Re-Defining the Population-Specific Cut-Off Mark for Vitamin A Deficiency in Pre-School Children of Malawi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Statistical Analyses Used
- A strong correlation between the two variables, preferably r ≥ 0.7 [32].
- A clear linear relationship between the SR and RBP observed in the scatter plot.
- A linear regression equation that gives a cut-off value which reflects evidence that the SR: RBP ratio is < 1.0, especially in the presence of inflammation.
2.2. Ethical Considerations
3. Results
3.1. Descriptive Results
3.2. Associations between Vitamin A Biomarkers and Inflammatory Biomarkers
3.3. Linear Regression Outputs
3.4. Prevalence of Vitamin A Deficiency
4. Discussion
4.1. Adjustment for Inflammation
4.2. Analytical Data
4.3. Alternative Approaches to Determining VAD Prevalence
4.4. Policy Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stevens, G.A.; Bennett, J.E.; Hennocq, Q.; Lu, Y.; De-Regil, L.M.; Rogers, L.; Danaei, G.; Li, G.; White, R.A.; Flaxman, S.R.; et al. Trends and mortality effects of vitamin A deficiency in children in 138 low-income and middle-income countries between 1991 and 2013: A pooled analysis of population-based surveys. Lancet Glob. Health 2015, 3, 528–536. [Google Scholar] [CrossRef] [Green Version]
- WHO. Global Prevalence of Vitamin A Deficiency in Populations at Risk 1995–2005 WHO Global Database on Vitamin A Deficiency; World Health Organization: Geneva, Switzerland, 2009; ISBN 9789241598019. [Google Scholar]
- Tanumihardjo, S.A.; Russell, R.M.; Stephensen, C.B.; Gannon, B.M.; Craft, N.E.; Haskell, M.J.; Lietz, G.; Schulze, K.; Raiten, D.J. Biomarkers of nutrition for development (BOND)—Vitamin A review. J. Nutr. 2016, 146, 1816S–1848S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Serum Retinol Concentrations for Determining the Prevalence of Vitamin A Deficiency in Populations; WHO/NMH/NHD/MNM/11.3; WHO: Geneva, Switzerland, 2011; Available online: http://www.who.int/vmnis/indicators/retinol.pdf (accessed on 15 January 2020).
- Craft, N.E.; Furr, H.C. Methods for Assessment of Vitamin A (Retinoids) and Carotenoids; Elsevier Inc.: Amsterdam, The Netherlands, 2019; ISBN 9780128130506. [Google Scholar]
- De Pee, S.; Dary, O. Biochemical indicators of vitamin A deficiency: Serum retinol and serum retinol binding protein. J. Nutr. 2002, 132, 2895S–2901S. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Indicators for Assessing Vitamin A Deficiency and Their Application in Monitoring and Evaluating Intervention Programmes; Brown, E., Arke, J., Eds.; World Health Organization: Geneva, Switzerland, 1996. [Google Scholar]
- Gamble, M.V.; Ramakrishnan, R.; Palafox, N.A.; Briand, K.; Berglund, L.; Blaner, W.S. Retinol binding protein as a surrogate measure for serum retinol: Studies in vitamin A-deficient children from the Republic of the Marshall Islands. Am. J. Clin. Nutr. 2001, 73, 594–601. [Google Scholar] [CrossRef]
- University of Ghana; Groundwork; University of Wisconsin-Madison KEMRI-WellcomTrust; UNICEF. Ghana Micronutrient Survey 2017; University of Ghana: Accra, Ghana, 2017. [Google Scholar]
- Ministry of Health and Sanitation (Sierra Leone); UNICEF; Helen Keller International; WHO. 2013 Sierra Leone Micronutrient Survey; Ministry of Health and Sanitation: Freetown, Sierra Leone, 2015.
