Relation between Inflammation, Oxidative Stress, and Macronutrient Intakes in Normal and Excessive Body Weight Adolescent Girls with Clinical Features of Polycystic Ovary Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Ethical Aspects
2.2. Medical Evaluation
2.3. Nutritional Evaluation
2.4. Biochemical Parameters
2.5. Statistical Analyses
3. Results
3.1. Anthropometric, Clinical, and Metabolic Parameters
3.2. Markers of Inflammation and Oxidation
4. Discussion
Strengths and Weaknesses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lai, M.M.; Li, C.I.; Kardia, S.L.; Liu, C.S.; Lin, W.Y.; Lee, Y.D.; Chang, P.C.; Lin, C.C.; Li, T.C. Sex difference in the association of metabolic syndrome with high sensitivity C-reactive protein in a Taiwanese population. BMC Public Health 2010, 10, 429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, Z.; Zhao, A.; Wang, Y.; Meng, L.; Szeto, I.M.Y.; Li, T.; Gong, H.; Tian, Z.; Zhang, Y.; Wang, P. Association between dietary inflammatory index, c-reactive protein and metabolic syndrome: A cross-sectional study. Nutrients 2018, 10, 831. [Google Scholar] [CrossRef] [Green Version]
- Stringa, N.; Brahimaj, A.; Zaciragic, A.; Dehghan, A.; Ikram, M.A.; Hofman, A.; Muka, T.; Kiefte-de Jong, J.C.; Franco, O.H. Relation of antioxidant capacity of diet and markers of oxidative status with C-reactive protein and adipocytokines: A prospective study. Metab. Clin. Exp. 2017, 71, 171–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christ, A.; Lauterbach, M.; Latz, E. Western Diet and the Immune System: An Inflammatory Connection. Immunity 2019, 51, 794–811. [Google Scholar] [CrossRef]
- Ma, K.; Jin, X.; Zhao, Q.; Zhang, X. Inflammatory mediators involved in the progression of the metabolic syndrome. Diabetes/Metab. Res. Rev. 2012, 28, 388–394. [Google Scholar] [CrossRef] [PubMed]
- Jarząbek-Bielecka, G.; Opydo-Szymaczek, J.; Mizgier, M.; Bojanowska, K.; Pisarska-Krawczyk, M.; Chuchracki, M.; Kędzia, W.; Wojtyła, A. Zespół policystycznych jajników jako problem w ginekologii i medycynie rodzinnej, z uwzględnieniem pacjentek w wieku rozwojowym (Polycystic ovary syndrome as a problem in gynecology and family medicine, including patients in developmental age). Med. Rodz. 2018, 21, 335–338. [Google Scholar] [CrossRef]
- Małecka-Tendera, E. Zespół policystycznych jajników u dziewcząt (Polycystic ovary syndrome in girls). Endokrynol. Ped. 2015, 14, 51. [Google Scholar] [CrossRef]
- Rojas, J.; Chávez, M.; Olivar, L.; Rojas, M.; Morillo, J.; Mejías, J.; Calvo, M.; Bermudez, V. Polycystic Ovary Syndrome, Insulin Resistance, and Obesity: Navigating the patophysiologic labyrinth. Int. J. Reprod. Med. 2014, 719050. [Google Scholar] [CrossRef] [PubMed]
- Turan, V.; Sezer, E.D.; Zeybek, B.; Sendag, F. Infertility and the Presence of Insulin Resistance Are Associated with Increased Oxidative Stress in Young, Non-obese Turkish Women with Polycystic Ovary Syndrome. J. Pediatr. Adolesc. Gynecol. 2015, 28, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Murri, M.; Luque-Ramírez, M.; Insenser, M.; Ojeda-Ojeda, M.; Escobar-Morreale, H.F. Circulating markers of oxidative stress and polycystic ovary syndrome (PCOS): A systemic review and meta-analysis. Hum. Reprod. Update 2013, 19, 268–288. [Google Scholar] [CrossRef] [PubMed]
- Mancini, A.; Bruno, C.; Vergani, E.; D′abate, C.; Giacchi, E.; Silvestrini, A. Oxidative Stress and Low-Grade Inflammation in Polycystic Ovary Syndrome: Controversies and New Insights. Int. J. Mol. Sci. 2021, 22, 1667. [Google Scholar] [CrossRef] [PubMed]
- Tao, T.; Li, S.; Zhao, A.; Zhang, Y.; Liu, W. Expression of the CD11c gene in subcutaneous adipose tissue is associated with cytokine level and insulin resistance in women with polycystic ovary syndrome. Eur. J. Endocrinol. 2012, 167, 705–713. [Google Scholar] [CrossRef] [Green Version]
- Goodman, N.F.; Cobin, R.H.; Futterweit, W.; Glueck, J.S.; Legro, R.S.; Carmina, E. American association of clinical endocrinologists, American college of endocrinology, and androgen excess and pcos society disease state clinical review: Guide to the best practices in the evaluation and treatment of polycystic ovary syndrome—Part 2. Endocr. Pract. 2015, 21, 1415–1426. [Google Scholar] [CrossRef]
- Khashchenko, E.; Vysokikh, M.; Uvarova, E.; Krechetova, L.; Vtorushina, V.; Ivanets, T.; Volodina, M.; Tarasova, N.; Sukhanova, I.; Sukhikh, G. Activation of Systemic Inflammation and Oxidative Stress in Adolescent Girls with Polycystic Ovary Syndrome in Combination with Metabolic Disorders and Excessive Body Weight. J. Clin. Med. 2020, 9, 1399. [Google Scholar] [CrossRef]
- Deans, R. Medical sciences Review Polycystic Ovary Syndrome in Adolescence. Med. Sci. 2019, 7, 101. [Google Scholar] [CrossRef] [Green Version]
- Milewicz, A.; Kudła, M.; Spaczyński, R.Z.; Dębski, R.; Męczekalski, B.; Wielgoś, M.; Ruchała, M.; Małecka-Tendera, E.; Kos-Kudła, B.; Jędrzejuk, D.; et al. The polycystic ovary syndrome: A position statement from the Polish Society of Endocrinology, the Polish Society of Gynaecologists and Obstetricians, and the Polish Society of Gynaecological Endocrinology. Endokrynol. Pol. 2018, 68, 328–344. [Google Scholar] [CrossRef] [Green Version]
- Naz, M.S.G.; Tehrani, F.R.; Majd, H.A.; Ahmadi, F.; Ozgoli, G.; Fakari, F.R.; Ghasemi, V. The prevalence of polycystic ovary syndrome in adolescents: A systematic review and meta-analysis. Int. J. Reprod. Biomed. 2019, 17, 533–542. [Google Scholar] [CrossRef]
