Comparison of Indices of Carbohydrate Quality and Food Sources of Dietary Fiber on Longitudinal Changes in Waist Circumference in the Framingham Offspring Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dietary Assessment
2.2. Waist Circumference
2.3. Covariates
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ford, E.S.; Li, C.; Zhao, G.; Tsai, J. Trends in obesity and abdominal obesity among adults in the United States from 1999–2008. Int. J. Obes. 2011, 35, 736–743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Beydoun, M.A.; Min, J.; Xue, H.; Kaminsky, L.A.; Cheskin, L.J. Has the prevalence of overweight, obesity and central obesity levelled off in the United States? Trends, patterns, disparities, and future projections for the obesity epidemic. Int. J. Epidemiol. Oxf. Acad. 2020, 49, 810–823. [Google Scholar] [CrossRef]
- Elobeid, M.A.; Desmond, R.A.; Thomas, O.; Keith, S.W.; Allison, D.B. Waist circumference values are increasing beyond those expected from BMI increases. Obes. Silver Spring Md. 2007, 15, 2380–2383. [Google Scholar] [CrossRef] [PubMed]
- Walls, H.L.; Stevenson, C.E.; Mannan, H.R.; Abdullah, A.; Reid, C.M.; McNeil, J.J.; Peeters, A. Comparing trends in BMI and waist circumference. Obes. Silver Spring Md. 2011, 19, 216–219. [Google Scholar] [CrossRef] [PubMed]
- Müller, M.J.; Lagerpusch, M.; Enderle, J.; Schautz, B.; Heller, M.; Bosy-Westphal, A. Beyond the body mass index: Tracking body composition in the pathogenesis of obesity and the metabolic syndrome. Obes Rev. Off. J. Int. Assoc. Study Obes. 2012, 13 (Suppl. 2), 6–13. [Google Scholar] [CrossRef] [PubMed]
- Després, J.-P.; Lemieux, I. Abdominal obesity and metabolic syndrome. Nature 2006, 444, 881–887. [Google Scholar] [CrossRef]
- Casanueva, F.F.; Moreno, B.; Rodríguez-Azeredo, R.; Massien, C.; Conthe, P.; Formiguera, X.; Barrios, V.; Balkau, B. Relationship of abdominal obesity with cardiovascular disease, diabetes and hyperlipidaemia in Spain. Clin. Endocrinol. 2010, 73, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Wang, R.; Ding, L.; Meng, Z.; Zhang, Q.; Shen, Y.; Hu, G.; Liu, M. Waist Circumference and its Changes Are More Strongly Associated with the Risk of Type 2 Diabetes than Body Mass Index and Changes in Body Weight in Chinese Adults. J. Nutr. 2020, 150, 1259–1265. [Google Scholar] [CrossRef] [PubMed]
- Freemantle, N.; Holmes, J.; Hockey, A.; Kumar, S. How strong is the association between abdominal obesity and the incidence of type 2 diabetes? Int. J. Clin. Pract 2008, 62, 1391–1396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.-Y.; Chang, H.-J.; Sung, J.; Kim, K.J.; Shin, S.; Cho, I.-J.; Shim, C.Y.; Hong, G.-R.; Chung, N. The impact of obesity on subclinical coronary atherosclerosis according to the risk of cardiovascular disease. Obes. Silver Spring Md. 2014, 22, 1762–1768. [Google Scholar] [CrossRef] [Green Version]
- Rexrode, K.M.; Carey, V.J.; Hennekens, C.H.; Walters, E.E.; Colditz, G.A.; Stampfer, M.J.; Willett, W.C.; Manson, J.E. Abdominal Adiposity and Coronary Heart Disease in Women. JAMA 1998, 280, 1843–1848. [Google Scholar] [CrossRef] [PubMed]
