Assessment of Inflammatory Markers in Children with Cow’s Milk Allergy Treated with a Milk-Free Diet
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Methods
2.3. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fiocchi, A.; Brozek, J.; Schünemann, H.; Bahna, S.L.; von Berg, A.; Beyer, K.; Bozzola, M.; Bradsher, J.; Compalati, E.; Ebisawa, M.; et al. World Allergy Organization (WAO) Diagnosis and Rationale for Action against Cow’s Milk Allergy (DRACMA) Guidelines. Pediatr. Allergy Immunol. 2010, 21 (Suppl. 21), 1–125. [Google Scholar] [CrossRef] [Green Version]
- Sicherer, S.H.; Sampson, H.A. Food Allergy: A Review and Update on Epidemiology, Pathogenesis, Diagnosis, Prevention, and Management. Allergy Clin. Immunol. 2018, 141, 41–58. [Google Scholar] [CrossRef] [Green Version]
- Koletzko, B.; Shamir, R.; Ashwell, M. Early Nutrition Academy (ENA); European Society for Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN). Quality and safety aspects of infant nutrition. Ann. Nutr. Metab. 2012, 60, 179–184. [Google Scholar] [CrossRef] [Green Version]
- Katz, Y.; Rajuan, N.; Goldberg, M.R.; Eisenberg, E.; Heyman, E.; Cohen, A.; Leshno, M. Early exposure to cow’s milk protein is protective against IgE-mediated cow’s milk protein allergy. J. Allergy Clin. Immunol. 2010, 126, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Hochwallner, H.; Schulmeister, U.; Swoboda, I.; Spitzauer, S.; Valenta, R. Cow’s milk allergy: From allergens to new forms of diagnosis, therapy and prevention. Methods 2014, 66, 22–33. [Google Scholar] [CrossRef]
- Licari, A.; Manti, S.; Marseglia, A.; Brambilla, I.; Votto, M.; Castagnoli, R.; Leonardi, S.; Marseglia, G.L. Food Allergies: Current and future treatments. Medicina 2019, 55, 120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Auria, E.; Venter, C. Precision medicine in cow’s milk allergy. Curr. Opin. Allergy Clin. Immunol. 2020, 20, 233–241. [Google Scholar] [CrossRef]
- Hutchins, A.P.; Diez, D.; Miranda-Saavedra, D. The IL-10/STAT3-mediated anti-inflammatory response: Recent developments and future challenges. Brief. Funct. Genom. 2013, 12, 489–498. [Google Scholar] [CrossRef] [Green Version]
- D’Apolito, M.; Campanozzi, A.; Giardino, I.; Pettoello-Mantovani, M. Levels of inflammatory cytokines from peripheral blood mononuclear cells of children with cow’s milk protein allergy. Turk. Pediatr. Ars. 2017, 52, 208–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savilahti, E.M.; Karinen, S.; Salo, H.M.; Klemetti, P.; Saarinen, K.M.; Klemola, T.; Kuitunen, M.; Hautaniemi, S.; Savilahti, E.; Vaarala, O. Combined T regulatory cell and Th2 expression profile identifies children with cow’s milk allergy. Clin. Immunol. 2010, 136, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Kershaw, E.E.; Flier, J.S. Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab. 2004, 89, 2548–2556. [Google Scholar] [CrossRef] [PubMed]
- Weidinger, C.; Ziegler, J.F.; Letizia, M.; Schmidt, F.; Siegmund, B. Adipokines and their role in intestinal inflammation. Front. Immunol. 2018, 9, 1974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouchi, N.; Parker, J.L.; Lugus, J.J.; Walsh, K. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 2011, 11, 85–97. [Google Scholar] [CrossRef]
