Methylenetetrahydrofolate Reductase (MTHFR) Gene Polymorphism and Infant’s Anthropometry at Birth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Design
2.2. DNA Extraction and Methylenetetrahidropholate Reductase Single Nucleotide Polymorphism (SNP) MTHFR(677)C>T (rs1801133) Genotyping
2.3. Anthropometric Characteristics and Gestational Age
2.4. Covariates
2.4.1. Dietary Vitamin B12, Folate Intake and Folic Acid Supplementation Use
2.4.2. Sociodemographic, Lifestyle and Obstetrics Variables
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Bertino, E.; Milani, S.; Fabris, C.; De Curtis, M. Neonatal anthropometric charts: What they are, what they are not. Arch. Dis. Child. Fetal Neonatal Ed. 2007, 92, F7–F10. [Google Scholar] [CrossRef] [Green Version]
- McIntire, D.D.; Bloom, S.L.; Casey, B.M.; Leveno, K.J. Birthweight in relation to morbidity and mortality among newborn infants. N. Engl. J. Med. 1999, 340, 1234–1238. [Google Scholar] [CrossRef] [PubMed]
- Risnes, K.R.; Vatten, L.J.; Baker, J.L.; Jameson, K.; Sovio, U.; Kajantie, E.; Osler, M.; Morley, R.; Jokela, M.; Painter, R.C.; et al. Birthweight and mortality in adulthood: A systematic review and meta-analysis. Int. J. Epidemiol. 2011, 40, 647–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, Y.; Luo, Z.C.; Nuyt, A.M.; Audibert, F.; Wei, S.Q.; Abenhaim, H.A.; Bujold, E.; Julien, P.; Huang, H.; Levy, E. 3D Cohort Study Group. Large-for-gestational-age may be associated with lower fetal insulin sensitivity and β-cell function linked to leptin. J. Clin. Endocrinol. Metab. 2018, 103, 3837–3844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navarrete-Muñoz, E.M.; Valera-Gran, D.; Garcia-De-La-Hera, M.; Gonzalez-Palacios, S.; Riaño, I.; Murcia, M.; Lertxundi, A.; Guxens, M.; Tardón, A.; Amiano, P.; et al. High doses of folic acid in the periconceptional period and risk of low weight for gestational age at birth in a population based cohort study. Eur. J. Nutr. 2017, 58, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Sengpiel, V.; Bacelis, J.; Myhre, R.; Myking, S.; Pay, A.S.D.; Haugen, M.; Brantsæter, A.L.; Meltzer, H.M.; Nilsen, R.M.; Magnus, P.; et al. Folic acid supplementation, dietary folate intake during pregnancy and risk for spontaneous preterm delivery: A prospective observational cohort study. BMC Pregnancy Childbirth 2014, 14, 375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alves-Santos, N.H.; Guedes-Cocate, P.; Benaim, C.; Rodrigues-Farias, D.; Emmett, P.M.; Kac, G. Prepegnancy dietary patterns and their association with perinatal outcomes: A prospective cohort study. J. Acad. Nutri. Diet. 2019, 119, 1439–1451. [Google Scholar] [CrossRef] [PubMed]
- Bulloch, R.E.; Wall, C.R.; McCowan, L.M.E.; Taylor, R.S.; Roberts, C.T.; Thompson, J.M.D. The Effect of interactions between folic acid supplementation and one carbon metabolism gene variants on small-for-gestational-age births in the Screening for Pregnancy Endpoints (SCOPE) cohort study. Nutrients 2020, 12, 1677. [Google Scholar] [CrossRef]