- Teede, H.J.; Misso, M.L.; Costello, M.F.; Dokras, A.; Laven, J.; Moran, L.; Piltonen, T.; Norman, R.J.; Andersen, M.; Azziz, R.; et al. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Hum. Reprod. 2018, 33, 1602–1618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Messinis, I.E.; Messini, C.I.; Anifandis, G.; Dafopoulos, K. Polycystic ovaries and obesity. Best Pract. Res. Clin. Obstet. Gynaecol. 2015, 29, 479–488. [Google Scholar] [CrossRef]
- Stepto, N.K.; Cassar, S.; Joham, A.E.; Hutchison, S.K.; Harrison, C.L.; Goldstein, R.F.; Teede, H.J. Women with polycystic ovary syndrome have intrinsic insulin resistance on euglycaemic-hyperinsulaemic clamp. Hum. Reprod. 2013, 28, 777–784. [Google Scholar] [CrossRef]
- Liou, T.H.; Yang, J.H.; Hsieh, C.H.; Lee, C.Y.; Hsu, C.; Hsu, M.I.S. Clinical and biochemical presentations of polycystic ovary syndrome among obese and nonobese women. Fertil. Steril. 2009, 93, e27. [Google Scholar] [CrossRef]
- Mizgier, M.; Jarząbek-Bielecka, G.; Opydo-Szymaczek, J.; Wendland, N.; Więckowska, B.; Kędzia, W. Risk Factors of Overweight and Obesity Related to Diet and Disordered Eating Attitudes in Adolescent Girls with Clinical Features of Polycystic Ovary Syndrome. J. Clin. Med. 2020, 9, 3041. [Google Scholar] [CrossRef]
- Repaci, A.; Gambineri, A.; Pasquali, R. The role of low-grade inflammation in the polycystic ovary syndrome. Mol. Cell. Endocrinol. 2011, 335, 30–41. [Google Scholar] [CrossRef]
- Sathyapalan, T.; Atkin, S.L. Mediators of Inflammation in Polycystic Ovary Syndrome in Relation to Adiposity. Mediat. Inflamm. 2010. [Google Scholar] [CrossRef] [Green Version]
- Pfutzner, A.; Schöndorf, T.; Hanefeld, M.; Forst, T. High-sensitivity C-reactive protein predicts cardiovascular risk in diabetic and nondiabetic patients: Effects of insulin-sensitizing treatment with pioglitazone. J. Diabetes Sci. Technol. 2010, 4, 706–716. [Google Scholar] [CrossRef] [Green Version]
- Hotamisligil, G.S.; Peraldi, P.; Budavari, A.; Ellis, R.; White, M.F.; Spiegelman, B.M. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science 1996, 271, 665–668. [Google Scholar] [CrossRef] [PubMed]
- Hirabara, S.M.; Gorjao, R.; Vinolo, M.A.; Rodrigues, A.C.; Nachbar, R.T.; Curi, R. Molecular targets related to inflammation and insulin resistance and potential interventions. BioMed Res. Int. 2012. [Google Scholar] [CrossRef]
- Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.T.; Loria, C.M.; Smith, S.C. Harmonizing the metabolic syndrome: A joint interim statement of the international diabetes federation task force on epidemiology and prevention; National heart, lung, and blood institute; American heart association; World heart federation; International atherosclerosis society; And international association for the study of obesity. Circulation 2009. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, M.; Gozashti, M.H.; Aghadavood, M.; Mehdizadeh, M.R.; Hayatbakhsh, M.M. Clinical Significance of Serum IL-6 and TNF-α Levels in Patients with Metabolic Syndrome. Rep. Biochem. Mol. Biol. 2017, 6, 74–79. [Google Scholar] [PubMed]
- Savini, I.; Catani, M.V.; Evangelista, D.; Gasperi, V.; Avigliano, L. Obesity-Associated Oxidative Stress: Strategies Finalized to Improve Redox State. Int. J. Mol. Sci. 2013, 14, 10497–10538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bondia-Pons, I.; Ryan, L.; Martinez, J.A. Oxidative stress and inflammation interactions in human obesity. J. Physiol. Biochem. 2012, 68, 701–711. [Google Scholar] [CrossRef] [PubMed]
- Sies, H. Oxidative stress: Impact in redox biology and medicine. Arch. Med. Biomed. Res. 2015, 2, 146–150. [Google Scholar] [CrossRef] [Green Version]
- Swain, J.H.; Alekel, D.L.; Dent, S.B.; Peterson, C.; Reddy, M.B. Iron indexes and total antioxidant status in response to soy protein intake in perimenopausal women. Am. J. Clin. Nutr. 2002, 76, 165–171. [Google Scholar] [CrossRef] [Green Version]
- Halliwell, B.; Cross, C.E. Oxygen-derived species: Their relation to human disease and environmental stress. Environ. Health Perspect. 1994, 102 (Suppl. S10), 5–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zalata, A.; Yahia, S.; El-Bakary, A.; Elsheikha, H.M. Increased DNAdam-age in children caused by passive smoking as assessed by comet assay and oxidative stress. Mutat. Res. 2007, 629, 140–147. [Google Scholar] [CrossRef]
- Kato, T.; Inoue, T.; Morooka, T.; Yoshimoto, N.; Node, K. Short-term passive smoking causes endothelial dysfunction via oxidative stress in nonsmok-ers. Can. J. Physiol. Pharmacol. 2006, 84, 523–529. [Google Scholar] [CrossRef]
- Dludla, P.; Nkambule, B.B.; Jack, B.; Mkandla, Z.; Mutize, T.; Silvestri, S.; Orlando, P.; Tiano, L.; Louw, J.; Mazibuko-Mbeje, S.E. Inflammation and Oxidative Stress in an Obese State and the Protective Effects of Gallic Acid. Nutrients 2019, 11, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rupérez, A.I.; Mesa, M.D.; Anguita-Ruiz, A.; González-Gil, E.M.; Vázquez-Cobela, R.; Moreno, L.A.; Gil, Á.; Gil-Campos, M.; Leis, R.; Bueno, G.; et al. Antioxidants and Oxidative Stress in Children: Influence of Puberty and Metabolically Unhealthy Status. Antioxidants 2020, 9, 618. [Google Scholar] [CrossRef] [PubMed]
