfield, L.; Krieger, J.W.; et al. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br. J. Sports Med. 2018, 52, 376–384. [Google Scholar] [CrossRef] [PubMed]
- Hudson, J.L.; Wang, Y.; Iii, R.E.B.; Campbell, W.W. Protein Intake Greater than the RDA Differentially Influences Whole-Body Lean Mass Responses to Purposeful Catabolic and Anabolic Stressors: A Systematic Review and Meta-analysis. Adv. Nutr. 2020, 11, 548–558. [Google Scholar] [CrossRef]
- Atherton, P.J.; Smith, K. Muscle protein synthesis in response to nutrition and exercise. J. Physiol. 2012, 590, 1049–1057. [Google Scholar] [CrossRef] [Green Version]
- Gorissen, S.H.M.; Crombag, J.J.R.; Senden, J.M.G.; Waterval, W.A.H.; Bierau, J.; Verdijk, L.B.; Van Loon, L.J.C. Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids 2018, 50, 1685–1695. [Google Scholar] [CrossRef] [Green Version]
- Breen, L.; Phillips, S.M. Skeletal muscle protein metabolism in the elderly: Interventions to counteract the ’anabolic resistance’ of ageing. Nutr. Metab. 2011, 8, 68. [Google Scholar] [CrossRef] [Green Version]
- Cuthbertson, D.; Smith, K.; Babraj, J.; Leese, G.; Waddell, T.; Atherton, P.; Wackerhage, H.; Taylor, P.M.; Rennie, M.J. Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle. FASEB J. 2004, 19, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Wall, B.T.; Gorissen, S.H.; Pennings, B.; Koopman, R.; Groen, B.B.L.; Verdijk, L.B.; Van Loon, L.J.C. Aging Is Accompanied by a Blunted Muscle Protein Synthetic Response to Protein Ingestion. PLoS ONE 2015, 10, e0140903. [Google Scholar] [CrossRef]
- Shad, B.J.; Thompson, J.L.; Breen, L. Does the muscle protein synthetic response to exercise and amino acid-based nutrition diminish with advancing age? A systematic review. Am. J. Physiol. Metab. 2016, 311, E803–E817. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Jentoft, A.J.; Hughes, B.D.; Scott, D.; Sanders, K.M.; Rizzoli, R. Nutritional strategies for maintaining muscle mass and strength from middle age to later life: A narrative review. Maturitas 2020, 132, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Daly, R.M.; Nowson, C.A. Can protein supplementation lead to clinically meaningful improvements in muscle mass and function in undernourished (pre)frail elderly? Am. J. Clin. Nutr. 2018, 108, 911–912. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; Pickering, R.T.; Bradlee, M.L.; Mustafa, J.; Singer, M.R.; Moore, L.L. Animal protein intake reduces risk of functional impairment and strength loss in older adults. Clin. Nutr. 2020. [Google Scholar] [CrossRef]
- Sahni, S.; Mangano, K.M.; Hannan, M.T.; Kiel, D.P.; McLean, R.R. Higher Protein Intake Is Associated with Higher Lean Mass and Quadriceps Muscle Strength in Adult Men and Women. J. Nutr. 2015, 145, 1569–1575. [Google Scholar] [CrossRef]
- Loenneke, J.P.; Buckner, S.L.; Dankel, S.J.; Abe, T. Exercise-Induced Changes in Muscle Size do not Contribute to Exercise-Induced Changes in Muscle Strength. Sports Med. 2019, 49, 987–991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taber, C.B.; Vigotsky, A.; Nuckols, G.; Haun, C.T. Exercise-Induced Myofibrillar Hypertrophy is a Contributory Cause of Gains in Muscle Strength. Sports Med. 2019, 49, 993–997. [Google Scholar] [CrossRef] [Green Version]
Parameter | Description |
---|---|
Population | Adults with mean age ≥19 years |
Intervention | Consumption of animal protein, as food or supplement |
Comparator | Consumption of plant protein, as food or supplement |
Outcome | Change in muscle mass and/or muscle strength |
Study design | Randomized controlled trials |
