Actigraphy-Derived Sleep Is Associated with Eating Behavior Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Sleep Assessment
2.3. Three-Factor Eating Questionnaire
2.4. Statistical Analyses
3. Results
3.1. Participants Characteristics
3.2. Associations of Sleep Parameters with TFEQ Items
3.3. Evaluation of Inter-Individual Differences in Relations of Sleep with TFEQ Constructs
3.4. Evaluation of the Influence of Eating Behaviors on Associations between Sleep and BMI
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bayon, V.; Leger, D.; Gomez-Merino, D.; Vecchierini, M.F.; Chennaoui, M. Sleep debt and obesity. Ann. Med. 2014, 46, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Itani, O.; Jike, M.; Watanabe, N.; Kaneita, Y. Short sleep duration and health outcomes: A systematic review, meta-analysis, and meta-regression. Sleep Med. 2017, 32, 246–256. [Google Scholar] [CrossRef]
- Ogilvie, R.P.; Patel, S.R. The epidemiology of sleep and obesity. Sleep Health 2017, 3, 383–388. [Google Scholar] [CrossRef] [PubMed]
- Reutrakul, S.; Van Cauter, E. Sleep influences on obesity, insulin resistance, and risk of type 2 diabetes. Metabolism 2018, 84, 56–66. [Google Scholar] [CrossRef]
- St-Onge, M.P. Sleep-obesity relation: Underlying mechanisms and consequences for treatment. Obes. Rev. 2017, 18 (Suppl. 1), 34–39. [Google Scholar] [CrossRef]
- Wu, Y.; Zhai, L.; Zhang, D. Sleep duration and obesity among adults: A meta-analysis of prospective studies. Sleep Med. 2014, 15, 1456–1462. [Google Scholar] [CrossRef] [PubMed]
- Zuraikat, F.M.; Makarem, N.; Redline, S.; Aggarwal, B.; Jelic, S.; St-Onge, M.P. Sleep Regularity and Cardiometabolic Heath: Is Variability in Sleep Patterns a Risk Factor for Excess Adiposity and Glycemic Dysregulation? Curr. Diabetes Rep. 2020, 20, 38. [Google Scholar] [CrossRef]
- Al Khatib, H.K.; Harding, S.V.; Darzi, J.; Pot, G.K. The effects of partial sleep deprivation on energy balance: A systematic review and meta-analysis. Eur. J. Clin. Nutr. 2017, 71, 614–624. [Google Scholar] [CrossRef] [PubMed]
- Capers, P.L.; Fobian, A.D.; Kaiser, K.A.; Borah, R.; Allison, D.B. A systematic review and meta-analysis of randomized controlled trials of the impact of sleep duration on adiposity and components of energy balance. Obes. Rev. 2015, 16, 771–782. [Google Scholar] [CrossRef] [Green Version]
- St-Onge, M.P.; Roberts, A.L.; Chen, J.; Kelleman, M.; O’Keeffe, M.; RoyChoudhury, A.; Jones, P.J. Short sleep duration increases energy intakes but does not change energy expenditure in normal-weight individuals. Am. J. Clin. Nutr. 2011, 94, 410–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaput, J.P.; St-Onge, M.P. Increased food intake by insufficient sleep in humans: Are we jumping the gun on the hormonal explanation? Front. Endocrinol. 2014, 5, 116. [Google Scholar] [CrossRef] [PubMed]
- Benedict, C.; Brooks, S.J.; O’Daly, O.G.; Almen, M.S.; Morell, A.; Aberg, K.; Gingnell, M.; Schultes, B.; Hallschmid, M.; Broman, J.E.; et al. Acute sleep deprivation enhances the brain’s response to hedonic food stimuli: An fMRI study. J. Clin. Endocrinol. Metab. 2012, 97, E443–E447. [Google Scholar] [CrossRef]