- Dalton, M.; Cameron, A.J.; Zimmet, P.Z.; Shaw, J.E.; Jolley, D.; Dunstan, D.W.; Welborn, T.A. AusDiab Steering Committee. Waist circumference, waist-hip ratio and body mass index and their correlation with cardiovascular disease risk factors in Australian adults. J. Intern. Med. 2003, 254, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Després, J.-P. Body Fat Distribution and Risk of Cardiovascular Disease. Circulation 2012, 126, 1301–1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Racette, S.B.; Evans, E.M.; Weiss, E.P.; Hagberg, J.M.; Holloszy, J.O. Abdominal Adiposity Is a Stronger Predictor of Insulin Resistance Than Fitness Among 50–95 Year Olds. Diabetes Care 2006, 29, 673–678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rothberg, A.E.; McEwen, L.N.; Kraftson, A.T.; Ajluni, N.; Fowler, C.E.; Nay, C.K.; Miller, N.M.; Burant, C.F.; Herman, W.H. Impact of weight loss on waist circumference and the components of the metabolic syndrome. BMJ Open Diabetes Res. Care 2017, 5, e000341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hruby, A.; Manson, J.E.; Qi, L.; Malik, V.S.; Rimm, E.B.; Sun, Q.; Willett, W.C.; Hu, F.B. Determinants and Consequences of Obesity. Am. J. Public Health 2016, 106, 1656–1662. [Google Scholar] [CrossRef] [PubMed]
- Shan, Z.; Rehm, C.D.; Rogers, G.; Ruan, M.; Wang, D.D.; Hu, F.B.; Mozaffarian, D.; Zhang, F.F.; Bhupathiraju, S.N. Trends in Dietary Carbohydrate, Protein, and Fat Intake and Diet Quality Among US Adults, 1999–2016. JAMA 2019, 322, 1178–1187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harland, J.I.; Garton, L.E. Whole-grain intake as a marker of healthy body weight and adiposity. Public Health Nutr. 2008, 11, 554–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKeown, N.M.; Yoshida, M.; Shea, M.K.; Jacques, P.F.; Lichtenstein, A.H.; Rogers, G.; Booth, S.L.; Saltzman, E. Whole-grain intake and cereal fiber are associated with lower abdominal adiposity in older adults. J. Nutr. 2009, 139, 1950–1955. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Van der, A.D.L.; Boshuizen, H.C.; Forouhi, N.G.; Wareham, N.J.; Halkjaer, J.; Tjønneland, A.; Overvad, K.; Jakobsen, M.U.; Boeing, H.; et al. Dietary fiber and subsequent changes in body weight and waist circumference in European men and women. Am. J. Clin. Nutr. 2010, 91, 329–336. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Willett, W.C.; Manson, J.E.; Hu, F.B.; Rosner, B.; Colditz, G. Relation between changes in intakes of dietary fiber and grain products and changes in weight and development of obesity among middle-aged women. Am. J. Clin. Nutr. 2003, 78, 920–927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, S.S.; Qi, L.; Fahey, G.C.; Klurfeld, D.M. Consumption of cereal fiber, mixtures of whole grains and bran, and whole grains and risk reduction in type 2 diabetes, obesity, and cardiovascular disease. Am. J. Clin. Nutr. 2013, 98, 594–619. [Google Scholar] [CrossRef]
- Newby, P.; Maras, J.; Bakun, P.; Muller, D.; Ferrucci, L.; Tucker, K.L. Intake of whole grains, refined grains, and cereal fiber measured with 7-d diet records and associations with risk factors for chronic disease. Am. J. Clin. Nutr. 2007, 86, 1745–1753. [Google Scholar] [CrossRef] [PubMed]
