Edible Insects versus Meat—Nutritional Comparison: Knowledge of Their Composition Is the Key to Good Health
Abstract
:1. Introduction
2. Materials and Methods
2.1. Edible Insects Species Selection
2.2. Meat Species Selection
2.3. Data Quality
2.4. Dietary Indicators
2.5. Nutritional Quality Index
2.6. Ethical Statement
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaneda, T.; Bietsch, K. World Population Data Sheet, 2020. Population Reference Bureau, pp. 3-21/15. Available online: http://www.prb.org/pdf15/2015-world-population-data-sheet_eng.pdf%0Ahttp://www.jstor.org/stble/1972177?origin=crossref (accessed on 29 March 2021).
- United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects: The 2017 Revision, Key Findings and Advance Tables; Working Paper No. ESA/P/WP/248; United Nations: New York, NY, USA, 2017. [Google Scholar]
- Worldometer 2020. Available online: http://www.worldometers.info/world-population/ (accessed on 29 March 2021).
- Alexandratos, N.; Bruinsma, J. World Agriculture Towards 2030/2050: The 2012 Revision; ESA Working Paper; FAO: Rome, Italy, 2012. [Google Scholar]
- Rumpold, B.A.; Oliver, K. Schluter, Potential and challenges of insects as an innovative source for food and feed production. Innov. Food Sci. Emerg. Technol. 2013, 17, 1–11. [Google Scholar] [CrossRef]
- Berardy, A.; Costello, C.; Seager, T. Life cycle assessment of soy protein isolate. In Proceedings of the International Symposium on Sustainable Systems and Technologies 3, Dearborn, MI, USA, 18–20 May 2015. [Google Scholar]
- Imathiu, S. Benefits and food safety concerns associated with consumption of edible insects. Benefits and food safety concerns associated with consumption of edible insects. NFS J. 2020, 18, 1–11. [Google Scholar] [CrossRef]
- Oonincx, D.G.A.B.; de Boer, I.J.M. Environmental Impact of the Production of Mealworms as a Protein Source for Humans–A Life Cycle Assessment. PLoS ONE 2012, 7, 51145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Huis, A.; Klunder, J.V.I.H.; Merten, E.; Halloran, A.; Vantomme, P. Edible insects. In Future Prospects for Food and Feed Security; Fao Forestry Papers; Food and Agriculture Organisation of the United Nations (FAO): Rome, Italy, 2013. [Google Scholar]
- De Gier, S.; Verhoeckx, K. Insect (food) allergy and allergens. Mol. Immunol. 2018, 100, 82–106. [Google Scholar] [CrossRef] [PubMed]
- Van Huis, A.; van Gurp, H.; Dicke, M. The Insect Cookbook. Food for a Sustainable Planet; Columbia University Press: New York, NY, USA, 2014. [Google Scholar] [CrossRef]
- Jongema, Y. LIST2017 avh.xls (wur.nl). List of edible insects of the world-WUR, 2017. Available online: https://www.wur.nl/en/Research-Results/Chair-groups/Plant-Sciences/Laboratory-of-Entomology/Edible-insects/Worldwide-species-list.htm (accessed on 29 December 2020).
- European Parliament and Council of the European Union. Regulation (EU) 2015/ 2283 of the European Parliament and of the Council of 25 November 2015 on novel foods, amending Regulation (EU) No 1169/2011 of the European Parliament and of the Council and repealing Regulation (EC) No 258/97 of the European Parliam. Off. J. Eur. Union 2015, 327, 1–22. [Google Scholar]
- EFSA Scientific Committee. Risk profile related to production and consumption of insects as food and feed. EFSA J. 2015, 13, 4257. [Google Scholar]
- EFSA NDA Panel (EFSA Panel on Nutrition, Novel Foods and Food Allergens); Turck, D.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Kearney, J.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; et al. Scientific Opinion on the safety of dried yellow mealworm (Tenebrio molitor larva) as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J. 2021, 19, 1. [Google Scholar] [CrossRef]
- Wilkinson, K.; Muhlhausler, B.; Motley, C.; Crump, A.; Bray, H.; Ankeny, R. Australian consumers’ awareness and acceptance of insects as food. Insects 2018, 9, 44. [Google Scholar] [CrossRef] [Green Version]
- Orkusz, A.; Wolańska, W.; Harasym, J.; Piwowar, A.; Kapelko, M. Consumers’ Attitudes Facing Entomophagy: Polish Case Perspectives. Int. J. Environ. Res. Public Health 2020, 17, 2427. [Google Scholar] [CrossRef] [Green Version]
- Kromhout, D.; Spaaij, C.J.K.; de Goede, J.; Weggemans, R.M. The 2015 Dutch food-based dietary guidelines. Eur. J. Clin. Nutr. 2016, 70, 869–878. [Google Scholar] [CrossRef]
- Missmer, S.A.; Smith-Warner, S.A.; Spiegelman, D.; Yaun, S.S.; Adami, H.O.; Beeson, W.L.; van den Brandt, P.A.; Fraser, G.E.; Freudenheim, J.L.; Goldbohm, R.A.; et al. Meat and dairy food consumption and breast cancer: A pooled analysis of cohort studies. Int. J. Epidemiol. 2002, 31, 78–85. [Google Scholar] [CrossRef] [Green Version]
- Huxley, R.R.; Ansary-Moghaddam, A.; Clifton, P.; Czernichow, S.; Parr, C.L.; Woodward, M. The impact of dietary and lifestyle risk factors on risk of colorectal cancer: A quantitative overview of the epidemiological evidence. Int. J. Cancer 2009, 125, 171–180. [Google Scholar] [CrossRef]
- Spencer, E.A.; Key, T.J.; Appleby, P.N.; Dahm, C.C.; Keogh, R.H.; Fentiman, I.S.; Akbaraly, T.; Brunner, E.J.; Burley, V.; Cade, J.E.; et al. Meat, poultry and fish and risk of colorectal cancer: Pooled analysis of data from the UK dietary cohort consortium. Cancer Causes Control 2010, 21, 1417–1425. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.S.; Wong, M.Y.; Vogtmann, E.; Tang, R.Q.; Xie, L.; Yang, Y.S.; Wu, Q.J.; Zhang, W.; Xiang, Y.B. Meat consumption and risk of lung cancer: Evidence from observational studies. Ann. Oncol. 2012, 23, 3163–3170. [Google Scholar] [CrossRef]
- Feskens, E.J.; Sluik, D.; van Woudenbergh, G.J. Meat consumption, diabetes, and its complications. Curr. Diab. Rep. 2013, 13, 298–306. [Google Scholar] [CrossRef]
- Abete, I.; Romaguera, D.; Vieira, A.R.; Lopez de, M.A.; Norat, T. Association between total, processed, red and white meat consumption and all-cause, CVD and IHD mortality: A meta-analysis of cohort studies. Br. J. Nutr. 2014, 112, 762–775. [Google Scholar] [CrossRef]
- Belluco, S.; Losasso, C.; Maggioletti, M.; Alonzi, C.C.; Paoletti, M.G.; Ricci, A. Edible insects in a food safety and nutritional perspective: A critical review. Compr. Rev. Food Sci. F. 2013, 12, 296313. [Google Scholar] [CrossRef]
- Rumpold, B.A.; Schluter, O.K. Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res. 2013, 57, 802823. [Google Scholar] [CrossRef]
- Vantomme, P.; Munke, C.; Van Huis, A.; Van Itterbeeck, J.; Hakman, A. Insects to Feed the World: Summary Report; Wageningen University and Research Center: Wageingen, The Netherlands, 2014; Available online: http://www.fao.org/forestry/edibleinsects/86385/en/ (accessed on 29 December 2020).
