Iron Transporter Protein Expressions in Children with Celiac Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and the Study Design
2.2. Celiac Disease Serology and Small Bowel Mucosal Morphology
2.3. Laboratory Parameters and Hepcidin
2.4. Immunohistochemistry
2.5. Digital Analysis of the Stained Sections
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ludvigsson, J.F.; Leffler, D.A.; Bai, J.C.; Biagi, F.; Fasano, A.; Green, P.H.R.; Hadjivassiliou, M.; Kaukinen, K.; Kelly, C.P.; Leonard, J.N.; et al. The Oslo definitions for coeliac disease and related terms. Gut 2013, 62, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Harper, J.W.; Holleran, S.F.; Ramakrishnan, R.; Bhagat, G.; Green, P.H.R. Anemia in celiac disease is multifactorial in etiology. Am. J. Hematol. 2007, 82, 996–1000. [Google Scholar] [CrossRef]
- Freeman, H.J. Iron deficiency anemia in celiac disease. World J. Gastroenterol. 2015, 21, 9233–9238. [Google Scholar] [CrossRef] [PubMed]
- Rajalahti, T.; Repo, M.; Kivelä, L.; Huhtala, H.; Mäki, M.; Kaukinen, K.; Lindfors, K.; Kurppa, K. Anemia in Pediatric Celiac Disease: Association with Clinical and Histological Features and Response to Gluten-free Diet. J. Pediatr. Gastroenterol. Nutr. 2016, 64, e1–e6. [Google Scholar] [CrossRef]
- Repo, M.; Lindfors, K.; Mäki, M.; Huhtala, H.; Laurila, K.; Lähdeaho, M.-L.; Saavalainen, P.; Kaukinen, K.; Kurppa, K. Anemia and Iron Deficiency in Children with Potential Celiac Disease. J. Pediatr. Gastroenterol. Nutr. 2017, 64, 56–62. [Google Scholar] [CrossRef] [Green Version]
- Evstatiev, R.; Gasche, C. Iron sensing and signalling. Gut 2012, 61, 933–952. [Google Scholar] [CrossRef]
- Kondala, R.; Puri, A.S.; Banka, A.K.; Sachdeva, S.; Sakhuja, P. Short-term prognosis of potential celiac disease in Indian patients. United Eur. Gastroenterol. J. 2016, 4, 275–280. [Google Scholar] [CrossRef] [Green Version]
- Shahriari, M.; Honar, N.; Yousefi, A.; Javaherizadeh, H. Association of Potential Celiac Disease and Refractory Iron Deficiency Anemia in Children and Adolescents. Arq. Gastroenterol. 2018, 55, 78–81. [Google Scholar] [CrossRef] [Green Version]
- Tosco, A.; Aitoro, R.; Auricchio, R.; Ponticelli, D.; Miele, E.; Paparo, F.; Greco, L.; Troncone, R.; Maglio, M. Intestinal anti-tissue transglutaminase antibodies in potential coeliac disease. Clin. Exp. Immunol. 2013, 171, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Camaschella, C.; Nai, A.; Silvestri, L. Iron metabolism and iron disorders revisited in the hepcidin era. Haematologica 2020, 105, 260–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kautz, L.; Jung, G.; Valore, E.V.; Rivella, S.; Nemeth, E.; Ganz, T. Identification of erythroferrone as an erythroid regulator of iron metabolism. Nat. Genet. 2014, 46, 678–684. [Google Scholar] [CrossRef] [Green Version]
- Aschemeyer, S.; Qiao, B.; Stefanova, D.; Valore, E.V.; Sek, A.C.; Alex Ruwe, T.; Vieth, K.R.; Jung, G.; Casu, C.; Rivella, S.; et al. Structure-function analysis of ferroportin defines the binding site and an alternative mechanism of action of hepcidin. Blood 2018, 131, 899–910. [Google Scholar] [CrossRef]