- Schlesinger, S.; Neuenschwander, M.; Schwedhelm, C.; Hoffmann, G.; Bechthold, A.; Boeing, H.; Schwingshackl, L. Food Groups and Risk of Overweight, Obesity, and Weight Gain: A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. Adv. Nutr. 2019, 10, 205–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, J.; McKeown, N.M.; Hwang, S.-J.; Hoffmann, U.; Jacques, P.F.; Fox, C.S. Sugar-Sweetened Beverage Consumption Is Associated With Change of Visceral Adipose Tissue Over 6 Years of Follow-UpCLINICAL PERSPECTIVE. Circulation 2016, 133, 370–377. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, A.; Mann, J.; Cummings, J.; Winter, N.; Mete, E.; Te Morenga, L. Carbohydrate quality and human health: A series of systematic reviews and meta-analyses. Lancet 2019, 393, 434–445. [Google Scholar] [CrossRef] [Green Version]
- Buyken, A.E.; Goletzke, J.; Joslowski, G.; Felbick, A.; Cheng, G.; Herder, C.; Brand-Miller, J.C. Association between carbohydrate quality and inflammatory markers: Systematic review of observational and interventional studies. Am. J. Clin. Nutr. 2014, 99, 813–833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AlEssa, H.B.; Bhupathiraju, S.N.; Malik, V.S.; Wedick, N.M.; Campos, H.; Rosner, B.; Willett, W.C.; Hu, F.B. Carbohydrate quality and quantity and risk of type 2 diabetes in US women. Am. J. Clin. Nutr. 2015, 102, 1543–1553. [Google Scholar] [CrossRef] [PubMed]
- AlEssa, H.B.; Cohen, R.; Malik, V.S.; Adebamowo, S.N.; Rimm, E.B.; Manson, J.E.; Willett, W.C.; Hu, F.B. Carbohydrate quality and quantity and risk of coronary heart disease among US women and men. Am. J. Clin. Nutr. 2018, 107, 257–267. [Google Scholar] [CrossRef]
- Gopinath, B.; Flood, V.M.; Kifley, A.; Louie, J.C.Y.; Mitchell, P. Association Between Carbohydrate Nutrition and Successful Aging Over 10 Years. J. Gerontol. Ser. A 2016, 71, 1335–1340. [Google Scholar] [CrossRef]
- Willett, W.C.; Liu, S. Carbohydrate quality and health: Distilling simple truths from complexity. Am. J. Clin. Nutr. 2019, 110, 803–804. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, Y.; Tanaka, M.; Miki, A.; Kobayashi, Y.; Wada, S.; Kuwahata, M.; Kido, Y.; Yamazaki, M.; Fukui, M. Intake of Carbohydrate to Fiber Ratio Is a Useful Marker for Metabolic Syndrome in Patients with Type 2 Diabetes: A Cross-Sectional Study. Ann. Nutr. Metab. 2018, 72, 329–335. [Google Scholar] [CrossRef]
- Santiago, S.; Zazpe, I.; Bes-Rastrollo, M.; Sánchez-Tainta, A.; Sayón-Orea, C.; Fuente-Arrillaga, C.; De la Benito, S.; Martínez, J.A.; Martínez-González, M.Á. Carbohydrate quality, weight change and incident obesity in a Mediterranean cohort: The SUN Project. Eur. J. Clin. Nutr. 2015, 69, 297–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zazpe, I.; Santiago, S.; Gea, A.; Ruiz-Canela, M.; Carlos, S.; Bes-Rastrollo, M.; Martínez-González, M.A. Association between a dietary carbohydrate index and cardiovascular disease in the SUN (Seguimiento Universidad de Navarra) Project. Nutr. Metab. Cardiovasc Dis. 2016, 26, 1048–1056. [Google Scholar] [CrossRef] [PubMed]
- Martínez-González, M.A.; Fernandez-Lazaro, C.I.; Toledo, E.; Díaz-López, A.; Corella, D.; Goday, A.; Romaguera, D.; Vioque, J.; Alonso-Gómez, Á.M.; Wärnberg, J.; et al. Carbohydrate quality changes and concurrent changes in cardiovascular risk factors: A longitudinal analysis in the PREDIMED-Plus randomized trial. Am. J. Clin. Nutr. 2020, 111, 291–306. [Google Scholar] [CrossRef] [PubMed]
- Rimm, E.B.; Giovannucci, E.L.; Stampfer, M.J.; Colditz, G.A.; Litin, L.B.; Willett, W.C. Reproducibility and Validity of an Expanded Self-Administered Semiquantitative Food Frequency Questionnaire among Male Health Professionals. Am. J. Epidemiol. 1992, 135, 1114–1126. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.C.; Sampson, L.; Stampfer, M.J.; Rosner, B.; Bain, C.; Witschi, J.; Hennekens, C.H.; Speizer, F.E. Reproducibility and validity of a semiquantitative food frequency questionnaire. Am. J. Epidemiol. 1985, 122, 51–65. [Google Scholar] [CrossRef] [PubMed]