- World Health Organization. Recommendations on Antenatal Care for a Positive Pregnancy Experience; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Naninck, E.F.G.; Stijger, P.C.; Brouwer-Brolsma, E.M. The importance of maternal folate status for brain development and function of offspring. Adv. Nutr. 2019, 10, 502–519. [Google Scholar] [CrossRef]
- Shin, J.-A.; Kim, Y.-J.; Park, H.; Kim, H.-K.; Lee, H.-Y. Localization of folate metabolic enzymes, methionine synthase and 5,10-methylenetetrahydrofolate reductase in human placenta. Gynecol. Obstet. Investig. 2014, 78, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Moulik, N.R.; Agrawal, S. Folic acid, one-carbon metabolism & childhood cancer. Indian J. Med. Res. 2017, 146, 163–174. [Google Scholar] [CrossRef]
- Field, M.S.; Stover, P.J. Safety of folic acid. Ann. N. Y. Acad. Sci. 2018, 1414, 59–71. [Google Scholar] [CrossRef] [Green Version]
- Rush, E.C.; Katre, P.; Yajnik, C.S. Vitamin B12: One carbon metabolism, fetal growth and programming for chronic disease. Eur. J. Clin. Nutrit. 2014, 68, 2–7. [Google Scholar] [CrossRef]
- World Health Organization; Food and Agricultural Organization of the United Nations. Chapter 14. Vitamin B12. In Vitamin and Mineral Requirements in Human Nutrition; FAO: Rome, Italy, 2004; pp. 279–302. [Google Scholar]
- Smallwood, T.; Allayee, H.; Bennett, B.J. Choline metabolites: Gene by diet interactions. Curr. Opin. Lipidol. 2016, 27, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Yila, T.A.; Sasaki, S.; Miyashita, C.; Braimoh, T.S.; Kashino, I.; Kobayashi, S.; Kishi, R.; Okada, E.; Baba, T.; Yoshioka, E.; et al. Effects of maternal 5,10-methylenetetrahydrofolate reductase C677T and A1298C polymorphisms and tobacco smoking on infant birth weight in a japanese population. J. Epidemiol. 2012, 22, 91–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.; Zhu, P.; Geng, X.; Liu, Z.; Cui, L.; Gao, Z.; Yang, L. Genetic polymorphism of MTHFR(677)C>T whit preterm birth and low birth weight susceptibility: A meta-analysis. Arch. Gynecol. Obstet. 2017, 295, 1105–1118. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Yang, X.; Lu, M. Methylenetetrahydrofolate reductase gene polymorphisms and recurrent pregnancy loss in China: A systematic review and meta-analysis. Arch. Gynecol. Obstet. 2016, 293, 283–290. [Google Scholar] [CrossRef]
- Khoury, M.J.; Berg, C.J.; Calle, E.E. The ponderal index in term newborn siblings. Am. J. Epidemiol. 1990, 132, 576–583. [Google Scholar] [CrossRef]
- Carrascosa, A.; Yeste, D.; Copil, A.; Almar, J.; Salcedo, S.; Gussinyé, M. Anthropometric growth patterns of preterm and full-term newborns (24–42 weeks’ gestational age) at the Hospital Materno-Infantil Vall d’Hebron (Barcelona) (1997–2002. An. Pediatr. 2004, 60, 406–416. [Google Scholar]