- Kilic, E.; Özer, Ö.F.; Toprak, A.E.; Erman, H.; Torun, E.; Ayhan, S.K.; Caglar, H.G.; Selek, S.; Kocyigit, A.; Erek, A.T. Oxidative Stress Status in Childhood Obesity: A Potential Risk Predictor. Med Sci. Monit. 2016, 22, 3673–3679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groner, J.A.; Huang, H.; Eastman, N.; Lewis, L.; Joshi, M.S.; Schanbacher, B.L.; Nicholson, L.; Bauer, J.A. Oxidative stress in youth and adolescents with elevated body mass index exposed to secondhand smoke. Nicotine Tob. Res. 2016, 18, 1622–1627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef] [PubMed]
- Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 2014, 94, 909–950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amato, M.C.; Guarnotta, V.; Forti, D.; Donatelli, M.; Dolcimascolo, S.; Giordano, C. Metabolically healthypolycystic ovary syndrome (MH-PCOS) and metabolically unhealthy polycystic ovary syndrome (MU-PCOS): A comparative analysis of four simple methods useful for metabolic assessment. Hum. Reprod. 2013, 28, 1919–1928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbaresko, J.; Koch, M.; Schulze, M.B.; Nöthlings, U. Dietary pattern analysis and biomarkers of low-grade inflammation: A systematic literature review. Nutr. Rev. 2013, 71, 511–527. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.; Devaraj, S.; Jialal, I. Dietary factors that promote or retard inflammation. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 995–1001. [Google Scholar] [CrossRef]
- Hezaveha, Z.S.; Sikaroudia, M.K.; Vafaa, M.; Claytonb, Z.S.; Soltanicd, S. Effect of egg consumption on inflammatory markers: A systematic review and meta-analysis of randomized controlled clinical trials. J. Sci. Food Agric. 2019, 99, 6663–6670. [Google Scholar] [CrossRef]
- Wirth, M.D.; Burch, J.; Shivappa, N.; Violanti, J.M.; Burchfiel, C.M.; Fekedulegn, D.; Andrew, M.E.; Hartley, T.A.; Miller, D.B.; Mnatsakanova, A. Association of a dietary inflammatory index with inflammatory indices and metabolic syndrome among police officers. J. Occup. Environ. Med. 2014, 56, 986–989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sokol, A.; Wirth, M.D.; Manczuk, M.; Shivappa, N.; Zatonska, K.; Hurley, T.G.; Hébert, J.R. Association between the dietary inflammatory index, waist-to-hip ratio and metabolic syndrome. Nutr. Res. 2016, 36, 1298–1303. [Google Scholar] [CrossRef] [Green Version]
- Alkerwi, A.A.; Shivappa, N.; Crichton, G.; Hébert, J.R. No significant independent relationships with cardiometabolic biomarkers were detected in the Observation of Cardiovascular Risk Factors in Luxembourg study population. Nutr. Res. 2014, 34, 1058–1065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neufcourt, L.; Assmann, K.E.; Fezeu, L.K.; Touvier, M.; Graffouillère, L.; Shivappa, N.; Hébert, J.R.; Wirth, M.D.; Hercberg, S.; Galan, P. Prospective association between the dietary inflammatory index and metabolic syndrome: Findings from the SU.VI.MAX study. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 988–996. [Google Scholar] [CrossRef]
- Shivappa, N.; Hébert, J.R.; Rietzschel, E.R.; De Buyzere, M.L.; Langlois, M.; Debruyne, E.; Marcos, A.; Huybrechts, I. Associations between dietary inflammatory index and inflammatory markers in the Asklepios Study. Br. J. Nutr. 2015, 113, 665–671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Correa-Rodríguez, M.; González-Jiménez, E.; Rueda-Medina, B.; Tovar-Gálvez, M.I.; Ramírez-Vélez, R.; Correa-Bautista, J.E.; Schmidt-RioValle, J. Dietary inflammatory index and cardiovascular risk factors in Spanish children and adolescents. Res. Nurs. Health 2018, 448–458. [Google Scholar] [CrossRef]
- Willcox, J.K.; Ash, S.L.; Catignani, G.L. Antioxidants and prevention of chronic disease. Crit. Rev. Food Sci. Nutr. 2004, 44, 275–295. [Google Scholar] [CrossRef]
- Stahl, W.; Sies, H. Antioxidant activity of carotenoids. Mol. Asp. Med. 2003, 24. [Google Scholar] [CrossRef]
- Valko, M.; Rhodes, C.J.; Moncol, J.; Izakovic, M.; Mazur, M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 2006, 160, 1–40. [Google Scholar] [CrossRef] [PubMed]
- Friedman, A.; Moe, S. Review of the effects of omega-3 supplementation in dialysis patients. Clin. J. Am. Soc. Nephrol. 2006, 1, 182–192. [Google Scholar] [CrossRef] [Green Version]
- Van Beelen, V.A.; Aarts, J.M.; Reus, A.; Mooibroek, H.; Sijtsma, L.; Bosch, D.; Rietjens, I.M.C.M.; Alink, G.M. Differential induction of electrophile-responsive element-regulated genes byn-3 and n-6 polyunsaturated fatty acids. FEBS Lett. 2006, 580, 4587–4590. [Google Scholar] [CrossRef] [Green Version]
- Calder, P.C. N-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am. J. Clin. Nutr. 2006, 83, 1505S–1519S. [Google Scholar] [CrossRef]
- Lakkur, S.; Judd, J.; Goodman, M. Oxidative Stress, Inflammation, and Markers of Cardiovascular Health. Atherosclerosis 2015, 243, 38–43. [Google Scholar] [CrossRef] [Green Version]
- The Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS) The Rotterdam ESHRE/ASRM-sponsored PCOS consensus workshop group. Hum. Reprod. 2004, 19, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Sirmans, S.M.; Pate, K.A. Epidemiology, diagnosis, and management of polycystic ovary syndrome. Clin. Epidemiol. 2014, 6, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sultan, C. Pediatric and Adolescent Gynecology: Evidence-based Clinical Practice; Karger Medical and Scientific Publishers: Basel, Switzerland, 2012; Volume 12, pp. 9–22. [Google Scholar] [CrossRef]
- World Health Organization. Growth Reference 5-19. BMI-for-Age for Girls. 2007. Available online: https://www.who.int/growthref/bmifa_girls_5_19years_z.pdf?ua=1 (accessed on 21 July 2020).