- Payne, C.L.R.; Scarborough, P.; Rayner, M.; Nonaka, K. A systematic review of nutrient composition data available for twelve commercially available edible insects, and comparison with reference value. Trends Food Sci. Technol. 2016, 47, 69–77. [Google Scholar] [CrossRef]
- Payne, C.L.R.; Scarborough, P.; Rayner, M.; Nonaka, K. Are edible insects more or less ‘healthy’ than commonly consumed meats? A comparison using two nutrient profiling models developed to combat over- and undernutrition. Eur. J. Clin. Nutr. 2016, 70, 285–291. [Google Scholar] [CrossRef]
- Nowak, V.; Persijn, D.; Rittenschober, D.; Charrondiere, U.R. Review of food composition data for edible insects. Food Chem. 2016, 193, 39–46. [Google Scholar] [CrossRef]
- Rumpold, B.A.; Schluter, O.K. Nutrient composition of insects and their potential application in food and feed in Europe. Food Chain 2014, 4, 129–139. [Google Scholar] [CrossRef]
- Kulma, M.; Kouřimská, L.; Homolková, D.; Božik, M.; Plachý, V.; Vrabec, V. Effect of developmental stage on the nutritional value of edible insects. A case study with Blaberus craniifer and Zophobas morio. J. Food Compos. Anal. 2019, 92, 1–8. [Google Scholar] [CrossRef]
- De Smet, S.; Vossen, E. Meat: The balance between nutrition and health. A review. Meat Sci. 2016, 120, 145–156. [Google Scholar] [CrossRef]
- Bastide, N.M.; Pierre, F.H.F.; Corpet, D.E. Heme Iron from Meat and Risk of Colorectal Cancer: A Meta-analysis and a Review of the Mechanisms Involved. Cancer Prev. Res. 2011, 4, 177–184. [Google Scholar] [CrossRef] [Green Version]
- FAO INFOODS, 2013. FAO/INFOODS Databases. Food Composition Database for Biodiversity Version 2.1- BioFoodComp2.1; FAO: Rome, Italy, 2007. [Google Scholar]
- Thai food composition database 2015 (thai fcd 2015), Mahidol university, Institute of Nutrition. Available online: https://inmu2.mahidol.ac.th/thaifcd/search_food_by_name_result.php?food_id=1762&rk=(s) (accessed on 29 December 2020).
- Computer program Diet 6D, Independent Laboratory of Epidemiology and Nutrition Standards; Institute of Food and Nutrition: Warsaw, Poland, 2018.
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary disease seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Fernandez, M.; Ordonez, J.A.; Cambero, I.; Santos, C.; Pin, C.; De la Hoz, L. Fatty acid compositions of selected varieties of Spanish dry ham related to their nutritional implications. Food Chem. 2007, 101, 107–112. [Google Scholar] [CrossRef]
- Santos-Silva, J.; Bessa, R.J.B.; Santos-Silva, F. Effect of genotype, feeding system and slaughter weight on the quality of light lambs. II. Fatty acid composition of meat. Livest. Prod. Sci. 2002, 77, 187–194. [Google Scholar] [CrossRef]
- Gawęcki, J. (Ed.) Human Nutrition. Fundamentals of the Science of Nutrition; PWN: Warsaw, Poland, 2012; pp. 371–372. [Google Scholar]
- Jarosz, M.; Rychlik, E.; Stoś, K.; Charzewska, J. (Eds.) Nutrition Standards for the Population of Poland and Their Application; National Institute of Public Health–National Institute of Hygien: Warsaw, Poland, 2020. [Google Scholar]
- Finke, M.D. Complete Nutrient Content of four Species of commercialy availablefeeder insects fed enhanced diets during growth. Zoo Biol. 2015, 34, 554–564. [Google Scholar] [CrossRef] [PubMed]
- Finke, M.D. Complete nutrient composition of commercially raised invertebrates used as food for insectivores. Zoo Biol. 2002, 21, 269–285. [Google Scholar] [CrossRef]
- Finke, M.D. Estimate of chitin in raw whole insects. Zoo Biol. 2007, 26, 105–115. [Google Scholar] [CrossRef]
- Tang, Y.; Debnath, T.; Choi, E.-J.; Kim, Y.W.; Ryu, J.P.; Jang, S.; Chung, S.U.; Choi, Y.-J.; Kim, E.-K. Changes in the amino acid profiles and free radical scavenging activities of Tenebrio molitor larvae following enzymatic hydrolysis. PLoS ONE 2018, 13, e0196218. [Google Scholar] [CrossRef]
- Ritvanen, T.; Pastell, H.; Welling, A.; Raatikainen, M. The nitrogen-to-protein conversion factor of two cricket species - Acheta domesticus and Gryllus bimaculatus. Agri. Food Sci. 2020, 29, 1–5. [Google Scholar] [CrossRef]
- Siulapwa, N.; Mwambungu, A.; Lungu, E.; Sichilima, W. Nutritional Value of Four Common Edible Insects in Zambia. IJSR 2012, 3, 876–884. [Google Scholar]
- Rapatsa, M.M.; Moyo, N.A.G. Evaluation of Imbrasia belina meal as a fishmeal substitute in Oreochromis mossambicus diets: Growth performance, histological analysis and enzyme activity. Aquac. Rep. 2017, 5, 18–26. [Google Scholar] [CrossRef]
- Lategan, A. An assessment of the potential of edible insect consumption in reducing human nutritional deficiencies in South Africa while considering food and nutrition security aspects. Masters’s Thesis, Stellenbosch University, Department of Food Science, Faculty of Agri Sciences, Stellenbosch, South Africa, April 2019; p. 40. [Google Scholar]