- Willett, W.C.; Sampson, L.; Stampfer, M.J.; Rosner, B.; Bain, C.; Witschi, J.; Hennekens, C.H.; Speizer, F.E. Reproducibility and validity of a semiquantitative food frequency questionnaire. Am. J. Epidemiol. 1985, 122, 51–65. [Google Scholar] [CrossRef] [PubMed]
- Vioque, J.; Navarrete-Muñoz, E.-M.; Gimenez-Monzó, D.; García-De-La-Hera, M.; Granado, F.; Young, I.S.; Ramón, R.; Ballester, F.; Murcia, M.; Rebagliato, M.; et al. Reproducibility and validity of a food frequency questionnaire among pregnant women in a Mediterranean area. Nutr. J. 2013, 12, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gestión de Salud y Nutrición SL (2019) i-Diet Food Composition Database, Updated from original version of G. Martín Peña FCD (i-diet.es)
- Tamura, T.; Picciano, M.F. Folate and human reproduction. Am. J. Clin. Nutr. 2006, 83, 993–1016. [Google Scholar] [CrossRef]
- Caudill, M.A. Folate bioavailability: Implications for establishing dietary recommendations and optimizing status. Am. J. Clin. Nutr. 2010, 91, 1455S–1460S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Buuren, S.; Groothuis-Oudshoorn, G. Mice: Multivariate imputation by chained equations in R. J. Statist. Softw. 2011, 45, 1–67. [Google Scholar] [CrossRef] [Green Version]
- Nefic, H.; Mackic-Djurovic, M.; Eminovic, I. The frequency of the 677C>T and 1298A>C polymorphisms in the methylenetetrahydrofolate reductase (MTHFR) gene in the population. Med. Arch. 2018, 72, 164–169. [Google Scholar] [CrossRef]
- James, S.J.; Pogribna, M.; Pogribny, I.P.; Melnyk, S.; Hine, R.J.; Gibson, J.B.; Yi, P.; Tafoya, D.L.; Swenson, D.H.; Wilson, V.L.; et al. Abnormal folate metabolism and mutation in the methylenetetrahydrofolate reductase gene may be maternal risk factors for Down syndrome. Am. J. Clin. Nutr. 1999, 70, 495–501. [Google Scholar] [CrossRef]
- Sibani, S.; Leclerc, D.; Weisberg, I.S.; O’Ferrall, E.; Watkins, D.; Artigas, C.; Rosenblatt, D.S.; Rozen, R. Characterization of mutations in severe methylenetetrahydrofolate reductase deficiency reveals an FAD-responsive mutation. Hum. Mutat. 2003, 21, 509–520. [Google Scholar] [CrossRef] [PubMed]
- Steluti, J.; Carvalho, A.M.; Carioca, A.A.F.; Miranda, A.; Gattás, G.J.F.; Fisberg, R.M.; Marchioni, D.M. Genetic variants involved in one-carbon metabolism: Polymorphism frequencies and differences in homocysteine concentrations in the folic acid fortification era. Nutrients 2017, 9, 539. [Google Scholar] [CrossRef]
- Torres-Sánchez, L.; López-Carrillo, L.; Blanco-Muñoz, J.; Chen, J. Maternal dietary intake of folate, vitamin B12 and MTHFR 677C>T genotype: Their impact on newborn’s anthropometric parameters. Genes Nutr. 2014, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zinck, J.W.; de Groh, M.; MacFarlane, A.J. Genetic modifiers of folate, vitamin B-12, and homocysteine status in a cross-sectional study of the Canadian population. Am. J. Clin. Nutr. 2015, 101, 295–1304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sechi, G.; Sechi, E.; Fois, C.; Kumar, N. Advances in clinical determinants and neurological manifestations of B vitamin deficiency in adults. Nutr. Rev. 2016, 74, 281–300. [Google Scholar] [CrossRef] [Green Version]