- Demos, K.E.; Sweet, L.H.; Hart, C.N.; McCaffery, J.M.; Williams, S.E.; Mailloux, K.A.; Trautvetter, J.; Owens, M.M.; Wing, R.R. The Effects of Experimental Manipulation of Sleep Duration on Neural Response to Food Cues. Sleep 2017, 40. [Google Scholar] [CrossRef]
- Nechifor, R.E.; Ciobanu, D.; Vonica, C.L.; Popita, C.; Roman, G.; Bala, C.; Mocan, A.; Inceu, G.; Craciun, A.; Rusu, A. Social jetlag and sleep deprivation are associated with altered activity in the reward-related brain areas: An exploratory resting-state fMRI study. Sleep Med. 2020, 72, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Rihm, J.S.; Menz, M.M.; Schultz, H.; Bruder, L.; Schilbach, L.; Schmid, S.M.; Peters, J. Sleep Deprivation Selectively Upregulates an Amygdala-Hypothalamic Circuit Involved in Food Reward. J. Neurosci. 2019, 39, 888–899. [Google Scholar] [CrossRef] [Green Version]
- St-Onge, M.P.; McReynolds, A.; Trivedi, Z.B.; Roberts, A.L.; Sy, M.; Hirsch, J. Sleep restriction leads to increased activation of brain regions sensitive to food stimuli. Am. J. Clin. Nutr. 2012, 95, 818–824. [Google Scholar] [CrossRef] [Green Version]
- Hansen, T.T.; Hjorth, M.F.; Sandby, K.; Andersen, S.V.; Astrup, A.; Ritz, C.; Bullo, M.; Camacho-Barcia, M.L.; Garcia-Gavilan, J.F.; Salas-Salvado, J.; et al. Predictors of successful weight loss with relative maintenance of fat-free mass in individuals with overweight and obesity on an 8-week low-energy diet. Br. J. Nutr. 2019, 122, 468–479. [Google Scholar] [CrossRef] [PubMed]
- Quick, V.; Byrd-Bredbenner, C.; White, A.A.; Brown, O.; Colby, S.; Shoff, S.; Lohse, B.; Horacek, T.; Kidd, T.; Greene, G. Eat, sleep, work, play: Associations of weight status and health-related behaviors among young adult college students. Am. J. Health Promot. 2014, 29, e64–e72. [Google Scholar] [CrossRef] [PubMed]
- Blumfield, M.L.; Bei, B.; Zimberg, I.Z.; Cain, S.W. Dietary disinhibition mediates the relationship between poor sleep quality and body weight. Appetite 2018, 120, 602–608. [Google Scholar] [CrossRef]
- Stunkard, A.J.; Messick, S. The three-factor eating questionnaire to measure dietary restraint, disinhibition and hunger. J. Psychosom. Res. 1985, 29, 71–83. [Google Scholar] [CrossRef]
- Bryant, E.J.; King, N.A.; Blundell, J.E. Disinhibition: Its effects on appetite and weight regulation. Obes. Rev. 2008, 9, 409–419. [Google Scholar] [CrossRef] [PubMed]
- French, S.A.; Mitchell, N.R.; Wolfson, J.; Finlayson, G.; Blundell, J.E.; Jeffery, R.W. Questionnaire and laboratory measures of eating behavior. Associations with energy intake and BMI in a community sample of working adults. Appetite 2014, 72, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Hays, N.P.; Roberts, S.B. Aspects of eating behaviors “disinhibition” and “restraint” are related to weight gain and BMI in women. Obesity 2008, 16, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Borg, P.; Fogelholm, M.; Kukkonen-Harjula, K. Food selection and eating behaviour during weight maintenance intervention and 2-y follow-up in obese men. Int. J. Obes. 2004, 28, 1548–1554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bryant, E.J.; Caudwell, P.; Hopkins, M.E.; King, N.A.; Blundell, J.E. Psycho-markers of weight loss. The roles of TFEQ Disinhibition and Restraint in exercise-induced weight management. Appetite 2012, 58, 234–241. [Google Scholar] [CrossRef]