- Listrat, A.; Lebret, B.; Louveau, I.; Astruc, T.; Bonnet, M.; Lefaucheur, L.; Picard, B.; Bugeon, J. How Muscle Structure and Composition Influence Meat and Flesh Quality. Sci. World J. 2016, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Park, S.J.; Beak, S.H.; Jung, D.J.S.; Kim, S.Y.; Jeong, I.H.; Piao, M.Y.; Kang, H.J.; Fassah, D.M.; Na, S.W.; Yoo, S.P.; et al. Genetic, management, and nutritional factors affecting intramuscular fat deposition in beef cattle–A review. Asian-Australas. J. Anim. Sci. 2018, 31, 1043–1061. [Google Scholar] [CrossRef] [Green Version]
- Kulma, M.; Plachý, V.; Kouřimská, L.; Vrabec, V.; Bubová, T.; Adámková, A.; Hučko, B. Nutritional value of three Blattodea species used as feed for animals. J. Anim. Feed Sci. 2016, 25, 354–360. [Google Scholar] [CrossRef]
- Naseema Begum, A.; Rakesh, B.; Sudhakara Rao, P.; Mamatha, M. Biochemical analysis of fat bodies of the popular silkworm breeds/hybrids and foundation crosses. Indian J. Anim. Res. 2014, 48, 134. [Google Scholar] [CrossRef]
- Ademolu, K.O.; Simbiat, E.S.; Concilia, I.I.; Adeyinka, A.A.; Abiodun, O.J.; Adebola, A.O. Gender variations in nutritive value of adult variegated grasshopper, Zonocerus variegatus (L) (Orthoptera: Pygomorphidae). J. Kans. Entomol. Soc. 2017, 90, 117–121. [Google Scholar] [CrossRef]
- Kulma, M.; Kouřimská, L.; Plachý, V.; Božik, M.; Adámková, A.; Vrabec, V. Effect of sex on the nutritional value of house cricket, Acheta domestica L. Food Chem. 2019, 272, 267–272. [Google Scholar] [CrossRef]
- Oonincx, D.G.A.B.; van der Poel, A.F.B. Effects of diet on the chemical composition of migratory locusts (Locusta migratoria). Zoo Biol. 2011, 30, 9–16. [Google Scholar] [CrossRef]
- Harsányi, E.; Juhász, C.; Kovács, E.; Huzsvai, L.; Pintér, R.; Fekete, G.; Varga, Z.I.; Aleksza, L.; Gyuricza, C. Evaluation of Organic Wastes as Substrates for Rearing Zophobas morio, Tenebrio molitor, and Acheta domesticus Larvae as Alternative Feed Supplements. Insects 2020, 11, 604. [Google Scholar] [CrossRef]
- Akhtar, Y.; Isman, M.B. Insects as an Alternative Protein Source. Proteins in Food Processing. In Food Science, Technology and Nutrition; Woodhead Publishing Series: Cambridge, UK, 2018; pp. 263–288. [Google Scholar]
- Zielinska, E.; Karas, M.; Baraniak, B. Comparison of functional properties of edible insects and protein preparations thereof. LWT-Food Sci. Technol. 2018, 91, 168–174. [Google Scholar] [CrossRef]
- Chen, X.; Feng, Y.; Chen, Z. Common edible insects and their utilization in China. Entomol. Res. 2009, 39, 299–303. [Google Scholar] [CrossRef]
- Reddiex, A.J.; Gosden, T.P.; Bonduriansky, R.; Chenoweth, S.F. Sex-Specific Fitness Consequences of Nutrient Intake and the Evolvability of Diet Preferences. Am Nat. 2013, 182, 91–102. [Google Scholar] [CrossRef] [Green Version]
- Meng, H.; Matthan, N.R.; Wu, D.; Li, L.; Rodríguez-Morató, J.; Cohen, R.; Galluccio, J.M.; Dolnikowski, G.G.; Lichtenstein, A.H. Comparison of diets enriched in stearic, oleic, and palmitic acids on inflammation, immune response, cardiometabolic risk factors, and fecal bile acid concentrations in mildly hypercholesterolemic postmenopausal women—Randomized crossover trial. Am. J. Clin. Nutr. 2019, 110, 305–315. [Google Scholar] [CrossRef]
- Shramko, V.S.; Polonskaya, Y.V.; Kashtanova, E.V.; Stakhneva, E.M.; Ragino, Y.I. The Short Overview on the Relevance of Fatty Acids for Human Cardiovascular Disorders. Biomolecules 2020, 10, 1127. [Google Scholar] [CrossRef]
- Hlais, S.; El-Bistami, D.; El Rahi, B.; Mattar, M.A.; Obeid, O. Combined Fish Oil and High Oleic Sunflower Oil Supplements Neutralize their Individual Effects on the Lipid Profile of Healthy Men. Lipids 2013, 48, 853–861. [Google Scholar] [CrossRef]
- Pérez-Martínez, P.; García-Ríos, A.; Delgado, F.G.; Jiménez, F.P.; López-Miranda, J. Mediterranean diet rich in olive oil and obesity, metabolic syndrome and diabetes mellitus. Curr. Pharm. Des. 2011, 17, 769–777. [Google Scholar] [CrossRef] [Green Version]
- Simopoulos, A.P.; De Meester, F. A balanced omega-6/omega-3 fatty acid ratio, cholesterol and coronary heart disease. World Rev. Nutr. Diet. 2009, 100, 110–121. [Google Scholar]
- Husted, K.S.; Bouzinova, E.V. The importance of n-6/n-3 fatty acids ratio in the major depressive disorder. Medicina 2016, 52, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Food, Nutrition, Physical Activity and the Prevention of Cancer: A Global Perspective; Word Cancer Research Fund/American Institute for Cancer Research: Washington DC, USA, 2007.