- Salvini, S.; Hunter, D.J.; Sampson, L.; Stampfer, M.J.; Colditz, G.A.; Rosner, B.; Willett, W.C. Food-based validation of a dietary questionnaire: The effects of week-to-week variation in food consumption. Int. J. Epidemiol. 1989, 18, 858–867. [Google Scholar] [CrossRef]
- Liu, S.; Willett, W.C.; Stampfer, M.J.; Hu, F.B.; Franz, M.; Sampson, L.; Hennekens, C.H.; Manson, J.E. A prospective study of dietary glycemic load, carbohydrate intake, and risk of coronary heart disease in US women. Am. J. Clin. Nutr. 2000, 71, 1455–1461. [Google Scholar] [CrossRef] [Green Version]
- Wolever, T.M.; Jenkins, D.J.; Jenkins, A.L.; Josse, R.G. The glycemic index: Methodology and clinical implications. Am. J. Clin. Nutr. 1991, 54, 846–854. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for total energy intake in epidemiologic studies. Am. J. Clin. Nutr. 1997, 65, 1220S–1228S. [Google Scholar] [CrossRef] [PubMed]
- Kanter, M.M. High-Quality Carbohydrates: A Concept in Search of a Definition. Nutr. Today 2019, 54, 289. [Google Scholar] [CrossRef]
- Sánchez-Tainta, A.; Zazpe, I.; Bes-Rastrollo, M.; Salas-Salvadó, J.; Bullo, M.; Sorlí, J.V.; Corella, D.; Covas, M.I.; Arós, F.; Gutierrez-Bedmar, M.; et al. Nutritional adequacy according to carbohydrates and fat quality. Eur. J. Nutr. 2016, 55, 93–106. [Google Scholar] [CrossRef]
- Zazpe, I.; Sánchez-Taínta, A.; Santiago, S.; Fuente-Arrillaga C de la Bes-Rastrollo, M.; Martínez, J.A.; Martínez-González, M.Á. Association between dietary carbohydrate intake quality and micronutrient intake adequacy in a Mediterranean cohort: The SUN (Seguimiento Universidad de Navarra) Project. Br. J. Nutr. 2014, 111, 2000–2009. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.-Y.; Kim, S.H.; Lim, H. Association between dietary carbohydrate quality and the prevalence of obesity and hypertension. J. Hum. Nutr. Diet. 2018, 31, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Haslam, D.E.; Peloso, G.M.; Herman, M.A.; Dupuis, J.; Lichtenstein, A.H.; Smith, C.E.; McKeown, N.M. Beverage Consumption and Longitudinal Changes in Lipoprotein Concentrations and Incident Dyslipidemia in US Adults: The Framingham Heart Study. J. Am. Heart Assoc. Cardiovasc Cereb. Dis. 2020, 9, e014083. [Google Scholar] [CrossRef] [PubMed]
- Auerbach, B.J.; Wolf, F.M.; Hikida, A.; Vallila-Buchman, P.; Littman, A.; Thompson, D.; Louden, D.; Taber, D.R.; Krieger, J. Fruit Juice and Change in BMI: A Meta-analysis. Pediatrics 2017, 139, e20162454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imamura, F.; O’Connor, L.; Ye, Z.; Mursu, J.; Hayashino, Y.; Bhupathiraju, S.N.; Forouhi, N.G. Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: Systematic review, meta-analysis, and estimation of population attributable fraction. Br. J. Sports Med. 2016, 50, 496–504. [Google Scholar] [CrossRef] [PubMed]
- Meng, H.; Matthan, N.R.; Ausman, L.M.; Lichtenstein, A.H. Effect of macronutrients and fiber on postprandial glycemic responses and meal glycemic index and glycemic load value determinations. Am. J. Clin. Nutr. 2017, 105, 842–853. [Google Scholar] [CrossRef] [Green Version]