- Brasse-Lagnel, C.; Karim, Z.; Letteron, P.; Bekri, S.; Bado, A.; Beaumont, C. Intestinal DMT1 cotransporter is down-regulated by hepcidin via proteasome internalization and degradation. Gastroenterology 2011, 140, 1261–1271. [Google Scholar] [CrossRef]
- Chaston, T.; Chung, B.; Mascarenhas, M.; Marks, J.; Patel, B.; Srai, S.K.; Sharp, P. Evidence for differential effects of hepcidin in macrophages and intestinal epithelial cells. Gut 2008, 57, 374. [Google Scholar] [CrossRef]
- Chung, B.; Chaston, T.; Marks, J.; Srai, S.K.; Sharp, P.A. Hepcidin Decreases Iron Transporter Expression in Vivo in Mouse Duodenum and Spleen and in Vitro in THP-1 Macrophages and Intestinal Caco-2 Cells. J. Nutr. 2009, 139, 1457–1462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mena, N.P.; Esparza, A.; Tapia, V.; Valdés, P.; Núñez, M.T. Hepcidin inhibits apical iron uptake in intestinal cells. Am. J. Physiol. Gastrointest. Liver Physiol. 2008, 294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, N.; Begum, J.; Eksteen, B.; Elagib, A.; Brookes, M.; Cooper, B.T.; Tselepis, C.; Iqbal, T.H. Differential ferritin expression is associated with iron deficiency in coeliac disease. Eur. J. Gastroenterol. Hepatol. 2009, 21, 794–804. [Google Scholar] [CrossRef] [PubMed]
- Barisani, D.; Parafioriti, A.; Bardella, M.T.; Zoller, H.; Conte, D.; Armiraglio, E.; Trovato, C.; Koch, R.O.; Weiss, G. Adaptive changes of duodenal iron transport proteins in celiac disease. Physiol. Genom. 2004, 17, 316–325. [Google Scholar] [CrossRef] [Green Version]
- Matysiak-Budnik, T.; Moura, I.C.; Arcos-Fajardo, M.; Lebreton, C.; Menard, S.; Candalh, C.; Ben-Khalifa, K.; Dugave, C.; Tamouza, H.; van Niel, G.; et al. Secretory IgA mediates retrotranscytosis of intact gliadin peptides via the transferrin receptor in celiac disease. J. Exp. Med. 2008, 205, 143–154. [Google Scholar] [CrossRef]
- Tolone, C.; Bellini, G.; Punzo, F.; Papparella, A.; Miele, E.; Vitale, A.; Nobili, B.; Strisciuglio, C.; Rossi, F. The DMT1 IVS4+44C>A polymorphism and the risk of iron deficiency anemia in children with celiac disease. PLoS ONE 2017, 12, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ladinser, B.; Rossipal, E.; Pittschieler, K. Endomysium antibodies in coeliac disease: An improved method. Gut 1994, 35, 776–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taavela, J.; Koskinen, O.; Huhtala, H.; Lähdeaho, M.-L.; Popp, A.; Laurila, K.; Collin, P.; Kaukinen, K.; Kurppa, K.; Mäki, M. Validation of Morphometric Analyses of Small-Intestinal Biopsy Readouts in Celiac Disease. PLoS ONE 2013, 8, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Corazza, G.; Villanacci, V. Coeliac disease. J. Clin. Pathol. 2005, 58, 573–574. [Google Scholar] [CrossRef] [Green Version]
- Oberhuber, G.; Granditsch, G.; Vogelsang, H. The histopathology of coeliac disease: Time for a standardized report scheme for pathologists. Eur. J. Gastroenterol. Hepatol. 1999, 11, 1185–1194. [Google Scholar] [CrossRef]