- Tomkins, A. Assessing Micronutrient Status in the Presence of Inflammation. J. Nutr. 2003, 133, 1649–1655. [Google Scholar] [CrossRef] [PubMed]
- Galloway, P.; McMillan, D.C.; Sattar, N. Effect of the inflammatory response on trace element and vitamin status. Ann. Clin. Biochem. 2000, 37, 289–297. [Google Scholar] [CrossRef]
- Fiorentino, M.; Perignon, M.; Kuong, K.; Chamnan, C.; Berger, J.; Wieringa, F.T. Subclinical inflammation affects iron and Vitamin A but not zinc status assessment in Senegalese children and Cambodian children and women. Public Health Nutr. 2018, 21, 1266–1277. [Google Scholar] [CrossRef] [Green Version]
- Raiten, D.J.; Ashour, F.A.S.; Ross, A.C.; Meydani, S.N.; Dawson, H.D.; Stephensen, C.B.; Brabin, B.J.; Suchdev, P.S.; Van Ommen, B.; the INSPIRE Consultative Group. Inflammation and nutrition science for program/policy and interpretation of research evidence (INSPIRE). J. Nutr. 2015, 145, 1039S–1108S. [Google Scholar] [CrossRef]
- Paracha, P.I.; Jamil, A.; Northrop-clewes, C.A.; Thurnham, D.I. Interpretation of vitamin A status in apparently healthy Pakistani children by using markers of subclinical infection 1–3. Am. J. Clin. Nutr. 2000, 72, 1164–1169. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, K.C.K.; Cunha, D.F.; Jordão, A.A., Jr.; Weffort, V.R.S.; Cunha, S.F.C. Transient decreased retinol serum levels in children with pneumonia and acute phase response. J. Pediatr. 2011, 87, 457–460. [Google Scholar] [CrossRef] [Green Version]
- Thurnham, D.I.; Northrop-Clewes, C.A.; Knowles, J. The Use of Adjustment Factors to Address the Impact of Inflammation on Vitamin A and Iron Status in Humans. J. Nutr. 2015, 145, 1137S–1143S. [Google Scholar] [CrossRef]
- Larson, L.M.; Namaste, S.M.; Williams, A.M.; Engle-Stone, R.; Addo, O.Y.; Suchdev, P.S.; Wirth, J.P.; Temple, V.; Serdula, M.; Northrop-Clewes, C.A. Adjusting retinol-binding protein concentrations for inflammation: Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) project. Am. J. Clin. Nutr. 2017, 106, 390S–401S. [Google Scholar]
- Willumsen, J.F.; Simmank, K.; Filteau, S.M.; Wagstaff, L.A.; Tomkins, A.M. Toxic Damage to the respiratory epithelium induces acute phase changes in vitamin A metabolism without depleting retinol stores of South African children. J. Nutr. 1997, 127, 1339–1343. [Google Scholar] [CrossRef] [Green Version]
- Likoswe, B.H.; Phiri, F.P.; Broadley, M.R.; Joy, E.J.M.; Patson, N.; Maleta, K.M.; Phuka, J.C. Inflammation adjustment by two methods decreases the estimated prevalence of zinc deficiency in Malawi. Nutrients 2020, 12, 1563. [Google Scholar] [CrossRef] [PubMed]
- Diana, A.; Haszard, J.J.; Purnamasari, D.M.; Nurulazmi, I.; Luftimas, D.E.; Rahmania, S.; Nugraha, G.I.; Erhardt, J.; Gibson, R.S.; Houghton, L. Iron, zinc, Vitamin A and selenium status in a cohort of Indonesian infants after adjusting for inflammation using several different approaches. Br. J. Nutr. 2017, 118, 830–839. [Google Scholar] [CrossRef] [Green Version]
- Ratner, B. The correlation coefficient: Its values range between +1/-1, or do they? J. Target. Meas. Anal. Mark. 2009, 17, 139–142. [Google Scholar] [CrossRef] [Green Version]