- Chambers, L.; Yeomans, M.R. Individual differences in satiety response to carbohydrate and fat. Predictions from the Three Factor Eating Questionnaire (TFEQ). Appetite 2011, 56, 316–323. [Google Scholar] [CrossRef]
- Chaput, J.P.; Tremblay, A. Acute effects of knowledge-based work on feeding behavior and energy intake. Physiol. Behav. 2007, 90, 66–72. [Google Scholar] [CrossRef] [PubMed]
- de Lauzon, B.; Romon, M.; Deschamps, V.; Lafay, L.; Borys, J.M.; Karlsson, J.; Ducimetiere, P.; Charles, M.A.; Fleurbaix Laventie Ville Sante Study Group. The Three-Factor Eating Questionnaire-R18 is able to distinguish among different eating patterns in a general population. J. Nutr. 2004, 134, 2372–2380. [Google Scholar] [CrossRef]
- Lindroos, A.K.; Lissner, L.; Mathiassen, M.E.; Karlsson, J.; Sullivan, M.; Bengtsson, C.; Sjostrom, L. Dietary intake in relation to restrained eating, disinhibition, and hunger in obese and nonobese Swedish women. Obes. Res. 1997, 5, 175–182. [Google Scholar] [CrossRef]
- Ouwens, M.A.; van Strien, T.; van der Staak, C.P. Tendency toward overeating and restraint as predictors of food consumption. Appetite 2003, 40, 291–298. [Google Scholar] [CrossRef]
- Keranen, A.M.; Strengell, K.; Savolainen, M.J.; Laitinen, J.H. Effect of weight loss intervention on the association between eating behaviour measured by TFEQ-18 and dietary intake in adults. Appetite 2011, 56, 156–162. [Google Scholar] [CrossRef]
- Zambrowicz, R.; Schebendach, J.; Sysko, R.; Mayer, L.E.S.; Walsh, B.T.; Steinglass, J.E. Relationship between three factor eating questionnaire-restraint subscale and food intake. Int. J. Eat. Disord. 2019, 52, 255–260. [Google Scholar] [CrossRef]
- Singh, A.; Bains, K.; Kaur, H. Relationship of Eating Behaviors with Age, Anthropometric Measurements, and Body Composition Parameters among Professional Indian Women. Ecol. Food Nutr. 2017, 56, 411–423. [Google Scholar] [CrossRef] [PubMed]
- Polivy, J.; Herman, C.P. Restrained Eating and Food Cues: Recent Findings and Conclusions. Curr. Obes. Rep. 2017, 6, 79–85. [Google Scholar] [CrossRef] [PubMed]
- James, B.L.; Loken, E.; Roe, L.S.; Rolls, B.J. The Weight-Related Eating Questionnaire offers a concise alternative to the Three-Factor Eating Questionnaire for measuring eating behaviors related to weight loss. Appetite 2017, 116, 108–114. [Google Scholar] [CrossRef] [Green Version]
- Bas, M.; Donmez, S. Self-efficacy and restrained eating in relation to weight loss among overweight men and women in Turkey. Appetite 2009, 52, 209–216. [Google Scholar] [CrossRef]
- Batra, P.; Das, S.K.; Salinardi, T.; Robinson, L.; Saltzman, E.; Scott, T.; Pittas, A.G.; Roberts, S.B. Eating behaviors as predictors of weight loss in a 6 month weight loss intervention. Obesity 2013, 21, 2256–2263. [Google Scholar] [CrossRef] [PubMed]
- Provencher, V.; Drapeau, V.; Tremblay, A.; Despres, J.P.; Lemieux, S. Eating behaviors and indexes of body composition in men and women from the Quebec family study. Obes. Res. 2003, 11, 783–792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kilkus, J.M.; Booth, J.N.; Bromley, L.E.; Darukhanavala, A.P.; Imperial, J.G.; Penev, P.D. Sleep and eating behavior in adults at risk for type 2 diabetes. Obesity 2012, 20, 112–117. [Google Scholar] [CrossRef]