- Hodgetts, V.A.; Morris, R.K.; Francis, A.; Gardosi, J.; Ismail, K.M. Effectiveness of folic acid supplementation in pregnancy on reducing the risk of small-for-gestational age neonates: A population study, systematic review and meta-analysis. BJOG 2015, 122, 478–490. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, Y.; Xin, X.; Zhang, Y.; Liu, D.; Peng, Z.; He, Y.; Xu, J.; Ma, X. Effect of folic acid supplementation on preterm delivery and small for gestationalage births: A systematic review and meta-analysis. Reprod. Toxicol. 2017, 67, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Zhang, X.; Peng, X.; Zhang, S.; Wang, X.; Zhu, C. Folic acid and risk of preterm birth: A meta-analysis. Front. Neurosci. 2019, 13, 1284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashfield-Watt, P.A.; Pullin, C.H.; Whiting, J.M.; Clark, Z.E.; Moat, S.J.; Newcombe, R.G.; Burr, M.L.; Lewis, M.J.; Powers, H.J.; McDowell, I.F. Methylenetetrahydrofolate reductase 677C-T genotype modulates homocysteine responses to a folate-rich diet or a low-dose folic acid supplement: A randomized controlledtrial. Am. J. Clin. Nutr. 2002, 76, 180–186. [Google Scholar] [CrossRef]
- Barua, S.; Kuizon, S.; Junaid, M.A. Folic acid supplementation in pregnancy and implications in health and disease. J. Biomed. Sci. 2014, 21, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danielewicz, H.; Myszczyszyn, G.; Dębińska, A.; Myszkal, A.; Boznański, A.; Hirnle, L. Diet in pregnancy-more than food. Eur. J. Pediatr. 2017, 176, 1573–1579. [Google Scholar] [CrossRef] [Green Version]
- Obeid, R.; Holzgreve, W.; Pietrzik, K. Folate supplementation for prevention of congenital heart defects and low birth weight: An update. Cardiovasc. Diagn. Ther. 2019, 9, S424–S433. [Google Scholar] [CrossRef]
- Colson, N.J.; Naug, H.L.; Nikbakht, E.; Zhang, P.; McCormack, J. The impact of MTHFR 677 C/T genotypes on folate status markers: A meta-analysis of folic acid intervention studies. Eur. J. Nutr. 2017, 56, 247–260. [Google Scholar] [CrossRef]
- Golja, M.V.; Šmid, A.; Kuželički, N.K.; Trontelj, J.; Geršak, K.; Mlinarič-Raščan, I. Folate insufficiency due to MTHFR deficiency is bypassed by 5-methyltetrahydrofolate. J. Clin. Med 2020, 9, 2836. [Google Scholar] [CrossRef] [PubMed]
- Niederberger, K.; Dahms, I.; Broschard, T.; Boehni, R.; Moser, R. Safety evaluation of calcium L-methylfolate. Toxicol. Rep. 2019, 6, 1018–1030. [Google Scholar] [CrossRef]