Research question | Are there differences in the effect of animal protein and plant protein on muscle mass and strength in adults? |
Author, Year and Country | Duration of Intervention | Subjects | Intervention (per day) | n †/Gender | Age (years) | Baseline Weight (kg) | Total Protein Intake ^ | RET | Reported Outcomes # | |
---|---|---|---|---|---|---|---|---|---|---|
Baseline | Final | |||||||||
Banaszek et al. (2019), USA [32] | 8 weeks | Healthy, trained adults | Whey protein: 48.8 g Pea protein: 49 g | 4M/3F 4M/4F | M:38.6 ± 12.7; F:38.9 ± 10.9 | 83.9 ± 18.9 78.4 ± 11.6 | NA | 1.8 ± 0.3 a 1.7 ± 0.4 a | Yes | 1-RM squat |
Basciani et al. (2020), Italy [33] | ~6 weeks (45 days) | Obese, insulin-resistant, untrained adults | Whey protein b Meat, fish and eggs b Plant protein b | 16 16 16 | 56.2 ± 6.1 | 102.02 ± 12.04 98.36 ± 14.49 102.10 ± 12.36 | NA | ~1.0 | No | Total lean (DEXA); grip strength |
Candow et al. (2006), Canada [34] | 6 weeks | Healthy, untrained adults | Whey protein: ~83 g Soy protein: ~86 g | 6F/3M 6F/3M | 24.0 ± 6 22.5 ± 6 | 69.3 ± 12 71.8 ± 15 | 1.6 1.8 | 3.1 3.0 | Yes | Lean tissue mass (DEXA); 1-RM bench press; 1-RM squat |
DeNysschen et al. (2009), USA [35] | 12 weeks | Overweight, untrained men with hypercholesterolemia | Whey protein: 26.6 g Soy protein: 25.8 g | 9M 10M | 21–50 | 90 ± 13.2 92.9 ± 7.9 | 1.0 ± 1.5 0.92 ± 0.9 | 1.2 ± 0.9 1.1 ± 0.9 | Yes | 1-RM bench press; 1-RM squat |
Hartman et al. (2007), Canada [36] | 12 weeks | Healthy, untrained young men | Milk: 35 g Soy beverage: 35 g | 18M 19M | 18–30 | 78.8 ± 10.6 83.3 ± 17.9 | 1.4 ± 0.4 1.2 ± 0.4 | 1.8 ± 0.8 1.6 ± 0.4 | Yes | Fat- and bone-free mass (DEXA) |
Haub et al. (2002), USA [37] | 12 weeks | Healthy, untrained older men | Beef: ~54 g TVP: ~54 g | 10M 11M | 63 ± 3 67 ± 6 | 89.5 ± 8.7 89.1 ± 6.3 | 1.00 ± 0.2 1.06 ± 0.1 | 1.03 ± 0.3 1.15 ± 0.1 | Yes | Fat-free mass (ADP); leg extension and flexion |
Hill et al. (2015), USA [38] | 6 months | Overweight/obese untrained adults with metabolic syndrome | Animal foods: 102.2 g c Animal foods: 63.7 g c Plant foods: 64.3 g c | 10M/11F 9M/10F 9M/12F | 46.4 ± 8.5 46.2 ± 9.4 45.3 ± 6.7 | 104.8 ± 17.7 101.8 ± 15.6 102.1 ± 15.5 | ~0.9 d ~0.9 d ~0.9 d | ~1.5 e ~1.1 e ~1.0 e | No | Body lean mass (DEXA) |
Joy et al. (2013), USA [39] | 8 weeks | Healthy, trained young men | Whey protein isolate: 48 g Rice protein isolate: 48 g | 12M 12M | 21.3 ± 1.9 | 76.08 ± 5.6 | NA | NA | Yes | Lean body mass (DEXA); 1-RM bench press |
Kjølbæk et al. (2017), Denmark [40] | 24 weeks | Healthy, overweight/obese, untrained adults | Whey protein + calcium: 45 g Whey protein: 45 g Soy protein isolate: 45 g | 7M/31F 7M/32F 8M/28F | 42.7 ± 10.5 42.2 ± 9.32 42.4 ± 9.65 | 96.2 ± 14.5 95.8 ± 13.5 96.9 ± 13.2 | 1.00 ± 0.29 1.02 ± 0.27 1.00 ± 0.26 | 1.58 ± 0.29 1.66 ± 0.36 1.57 ± 0.36 | No | Lean body mass (DEXA) |
Lynch et al. (2020), USA [41] | 12 weeks | Healthy, untrained adults | Whey protein isolate: 19 g Soy protein isolate: 26 g | 10M/16F 7M/15F | 18–35 | 66.9 ± 10.1 65.5 ± 13.3 | 1.4 1.2 | ~1.6 ~1.8 | Yes | Lean body mass (DEXA); leg extension and flexion |
Maltais et al. (2016), Canada [42] | 16 weeks | Sarcopenic, untrained older men | Milk: 13.53 g Soy beverage + EAA powder: 12 g | 8M 8M | 68 ± 5.6 64 ± 4.8 | 76.7 ± 9.0 80.5 ± 13.5 | 1.04 1.26 | ~1.13 ~1.36 | Yes | Lean body mass (DEXA); 1-RM bench press |
Mobley et al. (2017), USA [43] | 12 weeks | Healthy, untrained young men | Whey protein concentrate: 52.6 g Whey protein hydrolysate: 50.8 g Soy protein concentrate: 78.4 g | 17M 14M 15M | 21 ± 4.1 21 ± 3.7 21 ± 3.9 | 81 ± 12.4 79 ± 11.2 81 ± 11.6 | 1.1 ± 0.4 1.2 ± 0.4 1.1 ± 0.4 | 1.8 ± 0.41 1.9 ± 0.37 2.1 ± 0.39 | Yes | Lean body mass (DEXA) |