- McKeown, N.M.; Troy, L.M.; Jacques, P.F.; Hoffmann, U.; O’Donnell, C.J.; Fox, C.S. Whole- and refined-grain intakes are differentially associated with abdominal visceral and subcutaneous adiposity in healthy adults: The Framingham Heart Study12345. Am. J. Clin. Nutr. 2010, 92, 1165–1171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mozaffarian, R.S.; Lee, R.M.; Kennedy, M.A.; Ludwig, D.S.; Mozaffarian, D.; Gortmaker, S.L. Identifying whole grain foods: A comparison of different approaches for selecting more healthful whole grain products. Public Health Nutr. 2013, 16, 2255–2264. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Rehm, C.D.; Shi, P.; McKeown, N.M.; Mozaffarian, D.; Micha, R. A comparison of different practical indices for assessing carbohydrate quality among carbohydrate-rich processed products in the US. PLoS ONE 2020, 15, e0231572. [Google Scholar] [CrossRef] [PubMed]
- Fogelholm, M.; Anderssen, S.; Gunnarsdottir, I.; Lahti-Koski, M. Dietary macronutrients and food consumption as determinants of long-term weight change in adult populations: A systematic literature review. Food Nutr. Res. 2012, 56, 19103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koh-Banerjee, P.; Franz, M.; Sampson, L.; Liu, S.; Jacobs, D.R.; Spiegelman, D.; Willett, W.; Rimm, E. Changes in whole-grain, bran, and cereal fiber consumption in relation to 8-y weight gain among men. Am. J. Clin. Nutr. 2004, 80, 1237–1245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Koning, L.; Merchant, A.T.; Pogue, J.; Anand, S.S. Waist circumference and waist-to-hip ratio as predictors of cardiovascular events: Meta-regression analysis of prospective studies. Eur. Heart J. 2007, 28, 850–856. [Google Scholar] [CrossRef] [PubMed]
- Mulligan, A.A.; Lentjes, M.A.H.; Luben, R.N.; Wareham, N.J.; Khaw, K.-T. Changes in waist circumference and risk of all-cause and CVD mortality: Results from the European Prospective Investigation into Cancer in Norfolk (EPIC-Norfolk) cohort study. BMC Cardiovasc. Disord. 2019, 19, 238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Den Besten, G.; Van Eunen, K.; Groen, A.K.; Venema, K.; Reijngoud, D.-J.; Bakker, B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 2013, 54, 2325–2340. [Google Scholar] [CrossRef] [Green Version]
- Batterham, R.L.; Cowley, M.A.; Small, C.J.; Herzog, H.; Cohen, M.A.; Dakin, C.L.; Wren, A.M.; Brynes, A.E.; Low, M.J.; Ghatei, M.A.; et al. Gut hormone PYY(3-36) physiologically inhibits food intake. Nature 2002, 418, 650–654. [Google Scholar] [CrossRef] [PubMed]
- Lafiandra, D.; Riccardi, G.; Shewry, P.R. Improving cereal grain carbohydrates for diet and health. J. Cereal. Sci. 2014, 59, 312–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ludwig, D.S.; Hu, F.B.; Tappy, L.; Brand-Miller, J. Dietary carbohydrates: Role of quality and quantity in chronic disease. BMJ 2018, 361, k2340. [Google Scholar] [CrossRef] [Green Version]
- Yuan, C.; Spiegelman, D.; Rimm, E.B.; Rosner, B.A.; Stampfer, M.J.; Barnett, J.B.; Chavarro, J.E.; Rood, J.C.; Harnack, L.J.; Sampson, L.K.; et al. Relative Validity of Nutrient Intakes Assessed by Questionnaire, 24-Hour Recalls, and Diet Records as Compared With Urinary Recovery and Plasma Concentration Biomarkers: Findings for Women. Am. J. Epidemiol. 2018, 187, 1051–1063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Fox, C.S.; Troy, L.M.; McKeown, N.M.; Jacques, P.F. Longitudinal association of dairy consumption with the changes in blood pressure and the risk of incident hypertension: The Framingham Heart Study. Br. J. Nutr. 2015, 114, 1887–1899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Components of CQI | Score Range | Criteria for Minimum Score | Criteria for Maximum Score |