- Ekpo, K.E.; Onigbinde, A.O. Characterization of lipids in winged reproductives of the termite macrotermis bellicosus. Pak. J. Nutr. 2007, 6, 247–251. [Google Scholar] [CrossRef]
- Orkusz, A.; Michalczuk, M. Effect of Packaging Atmosphere on the Fatty Acid Profile of Intramuscular, Subcutaneous Fat, and Odor of Goose Meat. Poultry Sci. 2020, 99, 647–652. [Google Scholar] [CrossRef]
- Walters, M.E.; Esfandi, R.; Tsopmo, A. Potential of Food Hydrolyzed Proteins and Peptides to Chelate Iron or Calcium and Enhance their Absorption. Foods 2018, 7, 172. [Google Scholar] [CrossRef] [Green Version]
- Awuchi, C.G.I.; Ikechukwu, V.S.A.; Echeta, C.K. Health Benefits of Micronutrients (Vitamins and Minerals) and their Associated Deficiency Diseases: A Systematic Review. Int. J. Food Sci. 2020, 3, 1–32. [Google Scholar]
- Sunyecz, J. The use of calcium and vitamin D in the management of osteoporosis. Ther. Clin. Risk Manag. 2008, 4, 827–836. [Google Scholar] [CrossRef] [Green Version]
- Reid, I.; Bristow, R.; Bolland, S.M.; Mark, J. Review Article Calcium and Cardiovascular Disease. Endocrinol. Metab. 2017, 32, 339–349. [Google Scholar] [CrossRef]
- Elders, P.J.; Lips, P.; Netelenbos, J.C.; Van Ginkel, F.C.; Khoe, E.; Van der Vijgh, W.J.; Van der Stelt, P.F. Long-term effect of calcium supplementation on bone loss in perimenopausal women. J. Bone Miner. Res. 1994, 9, 963–970. [Google Scholar] [CrossRef]
- Beto, J. The Role of Calcium in Human Aging. Clin. Nutr. Res. 2015, 4, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Aspuru, K.; Villa, C.; Bermejo, F.; Herrero, P.; García López, S. Optimal management of iron deficiency anemia due to poor dietary intake. Int. J. Gen. Med. 2011, 4, 741–750. [Google Scholar] [CrossRef] [Green Version]
- Sturtzel, B.; Elmadfa, I.; Hermann, B.; Schippinger, W.; Ohrenberger, G. Effects of an enhanced iron dense foods offering in the daily meals served in geriatric institutions on measures of iron deficiency anemia. BMC Geriatr. 2018, 18, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Tardy, A.L.; Pouteau, E.; Marquez, D.; Yilmaz, C.; Scholey, A. Vitamins and Minerals for Energy, Fatigue and Cognition: A Narrative Review of the Biochemical and Clinical Evidence. Nutrients 2020, 12, 228. [Google Scholar] [CrossRef] [Green Version]
- McNulty, H.; Ward, M.; Hoey, L.; Hughes, C.F.; Pentieva, K. Addressing optimal folate and related B-vitamin status through the lifecycle: Health impacts and challenges. Proc. Nutr. Soc. 2019, 78, 449–462. [Google Scholar] [CrossRef]
- Sheng, L.T.; Jiang, Y.W.; Pan, X.F.; Feng, L.; Yuan, J.M.; Pan, A.; Koh, W.P. Association between Dietary Intakes of B Vitamins in Midlife and Cognitive Impairment in Late-Life: The Singapore Chinese Health Study. J. Gerontol. A Biol. Sci. Med. Sci. 2020, 75, 1222–1227. [Google Scholar] [CrossRef]
- Whitfield, K.C.; da Silva, L.; Feldman, F.; Singh, S.; McCann, A.; McAnena, L.; Ward, M.; McNulty, H.; Barr, S.I.; Green, T.J. Adequate vitamin B12 and riboflavin status from menus alone in residential care facilities in the Lower Mainland, British Columbia. Appl. Physiol. Nutr. Metab. 2019, 44, 414–419. [Google Scholar] [CrossRef] [PubMed]
- Vahid, F.; Hekmatdoost, A.; Mirmajidi, S. Association Between Index of Nutritional Quality and Nonalcoholic Fatty Liver Disease: The Role of Vitamin D and B Group. Am. J. Med. Sci. 2019, 358, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Thakur, K.; Tomar, S.K.; De, S. Lactic acid bacteria as a cell factory for riboflavin production. Microb. Biotechnol. 2016, 9, 441–451. [Google Scholar] [CrossRef]
- Ashoori, M.; Saedisomeolia, A. Riboflavin (vitamin B2) and oxidative stress: A review. Br. J. Nutr. 2014, 111, 1985–1991. [Google Scholar] [CrossRef] [Green Version]