- Drake, A.J.; O’Shaughnessy, P.J.; Bhattacharya, S.; Monteiro, A.; Kerrigan, D.; Goetz, S.; Raab, A.; Rhind, S.M.; Sinclair, K.D.; Meharg, A.A.; et al. In utero exposure to cigarette chemicals induces sex-specific disruption of one-carbon metabolism and DNA methylation in the human fetal liver. BMC Med. 2015, 13, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Gobbo, G.F.; Price, E.M.; Hanna, C.W.; Robinson, W.P. No evidence for association of MTHFR 677C>T and 1298A>C variants with placental DNA methylation. Clin. Epigenet. 2018, 10, 34. [Google Scholar] [CrossRef] [Green Version]
Maternal Polymorphism (ID dbSNP) | Location (GRCh38) and Result | Genotypic and Allele Frequencies | ||
---|---|---|---|---|
Total (n = 694) | Male (n = 355) | Female (n = 339) | ||
MTHFR(677)C>T (rs1801133) | Chr.1: 11796321 Ala→Val amino acid residue 222 | CC = 0.39 | CC = 0.40 | CC = 0.38 |
CT = 0.45 | CT = 0.45 | CT = 0.46 | ||
TT = 0.16 | TT = 0.15 | TT = 0.16 | ||
C = 0.62 | C = 0.63 | C = 0.61 | ||
T = 0.38 | T = 0.37 | T = 0.39 |
Characteristic | TOTAL (n = 596) | Male Infants (n = 355) | Female Infants (n = 339) | |||||
---|---|---|---|---|---|---|---|---|
Arithmetic Mean (SD) | Geometric Mean | Arithmetic Mean (SD) | Geometric Mean | Arithmetic Mean (SD) | Geometric Mean | p-Value 1 | ||
Newborn | Weight (g) | 3310.06 (451.41) | 3277.10 | 3385.55 (458.05) | 3352.95 | 3231.02 (431.04) | 3199.50 | <0.001 |
Height (cm) | 50.62 (2.14) | 50.57 | 50.99 (2.18) | 50.94 | 50.23 (2.28) | 50.17 | <0.001 | |
Head circumference (cm) | 33.73 (1.57) | 33.69 | 33.99 (1.54) | 33.96 | 33.45 (1.55) | 33.42 | <0.001 | |
Chest circumference (cm) | 32.96 (1.82) | 32.91 | 33.19 (1.83) | 33.14 | 32.72 (1.77) | 32.67 | 0.001 | |
Weight index (g/cm3) | 2.55 (0.25) | 2.53 | 2.54 (0.25) | 2.54 | 2.54 (0.25) | 2.53 | 0.829 | |
Gestational age (weeks) | 39.55 (1.45) | 39.52 | 39.57 (1.46) | 39.54 | 39.52 (1.45) | 39.49 | 0.566 | |
Maternal | Age (years) | 31.26 (4.73) | 30.89 | 31.39 (4.74) | 31.02 | 31.12 (4.73) | 30.74 | 0.496 |
Folate intake (μg/day) Pre-pregnancy and 1st Trimester 2 | 679.79 (134.32) | 664.79 | 686.27 (136.64) | 671.21 | 673.01 (131.71) | 658.13 | 0.153 | |
Folate intake (μg/day) 2nd y 3rd Trimester 2 | 655.30 (161.40) | 634.71 | 661.10 (166.79) | 640.93 | 649.23 (155.57) | 628.27 | 0.288 | |
Vitamin B12 intake (μg/day) Pre-pregnancy and 1st Trimester | 10.50 (6.60) | 9.37 | 10.93 (7.92) | 9.63 | 10.04 (5.36) | 9.11 | 0.055 | |
Vitamin B12 intake (μg/day) 2nd y 3rd Trimester | 9.91 (8.16) | 8.38 | 9.74 (7.92) | 8.30 | 10.09 (8.42) | 8.47 | 0.886 | |
Weight gain (g) | 11.20 (5.32) | * | 11.21 (5.76) | * | 11.20 (4.85) | * | 0.706 | |
BMI Prepregnancy | 24.34 (4.75) | 24.02 | 24.28 (4.34) | 24.10 | 24.38 (5.14) | 23.93 | 0.671 | |
BMI 3rd Trimester | 28.53 (4.61) | 28.18 | 28.46 (4.20) | 28.17 | 28.58 (5.01) | 28.20 | 0.533 |
Characteristic | Total (n = 694) | Male Infants (n = 355) | Female Infants (n = 339) | p-Value 1 | |
---|---|---|---|---|---|
n (%) | n (%) | n (%) | |||
Newborn | Weight | ||||
SGA | 36 (5.2) | 19 (5.4) | 17 (5.0) | 0.782 | |
Normal | 568 (81.8) | 293 (82.5) | 275 (81.1) | ||
LGA | 90 (13.0) | 43 (12.1) | 47 (13.9) | ||