- National Statistical Office (NSO); Community Health Sciences Unit (CHSU); Centers for Disease Control and Prevention (CDC); Emory University. Malawi Micronutrient Survey 2015–16; NSO, CHSU, CDC and Emory University: Atlanta, GA, USA, 2017. [Google Scholar]
- Engle-stone, R.; Haskell, M.J.; Ndjebayi, A.O.; Nankap, M.; Erhardt, J.G.; Gimou, M.-M.; Brown, K.H.; Haskell, M.J.; Ndjebayi, A.O.; Nankap, M.; et al. Plasma retinol-binding protein predicts plasma retinol concentration in both infected and uninfected Cameroonian women and children. J. Nutr. 2011, 141, 2233–2241. [Google Scholar] [CrossRef] [Green Version]
- Almekinder, J.; Manda, W.; Soko, D.; Lan, Y.; Hoover, D.R.; Semba, R.D. Evaluation of plasma retinol-binding protein as a surrogate measure for plasma retinol concentrations. Scand. J. Clin. Lab. Investig. 2000, 60, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Gorstein, J.L.; Dary, O.; Shell-Duncan, B.; Quick, T.; Wasanwisut, E. Feasibility of using retinol-binding protein from capillary blood specimens to estimate serum retinol concentrations and the prevalence of vitamin a deficiency in low-resource settings. Public Health Nutr. 2008, 11, 513–520. [Google Scholar] [CrossRef] [Green Version]
- Semba, R.D.; Yuniar, Y.; Gamble, M.V.; Natadisastra, G. Muhilal Assessment of vitamin A status of preschool children in Indonesia using plasma retinol-binding protein. J. Trop. Pediatr. 2002, 48, 84–87. [Google Scholar] [CrossRef] [Green Version]
- Glosz, C.M.; Schaffner, A.A.; Reaves, S.K.; Manary, M.J.; Papathakis, P.C. Effect of nutritional interventions on micronutrient status in pregnant malawian women with moderate malnutrition: A randomized, controlled trial. Nutrients 2018, 10, 879. [Google Scholar] [CrossRef] [Green Version]
- Erhardt, J.G.; Estes, J.E.; Pfeiffer, C.M.; Biesalski, H.K.; Craft, N.E. Combined measurement of Ferritin, Soluble Transferrin Receptor, Retinol Binding Protein, and C-Reactive Protein by an inexpensive, sensitive, and simple sandwich Enzyme-Linked Immunosorbent Assay Technique. J. Nutr. 2004, 134, 3127–3132. [Google Scholar] [CrossRef] [Green Version]
- Valentine, A.R.; Tanumihardjo, S.A. Adjustments to the Modified Relative Dose Response (MRDR) test for assessment of vitamin A Status minimize the blood volume used in piglets. J. Nutr. 2004, 134, 1186–1192. [Google Scholar] [CrossRef] [Green Version]
- Thurnham, D.I.; Mccabe, G.P.; Nestel, P. Effects of subclinical infection on plasma retinol concentrations and assessment of prevalence of vitamin A deficiency: Meta-analysis. Lancet 2003, 362, 2052–2059. [Google Scholar] [CrossRef]
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Marquéz, J.R.G.; Gruber, B.; Lafourcade, B.; Leitão, P.J.; et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 2013, 36, 027–046. [Google Scholar] [CrossRef]
- Suchdev, P.S.; Namaste, S.M.L.; Aaron, G.J.; Raiten, D.J.; Brown, K.H.; Flores-ayala, R. Overview of the Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) Project. Adv. Nutr. 2016, 349–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2019. [Google Scholar]
- RStudio Team. RStudio: Intergrated Development for R; 2018 PBC; RStudio Team: Boston, MA, USA, 2018. [Google Scholar]