- Mizgier, M.; Jarzabek-Bielecka, G.; Jakubek, E.; Kedzia, W. The relationship between body mass index, body composition and premenstrual syndrome prevalence in girls. Ginekol. Pol. 2019, 90, 256–261. [Google Scholar] [CrossRef] [Green Version]
- Wan, C.S.; Ward, L.C.; Halim, J.; Gow, M.L.; Ho, M.; Briody, J.N.; Leung, K.; Cowell, C.T.; Garnett, S.P. Bioelectrical impedance analysis to estimate body composition, and change in adiposity, in overweight and obese adolescents: Comparison with dual-energy x-ray absorptiometry. BMC Pediatr. 2014, 14, 249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gronowska-Senger, A. Przewodnik Metodyczny Badań Sposobu Żywienia; Komitet Nauki o Żywieniu Człowieka Polskiej Akademii Nauk: Warszawa, Poland, 2013. [Google Scholar]
- Szponar, L.; Wolnicka, K.; Rychlik, E. Album Fotografii Produktów i Potraw; Wydawnictwo IżiŻ: Warszawa, Poland, 2000. [Google Scholar]
- Jarosz, M. Normy Żywienia dla Populacji Polski; Instytut Żywności i Żywienia: Warszawa, Poland, 2017. [Google Scholar] [CrossRef] [Green Version]
- Gayoso-Diz, P.; Otero-González, A.; Rodriguez-Alvarez, M.X.; Gude, F.; García, F.; De Francisco, A.; Quintela, A.G. Insulin resistance (HOMA-IR) cut-off values and the metabolic syndrome in a general adult population: Effect of gender and age: EPIRCE cross-sectional study. BMC Endocr. Disord. 2013, 13, 47. [Google Scholar] [CrossRef] [Green Version]
- Wendland, N.; Opydo-Szymaczek, J.; Mizgier, M.; Jarząbek-Bielecka, G. Subgingival microflora in adolescent females with polycystic ovary syndrome and its association with oral hygiene, gingivitis, and selected metabolic and hormonal parameters. Clin. Oral Investig. 2020. [Google Scholar] [CrossRef]
- Ilie, I.R. Advances in PCOS Pathogenesis and Progression-Mitochondrial Mutations and Dysfunction. Adv. Clin. Chem. 2018, 86, 127–155. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Fan, P.; Liu, H.; Bai, H.; Wang, Y.; Zhang, F. Apolipoprotein A-I and B levels, dyslipidemia and metabolic syndrome in south-west Chinese women with PCOS. Hum. Reprod. 2012, 27, 2484–2493. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.S.; Davies, M.J.; Norman, R.J.; Moran, L.J. Overweight, obesity and central obesity in women with polycystic ovary syndrome: A systematic review and meta-analysis. Hum. Reprod. Update 2012, 18, 618–637. [Google Scholar] [CrossRef] [PubMed]
- De Groot, P.C.M.; Dekkers, O.M.; Romijn, J.A.; Dieben, S.W.M.; Helmerhorst, F.M. PCOS, coronary heart disease, stroke and the influence of obesity: A systematic review and meta-analysis. Hum. Reprod. Update 2011, 17, 495–500. [Google Scholar] [CrossRef]
- Moran, L.J.; Misso, M.L.; Wild, R.A.; Norman, R.J. Impaired glucose tolerance, type 2 diabetes and metabolic syndrome in polycystic ovary syndrome: A systematic review and meta-analysis. Hum. Reprod. Update 2010, 16, 347–363. [Google Scholar] [CrossRef]
- Kałużna, M.; Człapka-Matyasik, M.; Wachowiak-Ochmańska, K.; Moczko, J.; Kaczmarek, J.; Janicki, A.; Piątek, K.; Ruchała, M.; Ziemnicka, K. Effect of Central Obesity and Hyperandrogenism on Selected Inflammatory Markers in Patients with PCOS: A WHtR-Matched Case-Control Study. J. Clin. Med. 2020, 9, 3024. [Google Scholar] [CrossRef] [PubMed]
- Nasiri, N.; Moini, A.; Eftekhari-Yazdi, P.; Kariman, L.; Salman-Yazdi, R.; Zolfaghari, Z.; Arabipoor, A. Abdominal obesity can induce both systemic and follicular fluid oxidative stress independent from polycystic ovary syndrome. Eur. J. Obstet. Gynecol. Reprod. Biol. 2015, 184, 112–116. [Google Scholar] [CrossRef]
- Savic-Radojevic, A.; Bozic Antic, I.; Coric, V.; Bjekic-Macut, J.; Radic, T.; Zarkovic, M.; Djukic, T.; Pljesa-Ercegovac, M.; Panidis, D.; Katsikis, I.; et al. Effect of hyperglycemia and hyperinsulinemia on glutathione peroxidase activity in non-obese women with polycystic ovary syndrome. Horm. (Athens) 2015, 14, 101–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez, F.; Nair, K.S.; Daniels, J.K.; Basal, E.; Schimke, J.M. Hyperandrogenism sensitizes mononuclear cells to promote glucose-induced inflammation in lean reproductive-age women. Am. J. Physiol. Endocrinol. Metab. 2012, 302, E297–E306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Federico, A.; Morgillo, F.; Tuccillo, C.; Ciardiello, F.; Loguercio, C. Chronic inflammation and oxidative stress in human carcinogenesis. Int. J. Cancer 2007, 121, 2381–2386. [Google Scholar] [CrossRef]