- DiBaise, M.; Tarleton, S.M. Hair, Nails, and Skin: Differentiating Cutaneous Manifestations of Micronutrient Deficiency. Nutr. Clin. Pract. 2019, 34, 490–503. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Lee, S.A.; Kim, H.D. Periodontitis and intake of thiamine, riboflavin and niacin among Korean adults, Community. Dent. Oral Epidemiol. 2020, 48, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Calvo Romero, J.M.; Ramiro Lozano, J.M. Vitamin B12 in type 2 diabetic patients treated with metformin. Endocrinol. Nutr. 2012, 59, 487–490. [Google Scholar] [CrossRef] [PubMed]
- Serrano, J.; Gibril, F.; Yu, F.; Goebel, S.; Jensen, R. Gastric antisecretory drug-induced achlorhydria causes decreases in serum vitamin B12 levels in patients with zollinger-ellison syndrome (ZES): A prospective study. Gastroenterology 1998, 114, 282. [Google Scholar] [CrossRef]
Group of Insects | Order | Number of Species | Number of Recorded Edible Insect Species per Group in the World | Percent of Recorded Edible Insect Species per Group in the World |
---|---|---|---|---|
Beetles | Coleoptera | 370,000 | 659 | 31.2 |
Caterpillars | Lepidoptera | 165,000 | 362 | 17.1 |
Ants, Bees, Wasps | Hymenoptera | 198,000 | 321 | 15.2 |
Grasshoppers, Locusts, Crickets | Orthoptera | 20,000 | 278 | 13.2 |
True bugs | Hemiptera | 82,000 | 237 | 11.2 |
Dragonflies | Odonata | 5500 | 61 | 2.9 |
Termites | Isoptera | 2750 | 59 | 2.8 |
Flies | Diptera | 122,000 | 37 | 1.8 |
Cockroaches | Blattodea | 4000 | 37 | 1.8 |
Spiders | Araneae | 40,000 | 15 | 0.7 |
Others | - | 33,164 + | 45 | 2.1 |
Basic Nutrients Species | Energy (kcal/100 g) | Protein (g/100 g) | Fat (g/100 g) | Fiber (g/100 g) | Cholesterol (mg/100 g) | INQ Values for Protein * |
---|---|---|---|---|---|---|
Acheta domesticus A [28,29,44] | 153 | 20.5 | 5.06 | 4.6 | 98.5 | 6.73 |
Acheta domesticus L [30,43,44,45] | 137.5 | 15.4–17.5 | 4.4–7.9 | 2.3 | - | 6.13 |
Gryllus bimaculatus A [5,35,36] | 120 | 15.75 | 5.5–5.75 | 3.4 | 195 | 6.72 |
Tenebrio molitor A [5,30,45] | 178 | 24.13 | 6.14 | 7.4 | 6.94 | |
Tenebrio molitor L [29,43,45,46] | 247 | 25.0 | 12.91 | 3.52 | 51.3 | 5.18 |
Zophobas morio L [43] | 206.9 | 18.6 | 14.4 | 3.78 | 45 | 4.60 |
Gonimbrasia belina L [28,35] | 161 | 35.2 | 15.2 | - | - | 11.20 |
Bombyx mori L [5,35,45] | 171.27–229 | 17.9–23.1 | 4.26–5.0 | 1.0–22.22 | - | 5.72 |
Pyralidae L [35,43,44,45] | 274.7 | 16.1 | 24.9 | 2.1–3.4 | 75.3 | 3.00 |
Mutton leg | 196.56 | 15.12 | 15.12 | - | 65.52 | 3.94 |
Veal leg | 85.32 | 15.72 | 2.45 | - | 56.09 | 9.44 |
Horse meat | 109 | 21.5 | 2.5 | - | 75 | 10.10 |
Pork shoulder | 13.2 | 16.89 | 7.05 | - | 50.02 | 6.59 |
Beef sirloin | 112 | 20.1 | 3.5 | - | 59 | 9.19 |
Rabbit carcass | 123.24 | 16.59 | 6.32 | - | 51.35 | 6.89 |
Goose carcass | 140.63 | 5.78 | 13.04 | - | 32.8 | 2.11 |
Duck carcass | 199.04 | 8.64 | 18.30 | - | 48.64 | 2.22 |
Turkey breast | 83 | 19.2 | 0.7 | - | 49 | 11.85 |
Turkey drumstick | 100 | 16.6 | 3.7 | - | 81 | 8.50 |
Chicken breast | 98 | 21.5 | 1.3 | - | 58 | 11.24 |
Chicken drumstick | 125 | 17.8 | 6 | - | 84 | 7.29 |
Essential Amino Acids | Non-Essential Amino Acids | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Species | Ile | Leu | Lys | Mth | Tryp | Phe | His | Thre | Val | Arg | Cys | Tyr | Ala | Aa | Ga | Gly | Pro | Ser |
Acheta domesticus A [44,47] | 940 | 2050 | 1100 | 300 | 130 | 650 | 480 | 740 | 1070 | 1250 | 170 | 1000 | 1800 | 1720 | 2150 | 1040 | 1150 | 1020 |
Acheta domesticus L [43,45] | 710 | 1270 | 1090 | 274 | 144 | 587 | 450 | 680 | 1050 | 1360 | 160 | 1100 | 1770 | 1390 | 2050 | 1060 | 1070 | 750 |
Gryllus bimaculatus A [47] | 920 | 1650 | 1140 | 350 | 220 | 740 | 520 | 810 | 1360 | 1140 | 160 | 1170 | 1930 | 1970 | 2440 | 1240 | 1250 | 1050 |