- Namaste, S.M.; Aaron, G.J.; Varadhan, R.; Peerson, J.M.; Suchdev, P.S. Methodologic approach for the Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) project. Am. J. Clin. Nutr. 2017, 106, 333S–347S. [Google Scholar]
- Bresnahan, K.A.; Chileshe, J.; Arscott, S.; Nuss, E.; Surles, R.; Masi, C.; Kafwembe, E.; Tanumihardjo, S.A. The Acute phase response affected traditional measures of micronutrient status in rural Zambian children during a randomized, controlled feeding trial. J. Nutr. 2014, 144, 972–978. [Google Scholar] [CrossRef]
- Barffour, M.A.; Schulze, K.J.; Coles, C.L.; Chileshe, J.; Kalungwana, N.; Arguello, M.; Siamusantu, W.; Moss, W.J.; West, K.P.; Palmer, A.C. Comparability of inflammation-adjusted vitamin A deficiency estimates and variance in retinol explained by C-reactive protein and α 1 -Acid glycoprotein during low and high malaria transmission seasons in rural Zambian children. Am. J. Trop. Med. Hyg. 2018, 98, 334–343. [Google Scholar] [CrossRef] [Green Version]
- Larson, L.M.; Addo, O.Y.; Sandalinas, F.; Faigao, K.; Kupka, R.; Flores-Ayala, R.; Suchdev, P.S. Accounting for the influence of inflammation on retinol-binding protein in a population survey of Liberian preschool-age children. Matern. Child. Nutr. 2017, 13, e12298. [Google Scholar] [CrossRef] [Green Version]
- Sankaranarayanan, S.; Sua, M.; Taren, D.; Genaro-wolf, D.; Duncan, B.; Shrestha, K.; Shrestha, N.; Rosales, F.J. The concentration of free holo -retinol binding protein is higher in Vitamin A–sufficient than in deficient Nepalese women in late pregnancy. J. Nutr. 2005, 135, 2817–2822. [Google Scholar] [CrossRef] [Green Version]
- Gamble, M.V.; Barr, D.B.; Caudill, S.P.; Jones, R.L.; Pfeiffer, C.M.; Pirkle, J.L.; Wilder, L.C.; Needham, L.L. Urinary Creatinine and Arsenic Metabolism. Environ. Health Perspect. 2005, 113, 2003–2005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Nutrition Agency (NaNA)-Gambia; Gambia Bureau of statistics (GBOS); GroundWork. The Gambia Micronutrient Survey 2018 (GMNS); National Nutrition Agency (NaNA)-Gambia: Banjul, Gambia, 2019.
- Ministry of Health (Oman). Oman National Nutrition Survey 2017 (Onns 2017); Ministry of Health (Oman): Muscat, Oman, 2018.
- Erhardt, J.G.; Rohner, F. Are analytical differences the reason for discrepancies between the absolute values of retinol and retinol-binding protein in human serum? In Proceedings of the International Congress on Hidden Hunger, Stuttgart, Germany, 5–9 March 2013. [Google Scholar]
- O’Callaghan, K.M.; Roth, D.E. Standardization of laboratory practices and reporting of biomarker data in clinical nutrition research. Am. J. Clin. Nutr. 2020, 112, 453S–457S. [Google Scholar] [CrossRef]
- Kim, Y.K.; Quadro, L. Reverse-phase high-performance liquid chromatography (HPLC) analysis of retinol and retinyl esters in mouse serum and tissues. Methods Mol. Biol. 2010, 652, 263–275. [Google Scholar] [PubMed] [Green Version]