- Montero, D.; Walther, G.; Perez-Martin, A.; Roche, E.; Vinet, A. Endothelial dysfunction, inflammation, and oxidative stress in obese children and adolescents: Markers and effect of lifestyle intervention. Obes. Rev. 2012, 13, 441–455. [Google Scholar] [CrossRef] [Green Version]
- Codoner-Franch, P.; Valls-Belles, V.; Arilla-Codoner, A.; Alonso-Iglesias, E. Oxidant mechanisms in childhood obesity: The link between inflammation and oxidative stress. Trans. Res. 2011, 158, 369–384. [Google Scholar] [CrossRef]
- Yoost, J.; Savage, A. Screening and Management of the Hyperandrogenic Adolescent: ACOG Committee Opinion, Number 789. Obstet. Gynecol. 2019, 134, E106–E114. [Google Scholar] [CrossRef]
- Block, G.; Dietrich, M.; Norkus, E.P. Factors associated with oxidative stress in human populations. Am. J. Epidemiol. 2002, 156, 274–285. [Google Scholar] [CrossRef] [Green Version]
- Zuo, T.; Zhu, M.; Xu, W. Roles of Oxidative Stress in Polycystic Ovary Syndrome and Cancers. Oxid. Med. Cell. Longev. 2016. [Google Scholar] [CrossRef] [Green Version]
- Escobar-Morreale, H.F.; Luque-Ramírez, M.; González, F. Circulating inflammatory markers in polycystic ovary syndrome: A systematic review and meta-analysis. Fertil. Steril. 2011, 95, 1048–1058. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Oh, J.Y.; Sung, Y.A. Adipokines, insulin-like growth factor binding protein-3 levels, and insulin sensitivity in women with polycystic ovary syndrome. Korean J. Intern. Med. 2013, 28, 456–463. [Google Scholar] [CrossRef]
- Khashchenko, E.P.; Sukhanova, Y.A.; Pyataeva, S.V.; Volodina, M.A.; Tarasova, N.V.; Tsvirkun, D.V.; Uvarova, E.V.; Vysokikh, M.Y. Indicators of mitochondrial functioning in adolescent girls with polycystic ovary syndrome with regard to the presence of metabolic disorders and overweight. Akusherstvo i Ginekologiya (Russian Federation) 2017, 7, 104–113. [Google Scholar] [CrossRef]
- Möhlig, M.; Spranger, J.; Osterhoff, M.; Ristow, M.; Pfeiffer, A.F.; Schill, T.; Schlösser, H.W.; Brabant, G.; Schöfl, C. The polycystic ovary syndrome per se is not associated with increased chronic inflammation. Eur. J. Endocrinol. 2004, 150, 525–532. [Google Scholar] [CrossRef] [Green Version]
- Toscani, M.K.; Mario, F.M.; Radavelli-Bagatini, S.; Wiltgen, D.; Cristina Matos, M.; Spritzer, P.M. Effect of high-protein or normal-protein diet on weight loss, body composition, hormone, and metabolic profile in southern Brazilian women with polycystic ovary syndrome: A randomized study. Gynecol. Endocrinol. 2011, 27, 925–930. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Arellano, A.; Ramallal, R.; Ruiz-Canela, M.; Salas-Salvadó, J.; Corella, D.; Shivappa, N.; Schröder, H.; Hébert, J.R.; Ros, E.; Gómez-Garcia, E.; et al. Dietary inflammatory index and incidence of cardiovascular disease in the PREDIMED study. Nutrients 2015, 7, 4124–4138. [Google Scholar] [CrossRef] [Green Version]
- Hruby, A.; Jacques, P.F. Dietary Protein and Changes in Biomarkers of Inflammation and Oxidative Stress in the Framingham Heart Study Offspring Cohort. Curr. Dev. Nutr. 2019, 3, nzz019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vallianou, N.G.; Bountziouka, V.P.; Georgousopoulou, E.; Evangelopoulos, A.A.; Bonou, M.S.; Vogiatzakis, E.D.; Barbetseas, J.D.; Avgerinos, P.C.; Panagiotakos, D.B. Influence of protein intake from haem and non-haem animals and plant origin on inflammatory biomarkers among apparently-healthy adults in Greece. J. Health Popul. Nutr. 2013, 31, 446–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwedhelm, C.; Pischon, T.; Rohrmann, S.; Himmerich, H.; Linseisen, J.; Nimptsch, K. Plasma inflammation markers of the tumor necrosis factor pathway but not C-reactive protein are associated with processed meat and unprocessed red meat consumption in Bavarian adults. J. Nutr. 2017, 147, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Keogh, J.B.; Clifton, P.M. Effects of two different dietary patterns on inflammatory markers, advanced glycation end products and lipids in subjects without type 2 diabetes: A randomised crossover study. Nutrients 2017, 9, 336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montonen, J.; Boeing, H.; Fritsche, A.; Schleicher, E.; Joost, H.