- Perez-Fuentes, M.D.C.; Molero Jurado, M.D.M.; Barragan Martin, A.B.; Martos Martinez, A.; Gazquez Linares, J.J. Association with the Quality of Sleep and the Mediating Role of Eating on Self-Esteem in Healthcare Personnel. Nutrients 2019, 11, 321. [Google Scholar] [CrossRef] [Green Version]
- Goel, N.; Kim, H.; Lao, R.P. Gender differences in polysomnographic sleep in young healthy sleepers. Chronobiol. Int. 2005, 22, 905–915. [Google Scholar] [CrossRef] [PubMed]
- van den Berg, J.F.; Miedema, H.M.; Tulen, J.H.; Hofman, A.; Neven, A.K.; Tiemeier, H. Sex differences in subjective and actigraphic sleep measures: A population-based study of elderly persons. Sleep 2009, 32, 1367–1375. [Google Scholar] [CrossRef]
- Whinnery, J.; Jackson, N.; Rattanaumpawan, P.; Grandner, M.A. Short and long sleep duration associated with race/ethnicity, sociodemographics, and socioeconomic position. Sleep 2014, 37, 601–611. [Google Scholar] [CrossRef] [PubMed]
- St-Onge, M.P.; O’Keeffe, M.; Roberts, A.L.; RoyChoudhury, A.; Laferrere, B. Short sleep duration, glucose dysregulation and hormonal regulation of appetite in men and women. Sleep 2012, 35, 1503–1510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spaeth, A.M.; Dinges, D.F.; Goel, N. Phenotypic vulnerability of energy balance responses to sleep loss in healthy adults. Sci. Rep. 2015, 5, 14920. [Google Scholar] [CrossRef]
- Netzer, N.C.; Stoohs, R.A.; Netzer, C.M.; Clark, K.; Strohl, K.P. Using the Berlin Questionnaire to identify patients at risk for the sleep apnea syndrome. Ann. Intern. Med. 1999, 131, 485–491. [Google Scholar] [CrossRef]
- Buysse, D.J.; Reynolds, C.F., 3rd; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Horne, J.A.; Ostberg, O. A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int. J. Chronobiol. 1976, 4, 97–110. [Google Scholar]
- Fatima, Y.; Doi, S.A.; Mamun, A.A. Sleep quality and obesity in young subjects: A meta-analysis. Obes. Rev. 2016, 17, 1154–1166. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhang, M.; Hu, D. Dose-response association between sleep duration and obesity risk: A systematic review and meta-analysis of prospective cohort studies. Sleep Breath. 2019, 23, 1035–1045. [Google Scholar] [CrossRef]
- Gazquez Linares, J.J.; Perez-Fuentes, M.D.C.; Molero Jurado, M.M.D.; Oropesa Ruiz, N.F.; Simon Marquez, M.D.M.; Saracostti, M. Sleep Quality and the Mediating Role of Stress Management on Eating by Nursing Personnel. Nutrients 2019, 11, 1731. [Google Scholar] [CrossRef] [Green Version]
- Zhu, B.; Chen, X.; Park, C.G.; Zhu, D.; Izci-Balserak, B. Fatigue and Sleep Quality Predict Eating Behavior Among People with Type 2 Diabetes. Nurs. Res. 2020, 69, 419–426. [Google Scholar] [CrossRef]
- Bathalon, G.P.; Tucker, K.L.; Hays, N.P.; Vinken, A.G.; Greenberg, A.S.; McCrory, M.A.; Roberts, S.B. Psychological measures of eating behavior and the accuracy of 3 common dietary assessment methods in healthy postmenopausal women. Am. J. Clin. Nutr. 2000, 71, 739–745. [Google Scholar] [CrossRef] [PubMed]
- Chen, E.Y.; Zeffiro, T.A. Hunger and BMI modulate neural responses to sweet stimuli: fMRI meta-analysis. Int. J. Obes. 2020, 44, 1636–1652. [Google Scholar] [CrossRef]