- Christian, P., Jr.; West, K.P. Interactions between zinc and vitamin A: An update 1–4. Am. J. Clin. Nutr. 1998, 68, 435S–441S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baeten, J.M.; Richardson, B.A.; Bankson, D.D.; Wener, M.H.; Kreiss, J.K.; Lavreys, L.; Mandaliya, K.; Bwayo, J.J.; McClelland, R.S. Use of serum retinol-binding protein for prediction of vitamin A deficiency: Effects of HIV-1 infection, protein malnutrition, and the acute phase response. Am. J. Clin. Nutr. 2004, 79, 218–225. [Google Scholar] [CrossRef]
- Smith, F.; Goodman, D.; Zaklama, M.S.; Gabr, M.; El-Maraghy, S.; Patwardhan, V. Serum vitamin A, retinol-binding prealbumin concentrations in I. A functional and defect in hepatic retinol release. Am. J. Clin. Nutr. 1973, 26, 973–981. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.E.; Brown, E.D.; Smith, J.C. The effect of zinc deficiency on the metabolism of retinol-binding protein in the rat. J. Lab. Clin. Med. 1974, 84, 692–697. [Google Scholar] [PubMed]
- Smith, J.C.; Brown, E.D.; McDaniel, E.G.; Chan, W. Alterations in vitamin A metabolism during zinc deficiency and food and growth restriction. J. Nutr. 1976, 106, 569–574. [Google Scholar] [CrossRef]
- Woo, S.Y.; Kim, S. Determination of cutoff values for biomarkers in clinical studies. Precis. Futur. Med. 2020, 4, 2–8. [Google Scholar] [CrossRef]
- Altman, B.D.G. Categorizing Continuous Variables. Wiley StatsRef Stat. Ref. Online 2014, 1–5. [Google Scholar] [CrossRef]
- Budczies, J.; Klauschen, F.; Sinn, B.V.; Schmitt, W.D.; Darb-Esfahani, S. Cutoff Finder: A Comprehensive and Straightforward Web Application Enabling Rapid Biomarker Cutoff Optimization. PLoS ONE 2012, 7, e51862. [Google Scholar] [CrossRef] [Green Version]
- Altman, D.G.; Sauerbrei, W.; Schumacher, M. Dangers of Using “Optimal” Cutpoints in the Evaluation of Prognostic Factors. J. Natl. Cancer Inst. 1994, 86, 829–835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raghavan, R.; Ashour, F.S.; Bailey, R. A Review of Cutoffs for Nutritional Biomarkers. Adv. Nutr. 2016, 7, 112–120. [Google Scholar] [CrossRef] [PubMed]
- The interdepartmental Committee on Nutrition for National Defense. Union of Burma: Nutrition Survey October—December 1961; CABI: Wallingford, UK, 1963. [Google Scholar]
- Addo, Y.; Yu, E.X.; Williams, A.; Young, M.F.; Sharma, A.; Mei, Z.; Jefferds, M.E.; Suchdev, P. Evaluation of hemoglobin cutoffs for defining anemia in a multinational sample of healthy individuals: The BRINDA Project (OR07-07-19). Curr. Dev. Nutr. 2019, 3. [Google Scholar] [CrossRef] [Green Version]
- Bruins, M.; Kraemer, K. Public health programmes for vitamin A deficiency control. Community Eye Health J. 2013, 26, 69–70. [Google Scholar]
- Gilbert, R.; Benson, T.; Ecker, O. Are Malawian Diets Changing? An Assessment of Nutrient Consumption and Dietary Patterns Using Household-Level Evidence from 2010/11 and 2016/17; MaSSP Working Paper 30; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2020. [Google Scholar]
- Sommer, A.; Davidson, F.R. Assessment and control of vitamin A deficiency: The Annecy Accords. J. Nutr. 2002, 132, 2845S–2850S. [Google Scholar] [CrossRef] [Green Version]
Sub-Sample | Full Sample | |||||
---|---|---|---|---|---|---|
Biomarkers | n | mean ± SD | n | mean ± SD | p | |
Age (mo) | 72 | 33 ± 14 | 1100 | 32 ± 15 | 0.74 | |