Height | |||||
SGA | 33 (4.8) | 13 (3.7) | 20 (5.9) | 0.079 | |
Normal | 503 (72.5) | 270 (76.1) | 233 (68.7) | ||
LGA | 158 (22.8) | 72 (20.3) | 86 (25.4) | ||
Head circumference | |||||
SGA | 68 (9.8) | 29 (8.2) | 39 (11.5) | 0.315 | |
Normal | 621 (89.5) | 323 (91.0) | 298 (87.9) | ||
LGA | 5 (0.7) | 3 (0.8) v | 2 (0.6) | ||
Chest circumference | |||||
SGA | 24 (3.5) | 12 (3.4) | 12 (3.5) | 0.908 | |
Normal | 670 (96.5) | 343 (96.6) | 327 (96.5) | ||
Weight index | |||||
SGA | 220 (31.7) | 116 (32.7) | 104 (30.7) | 0.799 | |
Normal | 448 (64.6) | 225 (63.4) | 223 (65.8) | ||
LGA | 26 (3.7) | 14 (3.9) | 12 (3.5) | ||
Prematurity | |||||
Yes | 26 (3.7) | 14 (3.9) | 12 (3.5) | 0.779 | |
No | 668 (96.3) | 341 (96.1) | 327 (96.5) | ||
Maternal | Nationality | ||||
Spanish | 618 (89.0) | 320 (90.1) | 298 (87.9) | 0.395 | |
South American | 8 (1.2) | 5 (1.4) | 3 (0.9) | ||
European (not Spanish) | 68 (9.8) | 30 (8.5) | 38 (11.2) | ||
Education level | |||||
No studies | 38 (5.5) | 18 (5.1) | 20 (5.9) | 0.898 | |
Primary school | 303 (43.7) | 154 (43.4) | 149 (44.0) | ||
Secondary school | 161 (23.2) | 86 (54.2) | 75 (22.1) | ||
University studies | 192 (27.7) | 97 (27.3) | 95 (28.0) | ||
Smoking during pregnancy | |||||
Yes | 116 (16.7) | 61 (17.2) | 55 (16.2) | 0.735 | |
No | 578 (83.3) | 294 (82.8) | 284 (83.8) | ||
Alcohol consumption during pregnancy | |||||
Yes | 564 (81.3) | 281 (79.2) | 283 (83.5) | 0.144 | |
No | 130 (18.7) | 74 (20.8) | 56 (16.5) | ||
Folate intake pre-pregnancy and 1st Trimester 2 | |||||
<600 μg/day | 162 (23.3) | 75 (21.1) | 87 (25.7) | 0.158 | |
≥600 μg/day | 532 (76.7) | 280 (78.9) | 252 (74.3) | ||
Folate intake 2nd and 3rd Trimester 2 | |||||
<600 μg/day | 243 (35.0) | 124 (34.9) | 119 (35.1) | 0.962 | |
≥600 μg/day | 451 (65.0) | 231 (65.1) | 220 (64.9) | ||
Gestational diabetes | |||||
Yes | 37 (5.3) | 27 (7.6) | 10 (2.9) | 0.006 | |
No | 657 (94.7) | 328 (92.4) | 329 (97.1) | ||
Hypertension | |||||
Yes | 14 (2.0) | 8 (2.3) | 6 (1.8) | 0.651 | |
No | 680 (98.0) | 347 (97.7) | 333 (98.2) |
Male Infants (n = 355) | Female Infants (n = 339) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Maternal MTHFR(677)C>T Genotype | Maternal MTHFR(677)C>T Genotype | ||||||||
CC | CT | TT | p-Value | CC | CT | TT | p-Value | ||
Weight (g) | AM | 3402.69 | 3376.20 | 3367.50 | 0.840 | 3259.27 | 3214.58 | 3210.27 | 0.636 |
(SD) | (482.26) | (457.95) | (394.47) | (413.74) | (449.90) | (421.19) | |||
GM | 3365.69 | 3344.17 | 3345.03 | 3229.50 | 3181.07 | 3180.76 | |||
Height(cm) | AM | 50.91 | 50.97 | 51.2 | 0.436 | 50.26 | 50.25 | 50.07 | 0.800 |
(SD) | (2.32) | (2.10) | (2.04) | (2.25) | (2.39) | (2.08) | |||
GM | 50.86 | 50.93 | 51.22 | 50.21 | 50.20 | 50.03 | |||
Head circumference (cm) | AM | 34.02 | 34.02 | 33.83 | 0.597 | 33.60 | 33.33 | 33.44 | 0.301 |
(SD) | (1.53) | (1.65) | (1.26) | (1.51) | (1.57) | (1.58) | |||
GM | 33.99 | 33.98 | 33.81 | 33.57 | 33.29 | 33.40 | |||