Tenebrio molitor A [44] | 1030 | 1960 | 1050 | 300 | 260 | 620 | 680 | 810 | 1500 | 1020 | 140 | 790 | 1810 | 1660 | 2280 | 2000 | 1500 | 980 |
Tenebrio molitor L [28,43,44] | 835 | 1400 | 1070 | 400 | 216 | 654 | 559 | 770 | 1280 | 1380 | 163 | 1370 | 1640 | 1520 | 2130 | 1040 | 1300 | 960 |
Zophobas mori L [35,43] | 881 | 1360 | 1070 | 255 | 203 | 740 | 600 | 780 | 1230 | 1290 | 175 | 1310 | 1440 | 1620 | 2440 | 950 | 1060 | 812 |
Gonimbrasia belina L [28,35,48] | 1300 | 1830 | 1460 | 410 | 480 | 1350 | 600 | 1840 | 1120 | 2410 | 110 | 974 | 1300 | 2234 | 4120 | 1100 | 876 | 1210 |
Bombyx mori L [35,45] | 290 | 430 | 440 | 110 | 60 | 250 | 260 | 250 | 350 | 380 | 80 | 300 | 360 | 610 | 900 | 510 | 310 | 340 |
Pyralidae L [35,45] | 670 | 1240 | 920 | 440 | 140 | 600 | 360 | 590 | 840 | 820 | 210 | 880 | 1150 | 1490 | 1950 | 930 | 1240 | 1240 |
Mutton leg | 773 | 1195 | 1267 | 381 | 196 | 621 | 425 | 727 | 785 | 1068 | 198 | 512 | 1026 | 1362 | 2289 | 919 | 725 | 650 |
Veal leg | 826 | 1293 | 1349 | 413 | 174 | 660 | 551 | 688 | 853 | 1074 | 137 | 578 | 991 | 1514 | 2311 | 881 | 743 | 688 |
Horsemeat | 1457 | 2129 | 2240 | 627 | 226 | 853 | 627 | 874 | 1122 | 1613 | 292 | 829 | 1212 | 1860 | 2735 | 964 | 896 | 943 |
Pork shoulder | 821 | 1432 | 1483 | 487 | 235 | 699 | 584 | 966 | 927 | 1085 | 207 | 622 | 1064 | 1540 | 2542 | 921 | 659 | 620 |
Beef sirloin | 997 | 1680 | 1844 | 560 | 232 | 911 | 706 | 951 | 1038 | 1309 | 265 | 746 | 1210 | 1862 | 3165 | 1007 | 783 | 835 |
Rabbit carcass | 825 | 1277 | 1462 | 452 | 186 | 771 | 426 | 717 | 851 | 1063 | 213 | 611 | 1010 | 1595 | 2738 | 851 | 851 | 691 |
Goose carcass | 264 | 493 | 515 | 144 | 84 | 254 | 162 | 268 | 287 | 390 | 41 | 206 | 365 | 547 | 917 | 357 | 257 | 232 |
Duck carcass | 391 | 611 | 686 | 214 | 95 | 329 | 250 | 370 | 479 | 580 | 104 | 280 | 589 | 752 | 1445 | 656 | 438 | 372 |
Turkey breast | 915 | 1419 | 2015 | 522 | 248 | 703 | 537 | 994 | 953 | 1237 | 121 | 618 | 1191 | 1901 | 3246 | 941 | 813 | 826 |
Turkey drumstick | 797 | 1233 | 1758 | 452 | 217 | 607 | 468 | 865 | 826 | 1065 | 105 | 536 | 1029 | 1647 | 2823 | 775 | 681 | 717 |
Chicken breast | 1251 | 1579 | 2022 | 631 | 360 | 772 | 941 | 911 | 1345 | 321 | 279 | 735 | 1441 | 2157 | 3505 | 1334 | 1028 | 886 |
Chicken drumstick | 982 | 1240 | 1590 | 497 | 283 | 606 | 739 | 715 | 1057 | 1154 | 220 | 578 | 1134 | 1694 | 2756 | 1049 | 809 | 697 |
Mutton Leg | Veal Leg | Horse Meat | Pork Shoulder | Beef Sirloin | Rabbit Carcass | Goose Carcass | Duck Carcass | Turkey Breast | Turkey Drumstick | |
---|---|---|---|---|---|---|---|---|---|---|
SFA | 7.41 | 0.98 | 0.89 | 2.74 | 1.68 | 2.59 | 3.00 | 4.73 | 0.22 | 1.12 |
C 10:0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
C 12:0 | 0 | 0 | 0.01 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
C 14:0 | 0.76 | 0.10 | 0.08 | 0.10 | 0.11 | 0.16 | 0.06 | 0.08 | 0.01 | 0.04 |
C 15:0 | 0.08 | 0 | 0 | 0 | 0.03 | 0.04 | 0 | 0.02 | 0 | 0 |
C 16:0 | 3.40 | 0.53 | 0.64 | 1.57 | 0.88 | 1.79 | 2.21 | 3.55 | 0.16 | 0.82 |
C 17:0 | 0.14 | 0 | 0 | 0.00 | 0.05 | 0.05 | 0.01 | 0.03 | 0 | 0 |
C 18:0 | 2.94 | 0.35 | 0.16 | 1.05 | 0.61 | 0.55 | 0.71 | 0.91 | 0.05 | 0.26 |
C 20:0 | 0.02 | 0 | 0 | 0 | 0 | 0 | 0 | 0.12 | 0 | 0 |
MUFA | 5.80 | 0.99 | 0.82 | 3.26 | 1.51 | 1.24 | 6.45 | 9.66 | 0.33 | 1.65 |
C 14:1 | 0.10 | 0.03 | 0 | 0 | 0.04 | 0 | 0 | 0.02 | 0 | 0 |
C 15:1 | 0 | 0 | 0 | 0 | 0.01 | 0 | 0 | 0 | 0 | 0 |
C 16:1 | 0.18 | 0.09 | 0.14 | 0.17 | 0.16 | 0.13 | 0.58 | 0.79 | 0.04 | 0.2 |
C 17:1 | 0.14 | 0 | 0 | 0 | 0.03 | 0 | 0 | 0.02 | 0 | 0 |
C 18:1 | 5.37 | 0.86 | 0.67 | 3.08 | 1.26 | 1.11 | 5.76 | 8.64 | 0.28 | 1.42 |
C 20:1 | 0 | 0 | 0.01 | 0 | 0.01 | 0 | 0.10 | 0.14 | 0.01 | 0.03 |
C 22:1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.05 | 0 | 0 |
PUFA | 0.73 | 0.13 | 0.62 | 0.58 | 0.11 | 2.03 | 2.68 | 2.64 | 0.15 | 0.77 |