-G.; Schulze, M.B.; Steffen, A.; Pischon, T. Consumption of red meat and whole-grain bread in relation to biomarkers of obesity, inflammation, glucose metabolism and oxidative stress. Eur. J. Nutr. 2013, 52, 337–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khayyatzadeh, S.S.; Kazemi-Bajestani, S.M.R.; Bagherniya, M.; Mehramiz, M.; Tayefi, M.; Ebrahimi, M.; Ferns, G.A.; Safarian, M.; Ghayour-Mobarhan, M. Serum high C reactive protein concentrations are related to the intake of dietary macronutrients and fiber: Findings from a large representative Persian population sample. Clin. Biochem. 2017, 50, 750–755. [Google Scholar] [CrossRef]
- Björck, I.; Elmståhl, H.L. The glycaemic index: Importance of dietary fibre and other food properties. Proc. Nutr. Soc. 2003, 62, 201–206. [Google Scholar] [CrossRef]
- Buyken, A.E.; Goletzke, J.; Joslowski, G.; Felbick, A.; Cheng, G.; Herder, C.; Brand-Miller, J.D. Association between carbohydrate quality and inflammatory markers: Systematic review of observational and interventional studies. Am. J. Clin. Nutr. 2014, 99, 813–833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szczuko, M.; Zapalowska-Chwyć, M.; Drozd, R.A. Low Glycemic Index Decreases Inflammation by Increasing the Concentration of Uric Acid and the Activity of Glutathione Peroxidase (GPx3) in Patients with Polycystic Ovary Syndrome (PCOS). Molecules 2019, 24, 1508. [Google Scholar] [CrossRef] [Green Version]
- Barrea, L.; Marzullo, P.; Muscogiuri, G.; Di Somma, C.; Scacchi, M.; Orio, F.; Gianluca, A.; Aimaretti, G.; Colao, A.; Savastano, S. Source and amount of carbohydrate in the diet and inflammation in women with polycystic ovary syndrome. Nutr. Res. Rev. 2018, 31, 291–301. [Google Scholar] [CrossRef]
- Kellner-Weibel, G.; Luke, S.J.; Rothblat, G.H. Cytotoxic cellular cholesterol is selectively removed by apoA-I via ABCA1. Atherosclerosis 2003, 171, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Surls, J.; Nazarov-Stoica, C.; Kehl, M.; Olsen, C.; Casares, S.; Brumeanu, T.-D. Increased membrane cholesterol in lymphocytes diverts T-cells toward an inflammatory response. PLoS ONE 2012, 7, e38733. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, K.B.F.; Pinheiro Volp, A.C.; Marques-Rocha, J.L.; Rocha Ribeiro, S.M.; Navarro-Blasco, I.; Zulet, M.A.; Martinez, A.; Bressan, J. Low energy and carbohydrate intake associated with higher total antioxidant capacity in apparently healthy adults. Nutrition 2014, 30, 1349–1354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aponte, A.; Agarwal, A. Oxidative Stress Impact on the Fertility of Women with Polycystic Ovary Syndrome. In Studies on Women’s Health; Oxidative Stress in Applied Basic Research and Clinical Practice; Agarwal, A., Aziz, N., Rizk, B., Eds.; Humana Press: Totowa, NJ, USA, 2013. [Google Scholar] [CrossRef]
- Drosdzol-Cop, A.; Sidło-Stawowy, A.; Sajdak, D.; Skrzypulec-Plinta, V. Diagnosing polycystic ovary syndrome in adolescent girls. Ginekol. Pol. 2014, 85, 145–148. [Google Scholar] [CrossRef] [PubMed]
Variables | N Group n = 37 | Ov/Ob. Group n = 22 | p-Value |
---|---|---|---|
Age (years) | 0.211 * | ||
Mean (SD) | 16.35 (1.14) | 15.77 (1.6) | |
Median(25–75%) | 16 (16−17) | 16 (14.25−17) | |
Body height (m) | 0.604 | ||
Mean(SD) | 1.66 (0.07) | 1.67 (0.05) | |
Median(25–75%) | 1.65 (1.61−1.71) | 1.67 (1.64−1.69) | |
Body weight (kg) | <0.000001 | ||
Mean(SD) | 55.61 (7.13) | 83.66 (11.76) | |