Chest circumference (cm) | AM | 33.20 | 33.16 | 33.25 | 0.795 | 32.82 | 32.64 | 32.73 | 0.602 |
(SD) | (1.80) | (1.90) | (1.75) | (1.70) | (1.72) | (2.08) | |||
GM | 33.15 | 33.11 | 33.20 | 32.77 | 32.59 | 32.66 | |||
Weight index (gr/cm3) | AM | 2.57 | 2.54 | 2.51 | 0.242 | 2.56 | 2.53 | 2.55 | 0.681 |
(SD) | (0.25) | (0.26) | (0.22) | (0.25) | (0.27) | (0.23) | |||
GM | 2.56 | 2.53 | 2.50 | 2.55 | 2.52 | 2.54 | |||
Gestational age (weeks) | AM | 39.49 | 39.65 | 39.57 | 0.687 | 39.63 | 39.44 | 39.45 | 0.423 |
(SD) | (1.48) | (1.45) | (1.44) | (1.43) | (1.49) | (1.39) | |||
GM | 39.46 | 39.62 | 39.54 | 39.61 | 39.41 | 39.42 |
Female Infants | Male Infants | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SGA | LGA | SGA | LGA | ||||||||||
Characteristics | Genotype | SGA/AGA | OR Crude (IC 95%) | OR Adjusted (IC 95%) | LGA/AGA | OR Crude (IC 95%) | OR Adjusted (IC 95%) | SGA/AGA | OR Cruda (IC 95%) | OR Adjusted (IC 95%) | LGA/AGA | OR Crude (IC 95%) | OR Adjusted (IC 95%) |
Weight 1 | |||||||||||||
CC | 4/112 | Ref. | Ref. | 14/112 | Ref. | Ref. | 8/111 | Ref. | Ref. | 24/111 | Ref. | Ref. | |
CT | 11/117 | 2.63 (0.81;8.51) | 2.78 (0.75;10.31) | 26/117 | 1.78 (0.88;3.58) | 2.09 ** (1.00;4.36) | 9/134 | 0.93 (0.35;2.50) | 0.87 (0.30;2.56) | 15/134 | 0.52 * (0.26;1.03) | 0.52 * (0.26;1.06) | |
TT | 2/46 | 1.22 (0.22;6.88) | 1.43 (0.24;8.74) | 7/46 | 1.22 (0.46;3.21) | 1.41 (0.52;3.81) | 2/48 | 0.58 (0.12;2.82) | 0.66 (0.13;3.38) | 4/48 | 0.39 * (0.13;1.17) | 0.38 (0.12;1.17) | |
CT o TT | 13/163 | 2.23 (0.71;7.03) | 2.38 (0.67;8.44) | 33/163 | 1.62 (0.83;3.17) | 1.89 * (0.94;3.81) | 11/182 | 0.84 (0.33;2.15) | 0.81 (0.29;2.26) | 19/182 | 0.48 ** (0.25;0.92) | 0.49 ** (0.25;0.93) | |
Height 2 | |||||||||||||
CC | 7/87 | Ref. | Ref. | 36/87 | Ref. | Ref. | 4/110 | Ref. | Ref. | 29/110 | Ref. | Ref. | |
CT | 12/99 | 1.51 (0.57;4.00) | 1.85 (0.63;5.45) | 43/99 | 1.05 (0.62;1.78) | 1.19 (0.69;2.05) | 7/122 | 1.58 (0.45;5.54) | 1.53 (0.26;8.91) | 29/122 | 0.90 (0.51;1.60) | 0.93 (0.52;1.66) | |
TT | 1/47 | 0.26 (0.03;2.21) | 0.26 (0.03;2.37) | 7/47 | 0.36 ** (0.15;0.87) | 0.36 ** (0.15;0.89) | 2/38 | 1.45 (0.26;8.22) | 1.42 (0.40;5.10) | 14/38 | 1.40 (0.67;2.92) | 1.41 (0.67;2.96) | |
CT o TT | 13/146 | 1.11 (0.43;2.88) | 1.26 (0.45;3.57) | 50/146 | 0.83 (0.50;1.37) | 0.91 (0.54;1.52) | 9/160 | 1.55 (0.47;5.15) | 1.45 (0.43;4.91) | 43/160 | 1.02 (0.60;1.73) | 1.04 (0.61;1.78) | |
Head circumference 3 | |||||||||||||
CC | 15/114 | Ref. | Ref. | 1/50 | Ref. | Ref. | 13/129 | Ref. | Ref. | 1/129 | Ref. | Ref. | |
CT | 20/134 | 1.13 (0.56;2.32) | 1.07 (0.51;2.25) | 0/134 | no value | no value | 12/144 | 0.83 (0.36;1.88) | 0.70 (0.30;1.63) | 2/144 | 1.79 (0.16;19.9) | 2.11 (0.18.24.53) | |
TT | 4/50 | 0.61 (0.19;1.93) | 0.61 (0.19;1.97) | 1/50 | 2.28 (0.14;37.18) | 2.25 (0.13;38.13) | 4/50 | 0.79 (0.25;2.55) | 0.69 (0.21;2.30) | 0/50 | no value | no value | |