C 18:2 | 0.35 | 0.09 | 0.28 | 0.52 | 0.08 | 1.25 | 2.22 | 2.48 | 0.13 | 0.63 |
C 18:3 | 0.35 | 0.03 | 0.25 | 0.07 | 0.03 | 0.59 | 0.46 | 0.14 | 0.01 | 0.07 |
C 20:3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.00 | 0 | 0 |
C 20:4 | 0.03 | 0 | 0.04 | 0 | 0 | 0.11 | 0 | 0.02 | 0.01 | 0.07 |
C 20:5 | 0 | 0 | 0.01 | 0 | 0 | 0.08 | 0 | 0.00 | 0 | 0 |
PUFA/SFA | 0.10 | 0.13 | 0.70 | 0.21 | 0.07 | 0.78 | 0.89 | 0.56 | 0.68 | 0.69 |
PUFA n-3 | 0.35 | 0.03 | 0.3 | 0.07 | 0.03 | 0.67 | 0.46 | 0.14 | 0.01 | 0.07 |
PUFA n-6 | 0.38 | 0.09 | 0.32 | 0.52 | 0.08 | 1.36 | 2.22 | 2.50 | 0.14 | 0.7 |
PUFA n-6/PUFA n-3 | 1.07 | 3.0 | 1.07 | 7.88 | 2.67 | 2.02 | 4.84 | 17.73 | 14.0 | 10.0 |
AI | 0.98 | 0.84 | 0.67 | 0.51 | 0.81 | 0.74 | 0.27 | 0.32 | 0.42 | 0.40 |
TI | 1.40 | 1.01 | 0.37 | 1.23 | 1.27 | 0.66 | 0.50 | 0.69 | 0.65 | 0.75 |
h/H | 1.47 | 1.56 | 1.71 | 2.20 | 1.38 | 1.61 | 3.72 | 3.11 | 2.53 | 2.55 |
Acheta domesticus A [29,35,44] | Acheta domesticus L [43,44,45] | Tenebrio molitor L [30,35,44,45] | Zophobas morio L [35,43,44] | Gonimbrasia belina L [49] | Galleria mellonella L [43,44] | |
---|---|---|---|---|---|---|
SFA | 2.28 | 2.51 | 2.32 | 5.15 | 4.9 | 6.48 |
C 10:0 | 0.011 | 0.007 | - | 0.01 | - | 0.01 |
C 12:0 | <0.02 | 0.007 | <0.02 | 0.01 | <0.1 | <0.01 |
C 14:0 | 0.04 | 0.06 | 0.29 | 0.17 | <0.1 | 0.04 |
C 15:0 | <0.02 | 0.01 | <0.02 | 0.04 | - | <0.01 |
C 16:0 | 1.56 | 1.72 | 2.29 | 3.59 | 3.2 | 5.97 |
C 17:0 | 0.02 | 0.02 | <0.02 | 0.075 | - | 0.01 |
C 18:0 | 0.58 | 0.65 | 0.39 | 1.15 | 1.7 | 0.41 |
C 20:0 | 0.04 | 0.03 | 0.03 | 0.03 | <0.1 | 0.02 |
MUFA | 1.694 | 1.77 | 2.51 | 4.46 | 1.7 | 8.35 |
C 14:1 | 0.02 | - | - | 0.01 | - | <0.01 |
C 15:1 | - | 0.01 | - | 0.01 | - | <0.01 |
C 16:1 | 0.09 | 0.09 | 0.35 | 0.14 | 0.1 | 0.40 |
C 17:1 | <0.01 | 0,007 | 0.03 | 0.01 | - | <0.01 |
C 18:1 | 1.54 | 1.64 | 5.39 | 4.28 | 1.6 | 7.90 |
C 20:1 | 0.02 | 0.01 | - | 0.02 | - | 0.01 |
C 22:1 | 0.014 | 0.007 | - | 0.01 | - | <0.01 |
PUFA | 2.43 | 4.28 | 5.85 | 5.46 | 5.4 | 1.88 |
C 18:2 n-6 | 2.29 | 2.07 | - | 2.64 | 1.6 | 1.76 |
C 18:3 n-3 | 0.06 | 0.35 | - | 0.38 | 3.7 | 0.11 |
C 20:3 n-6 | 0.02 | 0.01 | - | 0.01 | - | <0.01 |
C 20:5 n-3 | 0.06 | 0.04 | - | 0.03 | - | 0.03 |
PUFA/SFA | 1.07 | 1.70 | 2.52 | 1.06 | 1.10 | 0.28 |
PUFA n-3 | 0.12 | 0.39 | - | 0.41 | 3.7 | 0.14 |
PUFA n-6 | 2.31 | 2.08 | - | 2.65 | 1.6 | 1.77 |
PUFA n-6/PUFA n-3 | 19.25 | 5.33 | 18.44 | 6.46 | 0.43 | 12.64 |
AI | 0.42 | 0.46 | 0.33 | 0.57 | 0.53 | 0.60 |
TI | 0.90 | 0.74 | 0.26 | 0.99 | 0.39 | 1.17 |
h/H | 2.45 | 2.30 | 3.82 | 1.95 | 2.0 | 1.63 |
Minerals Species | Na | K | Ca | P | Mg | Fe | Zn | Cu | Mn | I |
---|---|---|---|---|---|---|---|---|---|---|
Acheta domesticus A [28,29,35,43,44] | 163–178 | 347–390 | 99.6 | 899.3 | 55.1 | 5.46–8.83 | 6.71–11.0 | 0.62 | 1.15 | 0.15 |
Acheta domesticus L [43,44] | 110.0 | 285.0 | 36.6 | 219.0 | 22.6 | 2.12 | 6.8 | 0.51 | 0.89 | 0.028 |
Gryllus bimaculatus A [35,36] | 88.84 | 321.71 | 105.14 | 702.02 | 72.94 | 9.5 | 14.39 | 3.86 | 3.4 | - |
Tenebrio molitor A [30,35,44] | 66.0 | 368.0 | 24.2 | 295.0 | 69 | 2,87 | 4.86 | 0.75 | 0.46 | 0.022 |
Tenebrio molitor L [29,30,35,43,44] | 53.7 | 337.0 | 42.9 | 264–368 | 62–92 | 2.47 | 4.33–4.95 | 0.83 | 0.32 | 0.02 |
Zophobas morio L [35,43,44] | 38.5 | 286.0 | 26.2 | 209.0 | 43.5 | 1.99 | 3.02 | 0.36 | 0.37 | <0.01 |
Gonimbrasia belina L [35,50] | 1024.0 | 1032.0 | 174.0 | 543.0 | 160 | 51.06 | 17.95 | 0.91 | 3.95 | - |
Bombyx mori L [35,44] | 47.5 | 316–391 | 49.8–72.2 | 172–237 | 56.9–78.3 | 2.23 | 3.07 | 0.36 | 0.39 | <0.01 |
Pyralidae L [35,44] | 9.21–16.5 | 221.0 | 24.3 | 157–457 | 34.3 | 2.94 | 3.0 | 0.38 | 0.13 | <0.01 |
Mutton leg | 65.5 | 319.2 | 8.4 | 178.9 | 19.3 | 2.3 | 2.7 | 0.1 | 0.03 | 0.025 |