Moeller et al. (2003), USA [44] | 24 weeks | Healthy, perimenopausal, untrained women | Whey protein: 40 g Soy protein (isoflavone-poor): 40 g Soy protein (isoflavone-rich): 40 g | 21F 24F 24F | 49.4 f 50.9 f 50.2 f | 64.6 ± 8.9 64.5 ± 8.1 66.8 ± 10.2 | ~1.1 ~1.1 ~1.0 | Mean intake +27 g among all subjects | No | Bone-free lean mass (DEXA) |
Neacsu et al. (2005), UK [45] | 2 weeks (crossover) | Healthy, overweight/obese, untrained men | Meat (chicken and beef) g Soy foods and TVP g | 20M | 51 ± 11.4 | 109.6 ± 17.2 | ~1.1 h ~1.1 h | ~1.5 e ~1.5 e | No | Fat-free mass (ADP) |
Thomson et al. (2016), Australia [46] | 12 weeks | Healthy, untrained adults | Dairy shake: 27 g i Soy shake: 27 g i | 34 26 | 61.3 ± 6.9 61.7 ± 8.3 | 77.7 ± 15.6 75.8 ± 12.6 | NA | 1.42 ± 0.14 a 1.45 ± 0.14 a | Yes | Total body lean mass (DEXA); grip strength; knee extension |
Tomayko et al. (2015), USA [47] | 6 months | Adults on maintenance hemodialysis | Whey protein: 27 g Soy protein: 27 g | 7M/4F 7M/5F | 57.0 ± 4.8 52.5 ± 4.3 | 89.8 ± 24.5 91.9 ± 19.4 | NA | NA | No | Whole body lean mass (DEXA); leg extension and flexion |
Volek et al. (2013), USA [48] | 9 months | Healthy, untrained adults | Whey protein concentrate: 21.6 g Soy protein isolate: 20.0 g | 13M/6F 11M/11F | 22.8 ± 3.7 24.0 ± 2.9 | 74.1 ± 15.7 72.0 ± 8.4 | 1.27 ± 0.41 1.27 ± 0.45 | 1.39 ± 0.18 1.35 ± 0.13 | Yes | Lean body mass (DEXA); 1-RM bench press; 1-RM squat |
Vupadhyayula et al. (2009), USA [49] | 24 months | Healthy, postmenopausal, untrained women | Casein + whey: 25 g Soy protein isolate + isoflavone: 25 g Soy protein isolate: 25 g | 52F 57F 48F | 63.9 ± 4.3 63.8 ± 4.6 63.6 ± 4.5 | 69.6 ± 11.5 70.4 ± 12.0 71.4 ± 10.7 | 0.93 ± 0.21 0.97 ± 0.25 0.88 ± 0.26 | 1.34 ± 0.26 1.17 ± 0.30 1.07 ± 0.30 | No | Lean body mass (DEXA); grip strength |
Outcome | Protein Source | |||
---|---|---|---|---|
Animal Protein | Plant Protein | |||
Median | Range | Median | Range | |
Lean mass (kg) | 1.25 | −3.02–3.97 | 0.80 | −2.62–3.2 |
Percent lean mass (%) | 1.50 | −0.6–3.06 | 0.32 | −3.3–2.9 |
1-RM bench press (kg) | 9.00 | 7.06–20.1 | 12.75 | 7.6–18.2 |
1-RM squat (kg) | 31.25 | 4.5–39.4 | 31.30 | 6.3–39.8 |
Grip strength (kg) | 1.20 | −1.59–1.98 | 0.09 | −0.86–1.6 |
Leg/knee extension (Nm) | 26.25 | −12.9–40 | 23.20 | 12.9–43 |
Leg/knee flexion (Nm) | 20.00 | 2.4–30 | 16.00 | 3.3–29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, M.T.; Pan, B.J.; Toh, D.W.K.; Sutanto, C.N.; Kim, J.E. Animal Protein versus Plant Protein in Supporting Lean Mass and Muscle Strength: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2021, 13, 661. https://doi.org/10.3390/nu13020661
Lim MT, Pan BJ, Toh DWK, Sutanto CN, Kim JE. Animal Protein versus Plant Protein in Supporting Lean Mass and Muscle Strength: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients. 2021; 13(2):661. https://doi.org/10.3390/nu13020661
Chicago/Turabian StyleLim, Meng Thiam, Bernice Jiaqi Pan, Darel Wee Kiat Toh, Clarinda Nataria Sutanto, and Jung Eun Kim. 2021. "Animal Protein versus Plant Protein in Supporting Lean Mass and Muscle Strength: A Systematic Review and Meta-Analysis of Randomized Controlled Trials" Nutrients 13, no. 2: 661. https://doi.org/10.3390/nu13020661
APA StyleLim, M. T., Pan, B. J., Toh, D. W. K., Sutanto, C. N., & Kim, J. E. (2021). Animal Protein versus Plant Protein in Supporting Lean Mass and Muscle Strength: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients, 13(2), 661. https://doi.org/10.3390/nu13020661