RBP (µmol/L) | 72 | 0.90 ± 0.25 | 1100 | 0.89 ± 0.27 | 0.88 | |
SR (µmol/L) | 72 | 0.98 ± 0.35 | 1100 | - | - | |
CRP (mg/L) * | 72 | 1.00 (0.26–3.22) | 1100 | 1.47 (0.41–4.7) | 0.08 | |
AGP (g/L) * | 72 | 0.95 (0.59–1.43) | 1100 | 1.15 (0.74–1.83) | 0.00 | |
Inflammatory Markers (95% CI) | ||||||
Normal (%) | 32 | 57 (41;72) | 450 | 43 (38;49) | ||
Total inflamed (%) | 40 | 43 (28;59) | 650 | 57 (52;63) | ||
Incubation (%) | 2 | 4 (0;14) | 14 | 1 (0;2) | ||
Early stage (%) | 19 | 18 (10;31) | 264 | 23 (19;28) | ||
Late stage (%) | 19 | 21 (12;34) | 372 | 33 (29;37) |
Biomarkers | n | Intercept (95% CI) | Beta Coefficient | |
---|---|---|---|---|
CRP (95% CI) | AGP (95% CI) | |||
Bivariate Analysis | ||||
RBP | 72 | 0.98 (0.91; 1.05) | −0.01(−0.01; 0.00) | NA |
1.09 (0.95; 1.23) | NA | −0.13 (−0.23; −0.03) | ||
SR | 72 | 1.01 (0.94; 1.14) | −0.01(−0.01; 0.00) | NA |
1.04 (0.85; 1.24) | NA | −0.04 (−0.18; 0.10) | ||
Multivariate Analysis | ||||
RBP | 72 | 1.05 (0.92; 1.19) | −0.01 (−0.01; 0.00) | −0.06 (−0.17; 0.04) |
SR | 72 | 1.00 (0.80; 1.20) | −0.01 (−0.01; 0.00) | 0.04 (−0.12; 0.19) |
Correction Method | Linear Equation Coefficients | Correlation Estimate | R2 | Calculated Cut-Off (µmol/L) | |
---|---|---|---|---|---|
Intercept | Beta | ||||
Original regression (model 1) | 0.43 | 0.62 | 0.45 | 0.20 | 0.45 |
Categorical inflammation adjusted regression (model 2) | 0.35 | 0.64 | 0.42 | 0.18 | 0.42 |
Incubation | - | 0.11 | |||
Early | - | 0.09 | |||
Late | - | 0.09 | |||
Continuous inflammation adjusted regression (model 3) | 0.37 | 0.60 | 0.47 | 0.22 | 0.43 |
CRP | - | 0.00 | |||
AGP | - | 0.07 | |||
Removing inflamed participants (model 4) | 0.47 | 0.53 | 0.44 | 0.20 | 0.43 |
Biomarkers | n | Prevalence % (95% CI) | ||
0.43 µmol/L | 0.7 µmol/L | |||
Unadjusted RBP | 1100 | 2 (1; 4) | 24 (20; 29) | |
BRINDA adjusted RBP | 1100 | 0 (0; 1) | 10 (7; 14) | |
Inflammation Criteria | ||||
n | % (95% CI) | |||
Total | 1100 | 57 (52; 63) | ||
Incubation stage | 14 | 1 (0; 2) | ||
Early stage | 264 | 23 (19; 28) | ||
Late stage | 372 | 33 (29; 37) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Likoswe, B.H.; Joy, E.J.M.; Sandalinas, F.; Filteau, S.; Maleta, K.; Phuka, J.C. Re-Defining the Population-Specific Cut-Off Mark for Vitamin A Deficiency in Pre-School Children of Malawi. Nutrients 2021, 13, 849. https://doi.org/10.3390/nu13030849
Likoswe BH, Joy EJM, Sandalinas F, Filteau S, Maleta K, Phuka JC. Re-Defining the Population-Specific Cut-Off Mark for Vitamin A Deficiency in Pre-School Children of Malawi. Nutrients. 2021; 13(3):849. https://doi.org/10.3390/nu13030849
Chicago/Turabian StyleLikoswe, Blessings H., Edward J. M. Joy, Fanny Sandalinas, Suzanne Filteau, Kenneth Maleta, and John C. Phuka. 2021. "Re-Defining the Population-Specific Cut-Off Mark for Vitamin A Deficiency in Pre-School Children of Malawi" Nutrients 13, no. 3: 849. https://doi.org/10.3390/nu13030849
APA StyleLikoswe, B. H., Joy, E. J. M., Sandalinas, F., Filteau, S., Maleta, K., & Phuka, J. C. (2021). Re-Defining the Population-Specific Cut-Off Mark for Vitamin A Deficiency in Pre-School Children of Malawi. Nutrients, 13(3), 849. https://doi.org/10.3390/nu13030849