Median (25–75%) | 54.7 (50.9−62.1) | 83.05 (74.95−92.18) | |
Fat mass (%) | <0.000001 | ||
Mean(SD) | 20.41 (6.72) | 34.18 (6.89) | |
Median (25–75%) | 19.2 (16.6–26.1) | 33.5 (29.58−39.53) | |
Fat mass (kg) | 0.000001 * | ||
Mean(SD) | 8.41 (5.09) | 20.64 (9.99) | |
Median (25–75%) | 7.4 (4.8−10.2) | 17.85 (12.9−25.85) | |
SBP (mmHg) | 0.00001 | ||
Mean(SD) | 105.22 (7.87) | 117.05 (10.82) | |
Median (25–75%) | 106 (99−110) | 115.5 (111.25−123.75) | |
DBP (mmHg) | 0.004 | ||
Mean(SD) | 68.59 (8.36) | 75.5 (9) | |
Median(25–75%) | 68 (62−76) | 77 (68.75−81) | |
Waist Circumference (WC) (cm) | <0.000001 | ||
Mean(SD) | 71.41 (6.32) | 92.09 (9.47) | |
Median(25–75%) | 70 (67−76) | 91 (86.25−96.5) | |
TC (mg/dL) | 0.520 * | ||
Mean(SD) | 156.38 (30.6) | 157.77 (22.64) | |
Median(25–75%) | 157.7 (135.2−169.6) | 162.35 (137.05−176) | |
LDL-C (mg/dL) | 0.108 * | ||
Mean(SD) | 79.78 (27.35) | 86.36 (19.39) | |
Median(25–75%) | 79.2 (57.9−93.6) | 86 (72.1−101.38) | |
HDL-C (mg/dL) | 0.00009 | ||
Mean(SD) | 58.88 (10.72) | 49.44 (6.42) | |
Median (25–75%) | 57.7 (52.3−67.4) | 48.3 (44.78−53.38) | |
TG (mg/dL) | 0.047 * | ||
Mean(SD) | 87.71 (34.4) | 109.9 (41.69) | |
Median(25–75%) | 83.7 (62.2−109.6) | 100.55 (74.55–148.13) | |
Fasting glucose (mg/dL) | 0.138 | ||
Mean(SD) | 87.59 (5.89) | 90.3 (7.65) | |
Median(25–75%) | 87.8 (84.5−91.1) | 89.6 (85.8−96.9) | |
Fasting insulin (mU/mL) | 0.0015 * | ||
Mean(SD) | 13.12 (6.95) | 19.76 (8.75) | |
Median (25–75%) | 11.54 (8.73−14.96) | 18.63 (14.88−26.85) | |
HOMA-IR | 0.0003 * | ||
Mean (SD) | 2.82 (1.72) | 4.72 (2.36) | |
Median(25–75%) | 2.5 (1.79−3.28) | 4.3 (3.26−6.37) | |
Quicki | 0.0007 * | ||
Mean(SD) | 0.33 (0.03) | 0.31 (0.03) | |
Median(25–75%) | 0.33 (0.32−0.35) | 0.31 (0.29−0.32) |
Variables | N Group n = 37 | Ov/Ob. Group n = 22 | p-Value |
---|---|---|---|
IL-1 (pg/mL) | 0.216 * | ||
Mean(SD) | 27.71 (14.58) | 44.03 (57.76) | |
Median(25–75%) | 24.7 (17.34–31.04) | 26.27 (21.51–34.14) | |
IL-6 (ng/L) | 0.297 * | ||
Mean(SD) | 31.39 (16.66) | 45.85 (46.47) | |
Median(25–75%) | 26.51 (21.66–35.6) | 28.56 (24.21–37.63) | |
TNF- α (ng/L) | 0.536 * | ||
Mean(SD) | 90.24 (67.4) | 137.22 (169.52) | |
Median(25–75%) | 74.08 (56.31–106.38) | 76.16 (58.7–113.88) | |
CRP (mg/L) | 0.063 * | ||
Mean(SD) | 0.93 (1.21) | 1.45 (1.56) | |
Median(25–75%) | 0.56 (0.29–1.09) | 0.88 (0.66–1.5) | |
TAC * (mmol/L) | 0.370 | ||
Mean(SD) | 1.07 (0.19) | 1.02 (0.18) | |
Median(25–75%) | 1.02 (0.9–1.18) | 1.02 (0.9–1.12) | |
MDA (nmol/L) | 0.224 * | ||
Mean(SD) | 8.68 (7.16) | 15.15 (23.87) | |
Median(25–75%) | 6.61 (4.87–9.34) | 7.23 (6.16–9.9) |
Variables | Total Protein (g) | Total Fat (g) | Total Carbohydrates (g) | Fiber (g) | Plant Protein (g) | Animal Protein (g) | SFA (g) | MUFA (g) | PUFA (g) | Total Cholesterol (mg) |
---|---|---|---|---|---|---|---|---|---|---|
IL-1 (pg/mL) | ||||||||||
p value | 0.244 | 0.601 | 0.245 | 0.132 | 0.357 | 0.863 | 0.608 | 0.601 | 0.844 | 0.768 |
r | −0.259 | 0.118 | −0.259 | −0.331 | −0.206 | −0.039 | 0.116 | 0.118 | −0.045 | 0.067 |
IL-6 (ng/L) | ||||||||||
p value | 0.031 | 0.687 | 0.037 | 0.025 | 0.007 | 0.289 | 0.700 | 0.654 | 0.353 | 0.702 |
r | −0.461 | −0.091 | −0.448 | −0.475 | −0.557 | −0.237 | −0.087 | −0.101 | −0.208 | −0.086 |
TNF-α (ng/L) | ||||||||||
p value | 0.043 | 0.272 | 0.102 | 0.095 | 0.006 | 0.115 | 0.313 | 0.381 | 0.091 | 0.284 |
r | −0.435 | −0.245 | −0.357 | −0.365 | −0.564 | −0.346 | −0.225 | −0.197 | −0.369 | −0.239 |
CRP (mg/L) | ||||||||||
p value | 0.546 | 0.427 | 0.782 | 0.776 | 0.474 | 0.556 | 0.589 | 0.271 | 0.743 | 0.871 |
r | −0.136 | 0.178 | −0.063 | 0.064 | −0.161 | −0.133 | 0.122 | 0.245 | 0.074 | −0.037 |
MDA (nmol/mL) | ||||||||||
p value | 0.072 | 0.618 | 0.045 | 0.052 | 0.010 | 0.287 | 0.613 | 0.658 | 0.355 | 0.594 |
r | −0.391 | −0.112 | −0.431 | −0.419 | −0.539 | −0.238 | −0.114 | −0.100 | −0.207 | −0.120 |
TAC (mmol/L) | ||||||||||
p value | 0.993 | 0.972 | 0.656 | 0.796 | 0.305 | 0.651 | 0.762 | 0.932 | 0.609 | 0.966 |