- Frank, S.; Laharnar, N.; Kullmann, S.; Veit, R.; Canova, C.; Hegner, Y.L.; Fritsche, A.; Preissl, H. Processing of food pictures: Influence of hunger, gender and calorie content. Brain Res. 2010, 1350, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Siep, N.; Roefs, A.; Roebroeck, A.; Havermans, R.; Bonte, M.L.; Jansen, A. Hunger is the best spice: An fMRI study of the effects of attention, hunger and calorie content on food reward processing in the amygdala and orbitofrontal cortex. Behav. Brain Res. 2009, 198, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Chaput, J.P.; Despres, J.P.; Bouchard, C.; Tremblay, A. The association between short sleep duration and weight gain is dependent on disinhibited eating behavior in adults. Sleep 2011, 34, 1291–1297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filiatrault, M.L.; Chaput, J.P.; Drapeau, V.; Tremblay, A. Eating behavior traits and sleep as determinants of weight loss in overweight and obese adults. Nutr. Diabetes 2014, 4, e140. [Google Scholar] [CrossRef] [Green Version]
- de Castro, J.M. The relationship of cognitive restraint to the spontaneous food and fluid intake of free-living humans. Physiol. Behav. 1995, 57, 287–295. [Google Scholar] [CrossRef]
- Rideout, C.A.; McLean, J.A.; Barr, S.I. Women with high scores for cognitive dietary restraint choose foods lower in fat and energy. J. Am. Diet. Assoc. 2004, 104, 1154–1157. [Google Scholar] [CrossRef]
- van Strien, T.; Engels, R.C.; van Staveren, W.; Herman, C.P. The validity of dietary restraint scales: Comment on Stice et al. (2004). Psychol. Assess. 2006, 18, 89–94; discussion 95–99. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, J.; Broadbent, J.; Fuller-Tyszkiewicz, M. Restrained eaters consume more food only if they are impulsive and male. Eat. Behav. 2014, 15, 582–585. [Google Scholar] [CrossRef]
- Jansen, A.; Nederkoorn, C.; van Baak, L.; Keirse, C.; Guerrieri, R.; Havermans, R. High-restrained eaters only overeat when they are also impulsive. Behav. Res. Ther. 2009, 47, 105–110. [Google Scholar] [CrossRef]
- Giudici, K.V.; Baudry, J.; Mejean, C.; Lairon, D.; Benard, M.; Hercberg, S.; Bellisle, F.; Kesse-Guyot, E.; Peneau, S. Cognitive Restraint and History of Dieting Are Negatively Associated with Organic Food Consumption in a Large Population-Based Sample of Organic Food Consumers. Nutrients 2019, 11, 2468. [Google Scholar] [CrossRef] [Green Version]
- Martin, C.K.; Williamson, D.A.; Geiselman, P.J.; Walden, H.; Smeets, M.; Morales, S.; Redmann, S., Jr. Consistency of food intake over four eating sessions in the laboratory. Eat. Behav. 2005, 6, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Burger, K.S.; Stice, E. Relation of dietary restraint scores to activation of reward-related brain regions in response to food intake, anticipated intake, and food pictures. NeuroImage 2011, 55, 233–239. [Google Scholar] [CrossRef] [Green Version]