- Sabat, R.; Wolk, K.; Loyal, L.; Döcke, W.D.; Ghoreschi, K. T cell pathology in skin inflammation. Semin. Immunopathol. 2019, 41, 359–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mocan Hognogi, L.D.; Goidescu, C.M.; Farcaş, A.D. Usefulness of the adipokines as biomarkers of ischemic cardiac dysfunction. Dis. Markers 2018, 2018, 8. [Google Scholar] [CrossRef]
- Ahima, R.S.; Flier, J.S. Leptin. Annu. Rev. Physiol. 2000, 62, 413–437. [Google Scholar] [CrossRef] [Green Version]
- Gateva, A.; Assyov, Y.; Tsakova, A.; Kamenov, Z. Classical (adiponectin, leptin, resistin) and new (chemerin, vaspin, omentin) adipocytokines in patients with prediabetes. Horm. Mol. Biol. Clin. Investig. 2018, 34. [Google Scholar] [CrossRef]
- Banerjee, R.R.; Lazar, M.A. Resistin: Molecular history and prognosis. J. Mol. Med. 2003, 81, 218–226. [Google Scholar] [CrossRef]
- Patel, S.D.; Rajala, M.W.; Rossetti, L.; Scherer, P.E.; Shapiro, L. Disulfide-dependent multimeric assembly of resistin family hormones. Science 2004, 304, 1154–1158. [Google Scholar] [CrossRef]
- Filkova, M.; Haluzik, M.; Gay, S.; Senolt, L. The role of resistin as a regulator of inflammation: Implications for various human pathologies. Clin. Immunol. 2009, 133, 157–170. [Google Scholar] [CrossRef] [Green Version]
- Pine, G.M.; Batugedara, H.M.; Nair, M.G. Here, there and everywhere: Resistin-like molecules in infection, inflammation, and metabolic disorders. Cytokine 2018, 110, 442–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roh, S.G.; Song, S.H.; Choi, K.C.; Katoh, K.; Wittamer, V.; Parmentier, M.; Sasaki, S. Chemerin—A new adipokine that modulates adipogenesis via its own receptor. Biochem. Biophys. Res. Commun. 2007, 362, 1013–1018. [Google Scholar] [CrossRef] [Green Version]
- Cash, J.L.; Hart, R.; Russ, A.; Dixon, J.P.; Colledge, W.H.; Doran, J.; Hendrick, A.G.; Carlton, M.B.; Greaves, D.R. Synthetic chemerin-derived peptides suppress inflammation through ChemR23. J. Exp. Med. 2008, 205, 767–775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goralski, K.B.; McCarthy, T.C.; Hanniman, E.A.; Zabel, B.A.; Butcher, E.C.; Parlee, S.D.; Muruganandan, S.; Sinal, C.J. Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism. J. Biol. Chem. 2007, 282, 28175–28188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helfer, G.; Wu, Q.F. Chemerin: A multifaceted adipokine involved in metabolic disorders. J. Endocrinol. 2018, 238, R79–R94. [Google Scholar] [CrossRef]
- Ferland, D.J.; Garver, H.; Contreras, G.A.; Fink, G.D.; Watts, S.W. Chemerin contributes to in vivo adipogenesis in a location-specific manner. PLoS ONE 2020, 15, e0229251. [Google Scholar] [CrossRef] [Green Version]
- Rourke, J.L.; Dranse, H.J.; Sinal, C.J. Towards an integrative approach to understanding the role of chemerin in human health and disease. Obes. Rev. 2013, 14, 245–262. [Google Scholar] [CrossRef]
- Abella, V.; Scotece, M.; Conde, J.; Gómez, R.; Lois, A.; Pino, J.; Gómez-Reino, J.J.; Lago, F.; Mobasheri, A.; Gualillo, O. The potential of lipocalin-2/NGAL as biomarker for inflammatory and metabolic diseases. Biomarkers 2015, 20, 565–571. [Google Scholar] [CrossRef] [Green Version]
- Chan, Y.K.; Sung, H.K.; Sweeney, G. Iron metabolism and regulation by neutrophil gelatinase-associated lipocalin in cardiomyopathy. Clin. Sci. 2015, 129, 851–862. [Google Scholar] [CrossRef]