---|---|---|---|
Glycemic index | 1–5 | Highest quintile of glycemic index | Lowest quintile of glycemic index |
Dietary fiber intake (g/d) | 1–5 | Lowest quintile of dietary fiber intake | Highest quintile of dietary fiber intake |
Ratio of whole grain/total grain | 1–5 | Lowest quintile of the ratio | Highest quintile of the ratio |
Ratio of solid carbohydrates/total (solid + liquid) carbohydrates | 1–5 | Lowest quintile of the ratio | Highest quintile of the ratio |
Total index | 4–20 |
Baseline CQI Score | |||||
---|---|---|---|---|---|
Total | Q 14–9 | Q 210–12 | Q3 13–14 | Q4 15–20 | |
Characteristics 1 | |||||
n | 3101 | 701 | 1009 | 620 | 771 |
Age | 54.9 (0.17) | 54.2 (0.36) | 54.6 (0.3) | 55.1 (0.38) | 55.9 (0.34) |
Sex (%M) | 45.7 | 51.5 | 49.5 | 44.0 | 36.9 |
Weight (kg) | 76.9 (0.25) | 77.0 (0.52) | 77.0 (0.44) | 76.5 (0.56) | 77.0 (0.50) |
WC (cm) | 92.6 (0.23) | 93.5 (0.48) | 92.7 (0.40) | 91.5 (0.51) | 92.7 (0.46) |
BMI (kg/m2) | 27.2 (0.08) | 27.3 (0.18) | 27.2 (0.15) | 27.0 (0.19) | 27.1 (0.17) |
PAI score | 35.0 (0.11) | 35.1 (0.23) | 34.8 (0.20) | 34.9 (0.25) | 35.0 (0.23) |
Current smoker (%) | 18.0 | 25.8 | 21.4 | 13.8 | 10.0 |
Hypertension (%) | 46.6 | 49.3 | 47.7 | 44.8 | 44.2 |
BP medication (%) | 17.8 | 20.8 | 16.3 | 17.3 | 17.3 |
Lipid medication (%) | 7.6 | 9.5 | 6.9 | 7.1 | 7.3 |
Menopausal (%) | 36.2 | 36.9 | 35.6 | 35.6 | 36.6 |
Dietary Intakes 2 | |||||
Total energy (kcal/d) | 1870 (10.8) | 1728 (22.3) | 1813 (18.6) | 1907 (23.7) | 2045 (21.3) |
Carbohydrate (% kcal/d) | 50.9 (0.20) | 51.6 (0.30) | 49.8 (0.30) | 51.0 (0.30) | 51.9 (0.30) |
Fat (% kcal/d) | 29.9 (0.11) | 30.2 (0.24) | 30.7 (0.20) | 29.7 (0.25) | 28.8 (0.23) |
Protein (% kcal/d) | 16.8 (0.06) | 15.4 (0.12) | 16.8 (0.1) | 17.1 (0.13) | 17.8 (0.11) |
Total carbohydrate (g/d) | 238.9 (0.75) | 242.4 (1.59) | 235.1 (1.32) | 237.8 (1.68) | 241.7 (1.53) |
CQI score | 12.1 (0.06) | 7.5 (0.04) | 11.1 (0.03) | 13.5 (0.04) | 16.4 (0.04) |
Total fiber (g/d) | 18.2 (0.11) | 13.8 (0.19) | 16.7 (0.15) | 19.2 (0.2) | 23.2 (0.18) |
Whole grain (svg/d) | 1.0 (0.02) | 0.4 (0.03) | 0.8 (0.03) | 1.1 (0.03) | 1.7 (0.03) |
Refined grain (svg/d) | 3.0 (0.03) | 3.5 (0.05) | 3.4 (0.05) | 3.1 (0.06) | 2.5 (0.05) |
Fruit (svg/d) | 2.1 (0.03) | 1.8 (0.05) | 2.0 (0.04) | 2.2 (0.06) | 2.6 (0.05) |
Vegetables (svg/d) | 2.8 (0.03) | 2.1 (0.06) | 2.7 (0.05) | 3.1 (0.06) | 3.9 (0.06) |
SSBs (svg/d) | 1.3 (0.02) | 2.1 (0.04) | 1.3 (0.03) | 1.0 (0.04) | 0.6 (0.04) |
Total alcohol (g/d) | 10.9 (0.28) | 10.8 (0.59) | 10.9 (0.49) | 11.3 (0.62) | 10.8 (0.57) |
SFA (% kcal/d) | 10.4 (0.05) | 10.8 (0.11) | 10.7 (0.09) | 10.2 (0.11) | 9.7 (0.10) |
GI | Total Fiber | Whole Grain: Total Grain | Solid: Total Carbohydrate | |
---|---|---|---|---|
CQI | ||||
r | −0.55 | 0.62 | 0.56 | 0.60 |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
GI | ||||
r | −0.10 | −0.22 | −0.32 | |
p-value | <0.0001 | <0.0001 | <0.0001 | |
Total Fiber | ||||
r | 0.38 | 0.16 | ||
p-value | <0.0001 | <0.0001 | ||
Whole grain: total grain | ||||
r | 0.20 | |||
p-value | <0.0001 |