- Coletta, M.; Platek, S.; Mohamed, F.B.; van Steenburgh, J.J.; Green, D.; Lowe, M.R. Brain activation in restrained and unrestrained eaters: An fMRI study. J. Abnorm. Psychol. 2009, 118, 598–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNeil, J.; St-Onge, M.P. Increased energy intake following sleep restriction in men and women: A one-size-fits-all conclusion? Obesity 2017, 25, 989–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Female (N = 123) | Male (N = 56) | Total (N = 179) | p-Value | |
---|---|---|---|---|
Demographic | ||||
Age (years) | ||||
Mean ± SD | 37.6 ± 14.2 | 31.5 ± 9.0 | 36.0 ± 13.1 | 0.004 |
Range | 20.0–70.0 | 19.0–73.0 | 19.0–73.0 | |
Race/Ethnicity | ||||
White/Non-Hispanic | 93 (75.6%) | 37 (66.1%) | 130 (72.6%) | 0.185 |
Non-white/Hispanic | 30 (24.4%) | 19 (33.9%) | 49 (27.4%) | |
Education | ||||
<College degree | 33 (26.8%) | 25 (44.6%) | 480 (32.4%) | 0.018 |
≥College degree | 90 (73.2%) | 31 (55.4%) | 121 (67.6%) | |
Health and Sleep Behaviors | ||||
Body mass index (BMI) (kg/m2) | ||||
Mean ± SD | 26.6 ± 3.6 | 26.4 ± 3.0 | 26.6 ± 3.4 | 0.737 |
Range | 20.4 ± 34.9 | 17.4 ± 33.2 | 17.4 ± 34.9 | |
Sleep duration | ||||
Mean ± SD | 428.7 ± 46.1 | 423.6 ± 50.4 | 426.1 ± 47.4 | 0.512 |
Range | 204.9–544.9 | 312.9–553.1 | 204.9–553.1 | |
Bedtime | ||||
Mean ± SD | 0:44 ± 5:06 | 1:41 ± 5:37 | 1:09 ± 5:24 | 0.154 |
Range | 20:11–2:38 | 22:13–2:49 | 20:10–2:49 | |
Waketime | ||||
Mean ± SD | 7:42 ± 1:10 | 8:24 ± 1:13 | 7:55 ± 1:13 | <0.001 |
Range | 3:57–10:40 | 6:21–11:03 | 3:57–11:03 | |
Midpoint of sleep | ||||
Mean ± SD | 3:50 ± 0:56 | 4:26 ± 1:01 | 4:01 ± 0:59 | <0.001 |
Range | 1:23–6:40 | 2:32–6:59 | 1:23–6:59 | |
Sleep efficiency (%) | ||||
Mean ± SD | 88.4 ± 5.8 | 86.9 ± 6.4 | 87.9 ± 6.0 | 0.132 |
Range | 67.0–97.1 | 68.7–96.4 | 67.0–97.1 | |
Wake after sleep onset (min) | ||||
Mean ± SD | 51.0 ± 28.1 | 57.0 ± 28.7 | 52.9 ± 28.3 | 0. 832 |
Range | 10.3–175.8 | 13.9–141.4 | 10.3–175.8 | |
Sleep fragmentation index | ||||
Mean ± SD | 24.4 ± 7.9 | 28.4 ± 9.4 | 27.0 ± 8.4 | 0.132 |
Range | 8.1–49.4 | 10.8–54.7 | 8.1–54.7 | |
Midpoint SD (min) | ||||
Mean ± SD | 52.1 ± 30.2 | 51.5 ± 29.5 | 51.9 ± 29.9 | 0.891 |
Range | 4.0–201.2 | 11.6–140.6 | 4.0–201.2.7 | |
Bedtime SD (min) | ||||
Mean ± SD | 60.0 ± 33.7 | 62.4 ± 38.5 | 60.8 ± 35.2 | 0.669 |
Range | 0.0–237.4 | 8.4–240.0 | 0.0–240.0 | |
Eating Behavior Characteristics | ||||
Dietary restraint | ||||
Mean ± SD | 7.4 ± 4.1 | 7.7 ± 4.0 | 7.5 ± 4.0 | 0.684 |
Range | 0.0–19.0 | 0.0–17.0 | 0.0–19.0 | |
Disinhibition | ||||
Mean ± SD | 3.9 ± 2.9 | 3.2 ± 2.1 | 3.7 ± 2.7 | 0.083 |
Range | 0.0–13.0 | 0.0–8.0 | 0.0–13.0 | |
Tendency towards hunger | ||||
Mean ± SD | 2.9 ± 2.2 | 3.3 ± 2.6 | 3.0 ± 2.4 | 0.274 |
Range | 0.0–11.0 | 0.0–13.0 | 0.0–13.0 |
Predictor | Outcome | β ± SE a (Model 1) | p-Value (Model 1) | β ± SE b (Model 2) | p-Value (Model 2) |
---|---|---|---|---|---|
Sleep duration | Dietary restraint | −0.009 ± 0.006 | 0.134 | −0.007 ± 0.007 | 0.2797 |
Disinhibition | −0.002 ± 0.004 | 0.657 | −0.000 ± 0.004 | 0.9308 | |
Tendency towards hunger | −0.004 ± 0.004 | 0.297 | −0.005 ± 0.004 | 0.2000 | |
Bedtime | Dietary restraint | 0.420 ± 1.346 | 0.756 | 0.258 ± 1.331 | 0.847 |
Disinhibition | −0.288 ± 0.892 | 0.747 | −0.188 ± 0.876 | 0.830 | |
Tendency towards hunger | −1.074 ± 0.781 | 0.171 | −1.187 ± 0.787 | 0.133 | |
Wake time | Dietary restraint | 5.316 ± 5.877 | 0.367 | 9.379 ± 6.113 | 0.127 |