r | −0.002 * | −0.008 * | −0.101 * | −0.059 | −0.229 * | −0.102 * | −0.069 * | 0.019 * | 0.116 * | −0.010 |
Variables | Group | Total Protein (g) | Total Carbohydrates (g) | Fiber (g) | Plant Protein (g) | Total Cholesterol (mg) |
---|---|---|---|---|---|---|
IL-1 (pg/mL) | N | 0 | −0.16 | 0.078 | 0.03 | 0.115 |
Ov/Ob | −0.259 | −0.259 | −0.331 | −0.206 | 0.067 | |
IL-6 (ng/L) | N | 0.032 | 0.104 | 0.082 | 0.27 | 0.132 |
Ov/Ob | −0.461 | −0.448 | −0.475 | −0.557 | −0.086 | |
TNF-α (ng/L) | N | 0.079 | −0.033 | 0.012 | 0.175 | 0.072 |
Ov/Ob | −0.435 | −0.357 | −0.365 | −0.564 | −0.239 | |
CRP (mg/L) | N | 0.058 | −0.249 | 0.136 | −0.048 | 0.342 |
Ov/Ob | −0.136 | −0.063 | 0.064 | −0.161 | −0.037 | |
MDA (nmol/mL) | N | 0.081 | −0.045 | 0.028 | 0.218 | 0.193 |
Ov/Ob | −0.391 | −0.431 | −0.419 | −0.539 | −0.12 | |
TAC (mmol/L) | N | −0.199 | −0.305 | 0.204 | −0.38 | 0.067 |
Ov/Ob | −0.002 * | −0.101 * | −0.059 | −0.229 * | −0.01 |
Variables | Total Protein (g) | Total Fat (g) | Total Carbohydrates (g) | Fiber (g) | Plant Protein (g) | Animal Protein (g) | SFA (g) | MUFA (g) | PUFA (g) | Total Cholesterol (mg) |
---|---|---|---|---|---|---|---|---|---|---|
IL-1 (pg/mL) | ||||||||||
p value | 0.998 | 0.991 | 0.344 | 0.644 | 0.861 | 0.533 | 0.953 | 0.922 | 0.537 | 0.498 |
r | 0.000 | 0.002 | −0.160 | 0.078 | 0.030 | −0.106 | 0.010 | 0.017 | 0.105 | 0.115 |
IL-6 (ng/L) | ||||||||||
p value | 0.850 | 0.401 | 0.541 | 0.630 | 0.106 | 0.585 | 0.630 | 0.187 | 0.179 | 0.437 |
r | 0.032 | 0.142 | 0.104 | 0.082 | 0.270 | −0.093 | 0.082 | 0.222 | 0.226 | 0.132 |
TNF-α (ng/L) | ||||||||||
p value | 0.642 | 0.419 | 0.844 | 0.942 | 0.299 | 0.752 | 0.534 | 0.649 | 0.195 | 0,672 |
r | 0.079 | 0.137 | −0.033 | 0.012 | 0.175 | −0.054 | 0.106 | 0.077 | 0.218 | 0.072 |
CRP (mg/L) | ||||||||||
p value | 0.735 | 0.636 | 0.137 | 0.423 | 0.779 | 0.521 | 0.622 | 0.803 | 0.704 | 0.038 |
r | 0.058 | −0.080 | −0.249 | 0.136 | −0.048 | 0.109 | 0.084 | −0.042 | −0.065 | 0.342 |
MDA (nmol/mL) | ||||||||||
p value | 0.632 | 0.605 | 0.792 | 0.871 | 0.196 | 0.741 | 0.725 | 0.408 | 0.250 | 0.252 |
r | 0.081 | 0.088 | −0.045 | 0.028 | 0.218 | 0.056 | 0.060 | 0.140 | 0.194 | 0.193 |
TAC (mmol/L) | ||||||||||
p value | 0.237 | 0.404 | 0.066 | 0.226 | 0.021 | 0.153 | 0.587 | 0.329 | 0.076 | 0.693 |
r | −0.199 | −0.141 * | −0.305 | 0.204 | −0.380 | −0.240 | 0.092 * | −0.165 | −0.296 | 0.067 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mizgier, M.; Jarząbek-Bielecka, G.; Wendland, N.; Jodłowska-Siewert, E.; Nowicki, M.; Brożek, A.; Kędzia, W.; Formanowicz, D.; Opydo-Szymaczek, J. Relation between Inflammation, Oxidative Stress, and Macronutrient Intakes in Normal and Excessive Body Weight Adolescent Girls with Clinical Features of Polycystic Ovary Syndrome. Nutrients 2021, 13, 896. https://doi.org/10.3390/nu13030896
Mizgier M, Jarząbek-Bielecka G, Wendland N, Jodłowska-Siewert E, Nowicki M, Brożek A, Kędzia W, Formanowicz D, Opydo-Szymaczek J. Relation between Inflammation, Oxidative Stress, and Macronutrient Intakes in Normal and Excessive Body Weight Adolescent Girls with Clinical Features of Polycystic Ovary Syndrome. Nutrients. 2021; 13(3):896. https://doi.org/10.3390/nu13030896
Chicago/Turabian StyleMizgier, Małgorzata, Grażyna Jarząbek-Bielecka, Natalia Wendland, Elżbieta Jodłowska-Siewert, Marcin Nowicki, Alicja Brożek, Witold Kędzia, Dorota Formanowicz, and Justyna Opydo-Szymaczek. 2021. "Relation between Inflammation, Oxidative Stress, and Macronutrient Intakes in Normal and Excessive Body Weight Adolescent Girls with Clinical Features of Polycystic Ovary Syndrome" Nutrients 13, no. 3: 896. https://doi.org/10.3390/nu13030896
APA StyleMizgier, M., Jarząbek-Bielecka, G., Wendland, N., Jodłowska-Siewert, E., Nowicki, M., Brożek, A., Kędzia, W., Formanowicz, D., & Opydo-Szymaczek, J. (2021). Relation between Inflammation, Oxidative Stress, and Macronutrient Intakes in Normal and Excessive Body Weight Adolescent Girls with Clinical Features of Polycystic Ovary Syndrome. Nutrients, 13(3), 896. https://doi.org/10.3390/nu13030896