- Choi, J.; Fujii, T.; Fujii, N. Elevated plasma neutrophil gelatinase-associated lipocalin level as a risk factor for anemia in patients with systemic inflammation. Biomed. Res. Int. 2016, 2016, 9195219. [Google Scholar] [CrossRef]
- Chakraborty, S.; Kaur, S.; Guha, S.; Surinder, K.; Batra, G.S. The multifaceted roles of neutrophil gelatinase associated lipocalin (NGAL) in inflammation and cancer. Biochim. Biophys. Acta 2012, 1826, 129–169. [Google Scholar] [CrossRef] [Green Version]
- Jo, Y.S.; Kwon, S.O.; Kim, J.; Kim, W.J. Neutrophil gelatinase-associated lipocalin as a complementary biomarker for the asthma-chronic obstructive pulmonary disease overlap. J. Thorac. Dis. 2018, 10, 5047–5056. [Google Scholar] [CrossRef]
- Rebalka, I.A.; Monaco, C.M.F.; Varah, N.E.; Berger, T.; D’Souza, D.M.; Zhou, S.; Mak, T.W.; Hawke, T.J. Loss of the adipokine lipocalin-2 impairs satellite cell activation and skeletal muscle regeneration. Am. J. Physiol. Cell Physiol. 2018, 315, C714–C721. [Google Scholar] [CrossRef] [PubMed]
- Kerkhoff, C.; Vogel, T.; Nacken, W.; Sopalla, C.; Sorg, C. Zinc binding reverses the calcium induced arachidonic acid–binding capacity of the S100A8/A9 protein complex. FEBS Lett. 1999, 460, 134–138. [Google Scholar] [CrossRef] [Green Version]
- Vaos, G.; Kostakis, I.D.; Zavras, N.; Chatzemichael, A. The role of calprotectin in pediatric disease. Biomed. Res. Int. 2013, 542363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calcaterra, V.; De Amici, M.; Leonard, M.M.; De Silvestri, A.; Pelizzo, G.; Buttari, N.; Michev, A.; Leggio, M.; Larizza, D.; Cena, H. Serum calprotectin level in children: Marker of obesity and its metabolic complications. Ann. Nutr. Metab. 2018, 73, 177–183. [Google Scholar] [CrossRef]
- Kruzliak, P.; Novák, J.; Novák, M.; Fodor, G.J. Role of calprotectin in cardiometabolic diseases. Cytokine Growth Factor Rev. 2014, 25, 67–75. [Google Scholar] [CrossRef]
- De Onis, M. World Health Organization Reference Curves. In The ECOG’s eBook on Child and Adolescent Obesity; Frelut, M.L., Ed.; WHO: Geneva, Switzerland, 2015. [Google Scholar]
- Jo, J.; Garssen, J.; Knippels, L.; Sandalova, E. Role of cellular immunity in cow’s milk allergy: Pathogenesis, tolerance induction, and beyond. Mediat. Inflamm. 2014, 2014, 249784. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, X.; Castillo, E.F.; Luo, Y.; Liu, M.; Yang, X.O. Leptin enhances TH2 and ILC2 responses in allergic airway disease. J. Biol. Chem. 2016, 291, 22043–22052. [Google Scholar] [CrossRef] [Green Version]
- Salmivesi, S.; Paassilta, M.; Huhtala, H.; Nieminen, R.; Moilanen, E.; Korppi, M. Changes in biomarkers during a six-month oral immunotherapy intervention for cow’s milk allergy. Acta Paediatr. 2016, 105, 1349–1354. [Google Scholar] [CrossRef]
- Dong, P.; Feng, J.J.; Yan, D.Y.; Lyu, Y.J.; Xu, X. Children with cow’s milk allergy following an elimination diet had normal growth but relatively low plasma leptin at age two. Acta Paediatr. 2018, 107, 1247–1252. [Google Scholar] [CrossRef] [PubMed]
- Mariani, F.; Roncucci, L. Chemerin/chemR23 axis in inflammation onset and resolution. Inflamm. Res. 2015, 64, 85–95. [Google Scholar] [CrossRef]