- Repo, M.; Rajalahti, T.; Hiltunen, P.; Sotka, A.; Kivelä, L.; Huhtala, H.; Kaukinen, K.; Lindfors, K.; Kurppa, K. Diagnostic findings and long-term prognosis in children with anemia undergoing GI endoscopies. Gastrointest. Endosc. 2020, 91, 1272–1281.e2. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Lönnerdal, B. Development of iron homeostasis in infants and young children. Am. J. Clin. Nutr. 2017, 106, 1575S–1580S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oittinen, M.; Popp, A.; Kurppa, K.; Lindfors, K.; Mäki, M.; Kaikkonen, M.U.; Viiri, K. Polycomb Repressive Complex 2 Enacts Wnt Signaling in Intestinal Homeostasis and Contributes to the Instigation of Stemness in Diseases Entailing Epithelial Hyperplasia or Neoplasia. Stem Cells 2017, 35, 445–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elli, L.; Poggiali, E.; Tomba, C.; Andreozzi, F.; Nava, I.; MT, B.; Campostrini, N.; Girelli, D.; Conte, D.; MD, C. Does TMPRSS6 RS855791 polymorphism contribute to iron deficiency in treated celiac disease? Am. J. Gastroenterol. 2015, 110, 200–202. [Google Scholar] [CrossRef]
- De Falco, L.; Tortora, R.; Imperatore, N.; Bruno, M.; Capasso, M.; Girelli, D.; Castagna, A.; Caporaso, N.; Iolascon, A.; Rispo, A. The role of TMPRSS6 and HFE variants in iron deficiency anemia in celiac disease. Am. J. Hematol. 2018, 93, 383–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butterworth, J.R.; Cooper, B.T.; Rosenberg, W.M.C.; Purkiss, M.; Jobson, S.; Hathaway, M.; Briggs, D.; Howell, W.M.; Wood, G.M.; Adams, D.H.; et al. The role of hemochromatosis susceptibility gene mutations in protecting against iron deficiency in celiac disease. Gastroenterology 2002, 123, 444–449. [Google Scholar] [CrossRef] [PubMed]
- Zanella, I.; Caimi, L.; Biasiotto, G. About TMPRSS6 rs855791 polymorphism, iron metabolism and celiac disease. Am. J. Gastroenterol. 2015, 110, 1240. [Google Scholar] [CrossRef] [PubMed]
- Pootrakul, P.; Kitcharoen, K.; Yansukon, P.; Wasi, P.; Fucharoen, S.; Charoenlarp, P.; Brittenham, G.; Pippard, M.J.; Finch, C.A. The effect of erythroid hyperplasia on iron balance. Blood 1988, 71, 1124–1129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | CD, n = 27 | Potential CD, n=10 | p Value | ||
---|---|---|---|---|---|
n | % | n | % | ||
Girls | 18 | 67 | 8 | 80 | 0.431 |
Anemia | 14 | 52 | 3 | 30 | 0.236 |
High sTfR | 12 | 46 | 1 | 10 | 0.043 |
Low MCV | 10 | 35 | 1 | 10 | 0.140 |
Median | Q1, Q3 | Median | Q1, Q3 | ||
Age, yrs (range) | 6.8 | 2.7, 14.4 | 6.1 | 4.1, 16.9 | 0.555 |
Ferritin, mg/L | 7.0 | 4.8, 15.5 | 20.5 | 11.3, 29.8 | 0.017 |
Hepcidin, ng/mL | 13.7 | 12.6, 15.2 | 15.4 | 13.2, 18.2 | 0.286 |
Iron Transporter Protein | CD N = 27 | Potential CD N = 10 | Controls N = 6 | CD vs. Potential CD | CD vs. Controls | Potential CD vs. Controls | |||
---|---|---|---|---|---|---|---|---|---|
Median | Q1, Q3 | Median | Q1, Q3 | Median | Q1, Q3 | p Value | p Value | p Value | |
DCYTB | |||||||||
Stained apical border, % | 54 | 36, 76 | 50 | 24, 79 | 50 | 33, 73 | 0.679 | 0.751 | 0.662 |
DMT1 | |||||||||
Mean/max saturation, % | 42 | 36, 51 | 43 | 35, 52 | 37 | 33, 50 | 0.999 | 0.342 | 0.828 |