Carbohydrate | Total Fiber | Cereal Fiber | Vegetable Fiber | Fruit Fiber | Carbohydrate: Total Fiber | Carbohydrate: Cereal Fiber | |
---|---|---|---|---|---|---|---|
CQI | |||||||
r | 0.07 | 0.67 | 0.40 | 0.50 | 0.47 | −0.69 | −0.39 |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Carbohydrate | |||||||
r | 0.44 | 0.38 | 0.11 | 0.47 | 0.11 | −0.05 | |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Total fiber | |||||||
r | 0.59 | 0.67 | 0.71 | −0.79 | −0.45 | ||
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | ||
Cereal fiber | |||||||
r | 0.15 | 0.26 | −0.39 | −0.90 | |||
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |||
Vegetable fiber | |||||||
r | 0.39 | −0.67 | −0.11 | ||||
p-value | <0.0001 | <0.0001 | <0.0001 | ||||
Fruit fiber | |||||||
r | −0.47 | −0.10 | |||||
p-value | <0.0001 | <0.0001 | |||||
Carbohydrate: total fiber | |||||||
r | 0.46 | ||||||
p-value | <0.0001 |
Energy-Adjusted Quartiles | |||||
---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | p-Trend | |
CQI 1 | |||||
n (observations) | 2263 | 2263 | 2264 | 2263 | |
Median (range) | 8.5 (3.7–9.9) | 11.0 (9.9–12.0) | 13.0 (12.0–14.0) | 15.5 (14.0–21.2) | |
Model 1 | 2.11 (0.10) | 2.28 (0.10) | 2.31 (0.10) | 1.84 (0.10) | 0.08 |
Model 2 | 2.11 (0.10) | 2.29 (0.10) | 2.32 (0.10) | 1.88 (0.10) | 0.15 |
Model 3 | 2.39 (0.11) | 2.44 (0.11) | 2.47 (0.11) | 2.04 (0.11) | 0.04 |
Carbohydrate: total fiber | |||||
n | 2263 | 2263 | 2264 | 2263 | |
Median (range) | 9.6 (4.2–10.6) | 11.5 (10.6–12.3) | 13.3 (12.3–14.5) | 16.5 (14.5–55.0) | |
Model 1 | 1.84 (0.09) | 2.16 (0.10) | 2.33 (0.11) | 2.26 (0.11) | 0.003 |
Model 2 | 1.87 (0.10) | 2.19 (0.10) | 2.32 (0.11) | 2.27 (0.11) | 0.007 |
Model 3 | 2.02 (0.10) | 2.32 (0.11) | 2.48 (0.11) | 2.58 (0.12) | <0.001 |
Carbohydrate: cereal fiber | |||||
n | 2263 | 2263 | 2264 | 2263 | |
Median (range) | 29.7 (9.2–35.3) | 40.4 (35.3–45.6) | 51.6 (45.6–60.0) | 75.3 (60.0–7885.1) | |
Model 1 | 1.90 (0.09) | 2.03 (0.10) | 2.37 (0.11) | 2.28 (0.11) | 0.003 |
Model 2 | 1.91 (0.10) | 2.04 (0.10) | 2.39 (0.11) | 2.31 (0.11) | 0.003 |
Model 3 | 2.10 (0.11) | 2.22 (0.11) | 2.56 (0.11) | 2.49 (0.12) | 0.007 |
Energy-Adjusted Quartiles | |||||
---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | p-Trend | |
Total carbohydrate | |||||
n (observations) | 2263 | 2263 | 2264 | 2263 | |
Median (range) | 180 (36–197) | 210 (197–220) | 230 (220–242) | 258 (242–366) | |
Model 1 | 2.14 (0.10) | 2.09 (0.10) | 2.07 (0.10) | 2.22 (0.11) | 0.70 |
Model 2 | 2.05 (0.13) | 2.08 (0.10) | 2.12 (0.11) | 2.34 (0.13) | 0.19 |
Model 3 | 2.13 (0.14) | 2.26 (0.11) | 2.37 (0.11) | 2.59 (0.14) | 0.05 |
Total fiber | |||||
n | 2263 | 2263 | 2264 | 2263 | |
Median (range) | 12.8 (5.6–14.7) | 16.2 (14.7–17.6) | 19.2 (17.6–21.1) | 23.9 (21.1–54.1) | |
Model 1 | 2.40 (0.10) | 2.24 (0.10) | 2.16 (0.10) | 1.75 (0.10) | <0.001 |
Model 2 | 2.51 (0.12) | 2.29 (0.11) | 2.16 (0.10) | 1.68 (0.11) | <0.001 |
Model 3 | 2.72 (0.13) | 2.53 (0.11) | 2.34 (0.11) | 1.80 (0.12) | <0.001 |
Cereal fiber | |||||
n | 2263 | 2263 | 2264 | 2263 | |
Median (range) | 3.0 (0.4–3.8) | 4.4 (3.8–5.0) | 5.7 (5.0–6.7) | 8.0 (6.7–33.8) | |
Model 1 | 2.30 (0.11) | 2.32 (0.10) | 2.13 (0.10) | 1.81 (0.10) | <0.001 |
Model 2 | 2.38 (0.11) | 2.36 (0.11) | 2.14 (0.10) | 1.79 (0.10) | <0.001 |
Model 3 | 2.54 (0.12) | 2.53 (0.11) | 2.32 (0.11) | 2.02 (0.11) | 0.001 |
Vegetable fiber | |||||