- Parolini, S.; Santoro, A.; Marcenaro, E.; Luini, W.; Massardi, L.; Facchetti, F.; Communi, D.; Parmentier, M.; Majorana, A.; Sironi, M.; et al. The role of chemerin in the colocalization of NK and dendritic cell subsets into inflamed tissues. Blood 2007, 109, 3625–3632. [Google Scholar] [CrossRef]
- Bozaoglu, K.; Bolton, K.; McMillan, J.; Zimmet, P.; Jowett, J.; Collier, G.; Walder, K.; Segal, D. Chemerin is a novel adipokine associated with obesity and metabolic syndrome. Endocrinology 2007, 148, 4687–4694. [Google Scholar] [CrossRef]
- Shang, J.; Wang, L.; Zhang, Y.; Zhang, S.; Ning, L.; Zhao, J.; Cheng, G.; Liu, D.; Xiao, J.; Zhao, Z. Chemerin/ChemR23 axis promotes inflammation of glomerular endothelial cells in diabetic nephropathy. J. Cell Mol. Med. 2019, 23, 3417–3428. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Lu, Y.; Li, N.; Li, P.; Wang, Z.; Ting, W.; Liu, X.; Wu, W. Chemerin: A potential regulator of inflammation and metabolism for chronic obstructive pulmonary disease and pulmonary rehabilitation. Biomed. Res. Int. 2020, 2020, 4574509. [Google Scholar] [CrossRef]
- Zhou, Q.; Fu, Y.; Hu, L.; Li, Q.; Jin, M.; Jiang, E. Relationship of circulating chemerin and omentin levels with Th17 and Th9 cell immune responses in patients with asthma. J. Asthma 2018, 55, 579–587. [Google Scholar] [CrossRef]
- Jung, Y.H.; Han, D.; Shin, S.H.; Kim, E.K.; Kim, H.S. Proteomic identification of early urinary-biomarkers of acute kidney injury in preterm infants. Sci. Rep. 2020, 10, 4057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kato, S.; Inui, N.; Hozumi, H.; Inoue, Y.; Yasui, H.; Karayama, M.; Kono, M.; Suzuki, Y.; Furuhashi, K.; Enomoto, N.; et al. Neutrophil gelatinase-associated lipocalin in patients with sarcoidosis. Respir. Med. 2018, 138S, S20–S23. [Google Scholar] [CrossRef]
- Akelma, A.Z.; Kanburoglu, M.K.; Cizmeci, M.N.; Mete, E.; Catal, F.; Tufan, N. Level of serum neutrophil gelatinase-associated lipocalin in childhood asthma. Allergol. Immunopathol. 2015, 43, 142–146. [Google Scholar] [CrossRef]
- Nacaroglu, H.T.; Gayret, O.B.; Erol, M.; Buke, O.; Zengi, O.; Tasdemir, M.; Tasdemir, Z.; Yigit, O. Biomarkers of airway and systemic inflammation in obese asthmatic paediatric patients. Allergol. Immunopathol. 2017, 45, 534–540. [Google Scholar] [CrossRef]
- Goetz, D.H.; Holmes, M.A.; Borregaard, N.; Bluhm, M.E.; Raymond, K.N.; Strong, R.K. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol. Cell 2002, 10, 1033–1043. [Google Scholar] [CrossRef]
- Wang, J.; Lv, H.; Luo, Z.; Mou, S.; Liu, J.; Liu, C.; Deng, S.; Jiang, Y.; Lin, J.; Wu, C.; et al. Plasma YKL-40 and NGAL are useful in distinguishing ACO from asthma and COPD. Respir. Res. 2018, 19, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwamoto, H.; Gao, J.; Koskela, J.; Kinnula, V.; Kobayashi, H.; Laitinen, T.; Mazur, W. Differences in plasma and sputum biomarkers between COPD and COPD-asthma overlap. Eur. Respir. J. 2014, 43, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Lee, H.W.; Suk, K. Increased plasma levels of lipocalin2 in mild cognitive impairment. J. Neurol. Sci. 2011, 305, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Machahua, C.; Guler, S.A.; Horn, M.P.; Planas-Cerezales, L.; Montes-Worboys, A.; Geiser, T.K.; Molina-Molina, M.; Funke-Chambour, M. Serum calprotectin as new biomarker for disease severity in idiopathic pulmonary fibrosis: A cross-sectional study in two independent cohorts. BMJ Open Respir. Res. 2021, 8, e000827. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.Y.; Hong, J.; Lee, P.H.; Lee, J.; Park, S.W.; Kim, D.; Jang, A.S. Serum calprotectin is a potential marker in patients with asthma. J. Korean Med. Sci. 2020, 35, e362. [Google Scholar] [CrossRef]