Disinhibition | −2.589 ± 3.899 | 0.507 | 1.751 ± 4.005 | 0.558 | |
Tendency towards hunger | 2.811 ± 3.428 | 0.413 | 2.149 ± 3.661 | 0.558 | |
Midpoint | Dietary restraint | 3.838 ± 7.312 | 0.600 | 7.732 ± 7.567 | 0.308 |
Disinhibition | −2.178 ± 4.847 | 0.654 | 2.909 ± 4.990 | 0.561 | |
Tendency towards hunger | 5.883 ± 4.244 | 0.167 | 5.766± 4.50 | 0.202 | |
WASO | Dietary restraint | 0.030 ± 0.010 | 0.005 | 0.029 ± 0.011 | 0.007 |
Disinhibition | 0.000 ± 0.007 | 0.955 | 5.922 × 10−5 ± 7.191 × 10−3 | 0.993 | |
Tendency towards hunger | 0.001 ± 0.007 | 0.122 | 0.011 ± 0.006 | 0.085 | |
Sleep efficiency | Dietary restraint | −0.139 ± 0.051 | 0.006 | −0.133 ± 0.051 | 0.010 |
Disinhibition | 0.015 ± 0.034 | 0.662 | 0.020 ± 0.034 | 0.5624 | |
Tendency towards hunger | −0.047 ± 0.029 | 0.113 | −0.055 ± 0.031 | 0.076 | |
Sleep onset latency | Dietary restraint | 0.087 ± 0.052 | 0.097 | 0.067 ± 0.051 | 0.198 |
Disinhibition | −0.019 ± 0.035 | 0.593 | −0.030 ± 0.034 | 0.381 | |
Tendency towards hunger | 0.032 ± 0.031 | 0.291 | 0.031 ± 0.031 | 0.319 | |
Sleep fragmentation index | Dietary restraint | 0.074 ± 0.036 | 0.039 | 0.074 ± 0.036 | 0.041 |
Disinhibition | −0.027 ± 0.024 | 0.262 | −0.026 ± 0.024 | 0.280 | |
Tendency towards hunger | 0.027 ± 0.021 | 0.199 | 0.030 ± 0.022 | 0.172 | |
Sleep timing SD | Dietary restraint | 0.001 ± 0.010 | 0.952 | 0.005 ± 0.010 | 0.627 |
Disinhibition | −0.000 ± 0.007 | 0.952 | 0.002 ± 0.007 | 0.744 | |
Tendency towards hunger | 0.007 ± 0.006 | 0.259 | 0.007 ± 0.006 | 0.232 | |
Bedtime SD | Dietary restraint | 0.005 ± 0.009 | 0.590 | 0.008 ± 0.009 | 0.338 |
Disinhibition | −0.001 ± 0.006 | 0.866 | 0.002 ± 0.007 | 0.777 | |
Tendency towards hunger | 0.002 ± 0.005 | 0.745 | 0.002 ± 0.005 | 0.742 |
Predictor | Outcome | p-Value (Interaction) | Women | Men | ||
---|---|---|---|---|---|---|
β ± SE | p-Value | Β ± SE | p-Value | |||
Sleep efficiency | Tendency towards hunger | 0.098 | −0.008 ± 0.036 | 0.830 | −0.149 ± 0.055 | 0.009 |
Sleep onset latency | Tendency towards hunger | 0.013 | −0.015 ± 0.033 | 0.653 | 0.169 ± 0.072 | 0.020 |
Sleep fragmentation index | Tendency towards hunger | 0.013 | −0.015 ± 0.026 | 0.564 | 0.115 ± 0.037 | 0.003 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barragán, R.; Zuraikat, F.M.; Tam, V.; Scaccia, S.; Cochran, J.; Li, S.; Cheng, B.; St-Onge, M.-P. Actigraphy-Derived Sleep Is Associated with Eating Behavior Characteristics. Nutrients 2021, 13, 852. https://doi.org/10.3390/nu13030852
Barragán R, Zuraikat FM, Tam V, Scaccia S, Cochran J, Li S, Cheng B, St-Onge M-P. Actigraphy-Derived Sleep Is Associated with Eating Behavior Characteristics. Nutrients. 2021; 13(3):852. https://doi.org/10.3390/nu13030852
Chicago/Turabian StyleBarragán, Rocío, Faris M. Zuraikat, Victoria Tam, Samantha Scaccia, Justin Cochran, Si Li, Bin Cheng, and Marie-Pierre St-Onge. 2021. "Actigraphy-Derived Sleep Is Associated with Eating Behavior Characteristics" Nutrients 13, no. 3: 852. https://doi.org/10.3390/nu13030852
APA StyleBarragán, R., Zuraikat, F. M., Tam, V., Scaccia, S., Cochran, J., Li, S., Cheng, B., & St-Onge, M. -P. (2021). Actigraphy-Derived Sleep Is Associated with Eating Behavior Characteristics. Nutrients, 13(3), 852. https://doi.org/10.3390/nu13030852