CT o TT | 24/184 | 0.99 (0.50;1.97) | 0.95 (0.47;1.93) | 1/184 | 0.62 (0.04;10.00) | 0.59 (0.04;9.83) | 16/194 | 0.82 (0.38;1.76) | 0.70 (0.32:1.54) | 2/194 | 1.33 (0.12;14.82) | 1.61 (0.14;18.86) | |
Chest circumference 4 | |||||||||||||
CC | 4/126 | Ref. | Ref. | - | - | - | 4/139 | Ref. | Ref. | - | - | - | |
CT | 4/150 | 0.84 (0.21;3.43) | 0.50 (0.06;4.14) | - | - | - | 6/152 | 1.37 (0.38;4.96) | 3.54 (0.60;20.92) | - | - | - | |
TT | 4/51 | 2.47 (0.60;10.26) | 3.29 (0.48;22.34) | - | - | - | 2/52 | 1.34 (0.24;7.52) | 2.26 (0.25;20.73) | - | - | - | |
CT o TT | 8/201 | 1.25 (0.37;4.25) | 1.17 (0.21;6.47) | - | - | - | 8/204 | 1.36 (0.40;4.61) | 3.09 (0.58;16.56) | - | - | - | |
Weight index 5 | |||||||||||||
CC | 40/84 | Ref. | Ref. | 6/84 | Ref. | Ref. | 39/97 | Ref. | Ref. | 7/97 | Ref. | Ref. | |
CT | 51/97 | 1.10 (0.67;1.83) | 1.04 (0.62;1.75) | 6/97 | 0.87 (0.27;2.79) | 1.02 (0.31;3.42) | 59/92 | 1.60 * (0.97;2.62) | 1.48 (0.90;2.45) | 7/192 | 1.05 (0.36;3.12) | 0.85 (0.27;2.63) | |
TT | 13/42 | 0.65 (0.31;1.34) | 0.61 (0.29;1.29) | 0/42 | no value | no value | 18/36 | 1.24 (0.63;2.45) | 1.14 (0.57;2.28) | 0/36 | no value | no value | |
CT o TT | 64/139 | 0.97 (0.60;1.56) | 0.91 (0.56;1.49) | 6/139 | 0.60 (0.19;1.94) | 0.69 (0.21;2.28) | 77/128 | 1.50 * (0.94;2.39) | 1.39 (0.86;2.23) | 7/128 | 0.76 (0.26;2.23) | 0.60 (0.19;1.84) | |
Prematurity 6 | (yes/no) | (yes/no) | |||||||||||
CC | 2/128 | Ref. | Ref. | - | - | - | 6/137 | Ref. | Ref. | - | - | - | |
CT | 8/146 | 3.51 (0.73;16.82) | 5.01 (0.85;29.59) * | - | - | - | 6/152 | 0.90 (0.28;2.86) | 0.81 (0.25;2.67) | - | - | - | |
TT | 2/53 | 2.42 (0.33;17.60) | 3.03 (0.37;25.10) | - | - | - | 2/52 | 0.88 (0.17;4.49) | 0.97 (0.19;5.05) | - | - | - | |
CT o TT | 10/199 | 3.22 (0.69;14.92) | 4.32 (0.79;23.58) * | - | - | - | 8/204 | 0.89 (0.30;2.64) | 0.85 (0.28;2.56) | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguilar-Lacasaña, S.; López-Flores, I.; González-Alzaga, B.; Giménez-Asensio, M.J.; Carmona, F.D.; Hernández, A.F.; López Gallego, M.F.; Romero-Molina, D.; Lacasaña, M. Methylenetetrahydrofolate Reductase (MTHFR) Gene Polymorphism and Infant’s Anthropometry at Birth. Nutrients 2021, 13, 831. https://doi.org/10.3390/nu13030831
Aguilar-Lacasaña S, López-Flores I, González-Alzaga B, Giménez-Asensio MJ, Carmona FD, Hernández AF, López Gallego MF, Romero-Molina D, Lacasaña M. Methylenetetrahydrofolate Reductase (MTHFR) Gene Polymorphism and Infant’s Anthropometry at Birth. Nutrients. 2021; 13(3):831. https://doi.org/10.3390/nu13030831
Chicago/Turabian StyleAguilar-Lacasaña, Sofía, Inmaculada López-Flores, Beatriz González-Alzaga, María José Giménez-Asensio, F. David Carmona, Antonio F. Hernández, María Felicidad López Gallego, Desirée Romero-Molina, and Marina Lacasaña. 2021. "Methylenetetrahydrofolate Reductase (MTHFR) Gene Polymorphism and Infant’s Anthropometry at Birth" Nutrients 13, no. 3: 831. https://doi.org/10.3390/nu13030831