- Oosterwijk, M.M.; Bakker, S.J.L.; Nilsen, T.; Navis, G.; Laverman, G.D. Determinants of increased serum calprotectin in patients with type 2 diabetes mellitus. Int. J. Mol. Sci. 2020, 21, 8075. [Google Scholar] [CrossRef] [PubMed]
- Fukunaga, S.; Kuwaki, K.; Mitsuyama, K.; Takedatsu, H.; Yoshioka, S.; Yamasaki, H.; Yamauchi, R.; Mori, A.; Kakuma, T.; Tsuruta, O.; et al. Detection of calprotectin in inflammatory bowel disease: Fecal and serum levels and immunohistochemical localization. Int. J. Mol. Med. 2018, 41, 107–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, L.-J.; Xie, X.-L.; Li, Y.; Deng, X.-Z. Current status of fecal calprotectin as a diagnostic or monitoring biomarker for cow’s milk protein allergy in children: A Scoping Review. World J. Pediatr. 2020. (ahead of print). [Google Scholar] [CrossRef] [PubMed]
Children with Cow’s Milk Allergy (n = 64) | Healthy Children (n = 30) | p | |
---|---|---|---|
Age (years) b | 4.3 (3.0–5.5) | 5.0 (3.8–5.6) | 0.164 |
Weight (kg) a | 16.7 ± 3.7 | 19.1 ± 3.9 | 0.016 |
Height (cm) a | 105.2 ± 11.4 | 111.2 ± 11.6 | 0.043 |
BMI (kg/m2) a | 14.9 ± 1.1 | 15.4 ± 1.7 | 0.281 |
BMI z-score a | −0.74 ± 0.76 | −0.62 ± 0.60 | 0.572 |
Parameters | Children with CMA (n = 64) | Healthy Children (n = 30) | p |
---|---|---|---|
IL-6 (pg/mL) b | 0.92 (0.51–1.32) | 0.71 (0.41–0.94) | 0.049 |
IL-10 (pg/mL) b | 1.8 (1.0–2.4) | 1.5 (1.0–1.8) | 0.075 |
TNF-α (pg/mL) a | 13.2 ± 3.7 | 9.5 ± 2.0 | 0.000 |
Leptin (ng/mL) b | 0.62 (0.28–0.81) | 0.81 (0.26–1.18) | 0.086 |
Resistin (ng/mL) b | 17.2 (12.5–22.3) | 14.3 (9.9–18.9) | 0.037 |
Chemerin (ng/mL) b | 100.8 (85.3–112.0) | 86.9 (80.4–97.7) | 0.005 |
NGAL (ng/mL) b | 90.6 (75.6–119.5) | 72.7 (64.7–77.6) | 0.000 |
Calprotectin (ng/mL) b | 903.3 (617.0–1167.7) | 1009.5 (770.1–1469.6) | 0.229 |
CRP (mg/L) b | 0.47 (0.11–0.50) | 0.41 (0.11–0.50) | 0.899 |
WBC (109/L) a | 7.62 ± 1.76 | 7.37 ± 1.91 | 0.572 |
Eosinophils (109/L) a | 0.47 ± 0.30 | 0.20 ± 0.08 | <0.001 |
Parameters | IgE-Mediated CMA Patients (n = 41) | Non-IgE-Mediated CMA Patients (n = 23) | p |
---|---|---|---|
IL-6 (pg/mL) b | 0.83 (0.50–1.62) | 0.70 (0.53–1.64) | 0.021 |
IL-10 (pg/mL) b | 1.78 (0.97–2.44) | 1.80 (1.28–2.41) | 0.548 |
TNF-α (pg/mL) a | 13.18 ± 3.38 | 13.13 ± 4.35 | 0.968 |
Leptin (ng/mL) b | 0.48 (0.27–0.75) | 0.40 (0.29–0.89) | 0.545 |
Resistin (ng/mL) b | 17.04 (12.52–22.12) | 17.46 (13.18–21.81) | 0.837 |
Chemerin (ng/mL) b | 96.42 (84.34–114.22) | 100.3 (87.49–109.88) | 0.417 |
NGAL (ng/mL) b | 94.08 (79.45–119.04) | 86.01 (74.32–118.42) | 0.516 |
Calprotectin (ng/mL) b | 994.1 (684.9–1188.1) | 774.9 (594.9–1000.7) | 0.339 |
CRP (mg/L) b | 0.20 (0.12–0.46) | 0.30 (0.16–0.83) | 0.120 |
WBC (109/L) a | 7.59 ± 1.78 | 7.67 ± 1.76 | 0.858 |
Eosinophils (109/L) a | 0.57 ± 0.29 | 0.27 ± 0.14 | <0.001 |