n | 2263 | 2263 | 2264 | 2263 | |
Median (range) | 2.3 (0.0–2.9) | 3.5 (2.9–4.0) | 4.7 (4.0–5.4) | 6.7 (5.4–27.6) | |
Model 1 | 2.16 (0.10) | 2.15 (0.10) | 2.13 (0.10) | 2.07 (0.10) | 0.498 |
Model 2 | 2.11 (0.11) | 2.18 (0.10) | 2.20 (0.10) | 2.18 (0.10) | 0.686 |
Model 3 | 2.34 (0.12) | 2.40 (0.11) | 2.40 (0.11) | 2.27 (0.11) | 0.584 |
Fruit fiber | |||||
n | 2263 | 2263 | 2264 | 2263 | |
Median (range) | 1.2 (0.0–1.9) | 2.6 (1.9–3.3) | 4.0 (3.3–4.9) | 6.3 (4.9–24.7) | |
Model 1 | 2.36 (0.10) | 2.10 (0.10) | 2.16 (0.10) | 1.88 (0.10) | 0.002 |
Model 2 | 2.38 (0.11) | 2.14 (0.10) | 2.21 (0.10) | 1.93 (0.11) | 0.014 |
Model 3 | 2.68 (0.12) | 2.4 (0.11) | 2.34 (0.11) | 1.98 (0.12) | <0.001 |
Energy-Adjusted Quartiles of Fiber Intake | |||||
---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | p-Trend | |
<45% E from carbohydrates | |||||
n | 1090 | 691 | 402 | 195 | |
Median (range) | 12.6 (5.8–14.7) | 16.1 (14.7–17.6) | 19.0 (17.6–21.1) | 23.4 (21.1–45.7) | |
Model 1 | 2.19 (0.14) | 2.01 (0.18) | 1.76 (0.22) | 0.27 (0.31) | <0.001 |
Model 2 | 2.20 (0.15) | 2.04 (0.18) | 1.80 (0.23) | 0.31 (0.33) | <0.001 |
Model 3 | 2.20 (0.16) | 2.20 (0.18) | 1.97 (0.23) | 0.36 (0.33) | <0.001 |
(45% to 55%) E from carbohydrates | |||||
n | 895 | 1214 | 1278 | 1040 | |
Median (range) | 13.1 (6.3–14.7) | 16.3 (14.7–17.6) | 19.2 (17.6–21.1) | 23.3 (21.1–46.8) | |
Model 1 | 2.41 (0.18) | 2.18 (0.15) | 2.13 (0.14) | 1.70 (0.15) | 0.002 |
Model 2 | 2.49 (0.19) | 2.20 (0.15) | 2.16 (0.14) | 1.64 (0.16) | 0.001 |
Model 3 | 2.75 (0.20) | 2.40 (0.16) | 2.29 (0.15) | 1.82 (0.17) | 0.001 |
≥ 55% E from carbohydrates | |||||
n | 278 | 358 | 584 | 1028 | |
Median (range) | 12.7 (5.6–14.7) | 16.4 (14.7–17.6) | 19.4 (17.6–21.1) | 24.8 (21.1–54.1) | |
Model 1 | 2.59 (0.35) | 2.90 (0.31) | 2.66 (0.23) | 2.33 (0.17) | 0.162 |
Model 2 | 2.36 (0.37) | 2.85 (0.32) | 2.61 (0.23) | 2.48 (0.18) | 0.778 |
Model 3 | 3.04 (0.38) | 3.38 (0.32) | 3.08 (0.24) | 2.69 (0.19) | 0.137 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sawicki, C.M.; Lichtenstein, A.H.; Rogers, G.T.; Jacques, P.F.; Ma, J.; Saltzman, E.; McKeown, N.M. Comparison of Indices of Carbohydrate Quality and Food Sources of Dietary Fiber on Longitudinal Changes in Waist Circumference in the Framingham Offspring Cohort. Nutrients 2021, 13, 997. https://doi.org/10.3390/nu13030997
Sawicki CM, Lichtenstein AH, Rogers GT, Jacques PF, Ma J, Saltzman E, McKeown NM. Comparison of Indices of Carbohydrate Quality and Food Sources of Dietary Fiber on Longitudinal Changes in Waist Circumference in the Framingham Offspring Cohort. Nutrients. 2021; 13(3):997. https://doi.org/10.3390/nu13030997
Chicago/Turabian StyleSawicki, Caleigh M., Alice H. Lichtenstein, Gail T. Rogers, Paul F. Jacques, Jiantao Ma, Edward Saltzman, and Nicola M. McKeown. 2021. "Comparison of Indices of Carbohydrate Quality and Food Sources of Dietary Fiber on Longitudinal Changes in Waist Circumference in the Framingham Offspring Cohort" Nutrients 13, no. 3: 997. https://doi.org/10.3390/nu13030997
APA StyleSawicki, C. M., Lichtenstein, A. H., Rogers, G. T., Jacques, P. F., Ma, J., Saltzman, E., & McKeown, N. M. (2021). Comparison of Indices of Carbohydrate Quality and Food Sources of Dietary Fiber on Longitudinal Changes in Waist Circumference in the Framingham Offspring Cohort. Nutrients, 13(3), 997. https://doi.org/10.3390/nu13030997