Stained area, % | 59 | 56, 62 | 60 | 49, 67 | 57 | 48, 65 | 0.827 | 0.653 | 0.745 |
Ferroportin | |||||||||
Mean/max saturation, % | 64 | 62, 66 | 64 | 59, 69 | 61 | 59, 63 | 0.827 | 0.072 | 0.329 |
Stained area, % | 66 | 54, 75 | 68 | 40, 78 | 45 | 22, 57 | 0.999 | 0.024 | 0.129 |
Hephaestin | |||||||||
Mean/max saturation, % | 27 | 25, 29 | 28 | 26, 31 | 31 | 27, 37 | 0.234 | 0.028 | 0.195 |
Stained area, % | 1 | 0, 22 | 4 | 1, 21 | 16 | 8, 38 | 0.266 | 0.080 | 0.195 |
TfR1 | |||||||||
Mean/max saturation, % | 52 | 48, 54 | 50 | 49, 55 | 53 | 51, 62 | 0.821 | 0.325 | 0.233 |
Stained area, % | 59 | 49, 69 | 42 | 33, 68 | 64 | 47, 73 | 0.257 | 0.437 | 0.233 |
Iron Transporter Protein | All Study Children, n = 43 | Children With CD, n = 27 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Anemia, n = 20 | No Anemia, n = 23 | p Value | Anemia, n = 14 | No Anemia, n = 13 | p Value | |||||
Median | Q1, Q3 | Median | Q1, Q3 | Median | Q1, Q3 | Median | Q1, Q3 | |||
DCYTB | ||||||||||
Stained apical border, % | 54 | 13, 78 | 56 | 37, 73 | 0.999 | 53 | 10, 79 | 63 | 42, 70 | 0.689 |
DMT1 | ||||||||||
Mean/max saturation, % | 43 | 37, 51 | 39 | 36, 54 | 0.582 | 43 | 39, 51 | 39 | 37, 53 | 0.446 |
Stained area, % | 59 | 56, 62 | 59 | 54, 66 | 0.388 | 59 | 56, 61 | 59 | 57, 63 | 0.744 |
Ferroportin | ||||||||||
Mean/max saturation, % | 64 | 59, 65 | 64 | 60, 68 | 0.372 | 64 | 62, 65 | 65 | 62, 69 | 0.128 |
Stained area, % | 65 | 46, 74 | 65 | 44, 77 | 0.875 | 65 | 55, 74 | 66 | 51, 77 | 0.624 |
Hephaestin | ||||||||||
Mean/max saturation, % | 27 1 | 26, 29 | 28 | 25, 32 | 0.594 | 27 2 | 25, 29 | 27 | 25, 31 | 0.663 |
Stained area, % | 5 1 | 1, 22 | 3 | 0, 23 | 0.795 | 3 2 | 0, 19 | 1 | 0, 25 | 0.744 |
TfR1 | ||||||||||
Mean/max saturation, % | 50 1 | 49, 54 | 52 | 49, 55 | 0.452 | 50 3 | 49, 54 | 53 | 48, 55 | 0.750 |
Stained area, % | 55 1 | 42, 62 | 61 | 43, 70 | 0.292 | 55 3 | 55, 64 | 61 | 50, 70 | 0.469 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Repo, M.; Hannula, M.; Taavela, J.; Hyttinen, J.; Isola, J.; Hiltunen, P.; Popp, A.; Kaukinen, K.; Kurppa, K.; Lindfors, K. Iron Transporter Protein Expressions in Children with Celiac Disease. Nutrients 2021, 13, 776. https://doi.org/10.3390/nu13030776
Repo M, Hannula M, Taavela J, Hyttinen J, Isola J, Hiltunen P, Popp A, Kaukinen K, Kurppa K, Lindfors K. Iron Transporter Protein Expressions in Children with Celiac Disease. Nutrients. 2021; 13(3):776. https://doi.org/10.3390/nu13030776
Chicago/Turabian StyleRepo, Marleena, Markus Hannula, Juha Taavela, Jari Hyttinen, Jorma Isola, Pauliina Hiltunen, Alina Popp, Katri Kaukinen, Kalle Kurppa, and Katri Lindfors. 2021. "Iron Transporter Protein Expressions in Children with Celiac Disease" Nutrients 13, no. 3: 776. https://doi.org/10.3390/nu13030776
APA StyleRepo, M., Hannula, M., Taavela, J., Hyttinen, J., Isola, J., Hiltunen, P., Popp, A., Kaukinen, K., Kurppa, K., & Lindfors, K. (2021). Iron Transporter Protein Expressions in Children with Celiac Disease. Nutrients, 13(3), 776. https://doi.org/10.3390/nu13030776