Cutaneous (n = 7) | Respiratory (n = 30) | Gastrointestinal (n = 12) | Mixed (n = 15) | |
---|---|---|---|---|
IL-6 (pg/mL) | 0.94 (0.89–1.41) | 0.99 (0.61–1.44) | 0.83 (0.51–1.34) | 0.87 (0.60–0.97) |
IL-10 (pg/mL) | 1.53 (0.68–2.58) | 1.57 (1.01–1.91) | 2.19 (1.19–2.54) * | 1.97 (1.33–2.80) |
TNF-α (pg/mL) | 13.70 ± 4.09 | 12.99 ± 2.48 | 13.64 ± 4.13 | 13.74 ± 3.70 |
Calprotectin (ng/mL) | 1250 (996–1480) | 941 (690–1075) * | 1140 (913–1293) | 1001 (747–1507) |
Chemerin (ng/mL) | 95.1 (92.5–103.2) | 96.4 (84.6–107.1) | 100.3 (85.4–116.4) | 107.1 (94.5–126.6) |
Resistin (ng/mL) | 14.2 (10.5–17.5) | 16.6 (11.9–20.5) | 13.1 (9.5–21.0) | 18.9 (14.8–22.2) |
NGAL (ng/mL) | 74.8 (49.2–87.8) | 91.5 (76.7–115.3) | 87.1 (75.2–113.3) | 93.5 (71.8–119.8) * |
Leptin (ng/mL) | 0.5 (0.4–0.7) | 0.4 (0.3–0.7) | 0.3 (0.2–0.6) | 0.7 (0.4–0.8) |
Duration of Diet 6–12 Months (n = 11) | Duration of Diet 13–24 Months (n = 17) | Duration of Diet >24 Months (n = 36) | |
---|---|---|---|
IL-6 (pg/mL) | 0.56 (0.31–0.78) | 0.83 (0.50–0.99) | 1.01 (0.58–1.57) |
IL-10 (pg/mL) | 2.44 (1.97–3.03) | 1.84 (0.89–2.36) | 1.56 (1.04–1.97) |
TNF-α (pg/mL) | 13.3 ± 2.7 | 13.0 ± 3.6 | 13.4 ± 3.8 |
Calprotectin (ng/mL) | 888 (648–1229) | 788 (561–1055) | 966 (707–1168) |
Chemerin (ng/mL) | 98.8 (88.0–116.9) | 94.9 (86.7–107.0) | 98.7 (86.3–113.1) |
Resistin (ng/mL) | 15.6 (14.2–23.7) | 18.1 (11.8–23.3) | 18.9 (12.5–25.7) |
NGAL (ng/mL) | 96.6 (79.9–136.5) | 90.4 (75.7–119.3) | 90.6 (80.4–108.8) |
Leptin (ng/mL) | 0.38 (0.32–0.51) | 0.40 (0.26–1.02) | 0.63 (0.29–0.94) |
IL-6 | IL-10 | TNF-α | Calprotectin | |||||
---|---|---|---|---|---|---|---|---|
r | p | r | p | r | p | r | p | |
Children with cow’s milk allergy (n = 64): | ||||||||
CRP | 0.056 | 0.666 | 0.572 | 0.005 | 0.127 | 0.325 | −0.117 | 0.388 |
WBC | −0.022 | 0.866 | 0.258 | 0.045 | 0.410 | 0.038 | 0.482 | 0.000 |
Healthy children (n = 30): | ||||||||
CRP | 0.215 | 0.199 | 0.188 | 0.403 | 0.085 | 0.912 | −0.059 | 0.827 |
WBC | 0.128 | 0.570 | 0.026 | 0.909 | 0.348 | 0.058 | 0.268 | 0.216 |
Leptin | Resistin | Chemerin | NGAL | |||||
---|---|---|---|---|---|---|---|---|
r | p | r | p | r | p | r | p | |
Children with cow’s milk allergy (n = 64): | ||||||||
CRP | 0.209 | 0.108 | 0.030 | 0.818 | 0.434 | 0.000 | −0.067 | 0.613 |
WBC | −0.180 | 0.168 | 0.060 | 0.641 | 0.145 | 0.262 | 0.388 | 0.002 |
Healthy children (n = 30): | ||||||||
CRP | −0.109 | 0.658 | 0.546 | 0.009 | 0.639 | 0.001 | 0.137 | 0.543 |
WBC | −0.558 | 0.013 | 0.565 | 0.006 | 0.486 | 0.022 | 0.269 | 0.126 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ambroszkiewicz, J.; Gajewska, J.; Chełchowska, M.; Rowicka, G. Assessment of Inflammatory Markers in Children with Cow’s Milk Allergy Treated with a Milk-Free Diet. Nutrients 2021, 13, 1057. https://doi.org/10.3390/nu13041057
Ambroszkiewicz J, Gajewska J, Chełchowska M, Rowicka G. Assessment of Inflammatory Markers in Children with Cow’s Milk Allergy Treated with a Milk-Free Diet. Nutrients. 2021; 13(4):1057. https://doi.org/10.3390/nu13041057
Chicago/Turabian StyleAmbroszkiewicz, Jadwiga, Joanna Gajewska, Magdalena Chełchowska, and Grażyna Rowicka. 2021. "Assessment of Inflammatory Markers in Children with Cow’s Milk Allergy Treated with a Milk-Free Diet" Nutrients 13, no. 4: 1057. https://doi.org/10.3390/nu13041057