Veal leg | 101.1 | 194.3 | 7.9 | 126.4 | 12.6 | 1.9 | 1.6 | 0.2 | 0.02 | 0.017 |
Horse meat | 46.0 | 345.0 | 15.0 | 200.0 | 24.0 | 3.5 | 2.7 | 0.1 | 0.01 | 0.018 |
Pork shoulder | 50.0 | 293.6 | 4.1 | 130.4 | 15.6 | 0.9 | 2.2 | 0.1 | 0.01 | 0.008 |
Beef sirloin | 52.0 | 382.0 | 4.0 | 212.0 | 26.0 | 3.1 | 2.9 | 0.1 | 0.04 | 0.008 |
Rabbit carcass | 34.0 | 304.2 | 15.0 | 144.6 | 20.5 | 2.1 | 1.7 | 0.1 | 0.03 | 0 |
Goose carcass | 19.7 | 99.6 | 2.1 | 62.3 | 7.4 | 1.0 | 0.7 | 0.1 | 0.01 | 0.003 |
Duck carcass | 42.2 | 154.9 | 5.1 | 95.4 | 9.0 | 1.3 | 0.9 | 0.1 | 0.02 | 0.008 |
Turkey breast | 47.0 | 460.0 | 2.0 | 238.0 | 35.0 | 0.5 | 0.8 | 0.05 | 0.01 | 0.007 |
Turkey drumstick | 96.0 | 364.0 | 8.0 | 214.0 | 27.0 | 1.2 | 2.8 | 0.1 | 0.02 | 0 |
Chicken breast | 55.0 | 385.0 | 5.0 | 240.0 | 33.0 | 0.4 | 0.5 | 0.01 | 0.01 | 0 |
Chicken drumstick | 91.0 | 334.0 | 8.0 | 215.0 | 26.0 | 0.7 | 1.4 | 0.1 | 0.01 | 0 |
DRNI* Species | Na 1500 mg | K 3500 mg | Ca 1000 mg | P 700 mg | Mg 320 mg | Fe 18 mg | Zn 8 mg | Cu 0.9 mg | Mn 1.8 mg | I 150 µg |
---|---|---|---|---|---|---|---|---|---|---|
Acheta domesticus A | 1.56 | 1.44 | 1.37 | 17.63 | 2.36 | 5.45 | 18.87 | 9.46 | 8.77 | 0.01 |
Acheta domesticus L | 1.12 | 1.24 | 0.56 | 4.78 | 1.08 | 1.80 | 31.48 | 7.51 | 7.55 | 0.00 |
Gryllus bimaculatus A | 1.04 | 1.61 | 1.84 | 17.55 | 3.99 | 6.96 | 12.98 | 8.65 | 33.06 | 0.00 |
Tenebrio molitor A | 0.52 | 1.24 | 0.29 | 4.97 | 2.54 | 1.88 | 7.17 | 9.83 | 2.99 | 0.01 |
Tenebrio molitor L | 0.30 | 0.82 | 0.36 | 4.00 | 2.05 | 1.17 | 4.93 | 7.84 | 1.51 | 0.00 |
Zophobas morio L | 0.26 | 0.83 | 0.27 | 3.03 | 1.38 | 1.12 | 3.83 | 4.06 | 2.09 | 0.00 |
Gonimbrasia belina L | 8.90 | 3.85 | 2.27 | 10.12 | 6.52 | 37.00 | 29.27 | 13.19 | 28.62 | 0.00 |
Bombyx mori L | 0.37 | 1.19 | 0.72 | 3.43 | 2.48 | 1.46 | 4.51 | 4.70 | 2.55 | 0.00 |
Pyralidae L | 0.07 | 0.48 | 0.19 | 2.95 | 0.82 | 1.25 | 2.87 | 3.23 | 0.55 | 0.00 |
Mutton leg | 0.47 | 0.97 | 0.09 | 2.73 | 0.65 | 1.35 | 3.59 | 0.60 | 0.20 | 0.18 |
Veal leg | 1.66 | 1.37 | 0.19 | 4.44 | 0.97 | 2.59 | 4.98 | 4.32 | 0.32 | 0.29 |
Horse meat | 0.59 | 1.90 | 0.29 | 5.50 | 1.44 | 3.75 | 6.50 | 3.00 | 0.11 | 0.23 |
Pork shoulder | 0.53 | 1.34 | 0.07 | 2.98 | 0.78 | 0.80 | 4.40 | 1.02 | 0.07 | 0.09 |
Beef sirloin | 0.65 | 2.05 | 0.08 | 5.68 | 1.52 | 3.23 | 6.87 | 2.08 | 0.42 | 0.10 |
Rabbit carcass | 0.39 | 1.48 | 0.26 | 3.52 | 1.09 | 1.94 | 3.69 | 2.24 | 0.30 | 0.00 |
Goose carcass | 0.20 | 0.43 | 0.03 | 1.33 | 0.34 | 0.82 | 1.27 | 1.16 | 0.07 | 0.03 |
Duck carcass | 0.30 | 0.47 | 0.05 | 1.44 | 0.30 | 0.79 | 1.20 | 1.05 | 0.11 | 0.05 |
Turkey breast | 0.79 | 3.33 | 0.05 | 8.60 | 2.77 | 0.70 | 2.63 | 1.12 | 0.14 | 0.12 |
Turkey drumstick | 1.34 | 2.18 | 0.17 | 6.42 | 1.77 | 1.40 | 7.43 | 1.87 | 0.23 | 0.00 |
Chicken breast | 0.79 | 2.36 | 0.11 | 7.35 | 2.21 | 0.48 | 1.31 | 0.24 | 0.12 | 0.00 |
Chicken drumstick | 1.02 | 1.60 | 0.13 | 5.16 | 1.37 | 0.65 | 2.94 | 1.49 | 0.09 | 0.00 |
Vitamins Species | A (µg/100 g) | E (mg/100 g) | B1 (mg/100 g) | B2 (mg/100 g) | PP (mg/100 g) | B6 (mg/100 g) | B12 (µg/100 g) | C (mg/100 g) |
---|---|---|---|---|---|---|---|---|
Acheta domesticus A [28,29,44] | 6.53 | 2.26 | 0.04 | 3.41 | 3.84 | 0.23 | 0.53 | 3.0 |
Acheta domesticus L [28,43,44] | <30 | 0.64 | 0.24 | 1.66 | 3.28 | 0.17 | 0.87 | 1.8 |
Gryllus bimaculatus A [36] | - | - | 0.36 | 1.91 | 3.10 | - | - | - |
Tenebrio molitor A [35,44] | <30 | <0.34 | 0.1 | 0.85 | 5.64 | 0.81 | 0.56 | 5.4 |
Tenebrio molitor L [28,29,43,44,45] | 16.9–29.0 | 1.31–1.9 | 0.18 | 0.81–1.21 | 4.07–4.65 | 0.81 | 0.47 | 1.8–9.9 |
Zophobas morio L [43,44] | <30 | 0.52 | 0.17 | 1.12 | 3.53 | 0.32 | 0.99 | 1.2–10.1 |
Bombyx mori L [44] | 47.4 | 0.59 | 0.33 | 0.94 | 2.63 | 0.16 | 0.01 | <1.0 |
Pyralidae L [44] | <30 | 0.89 | 0.23 | 0.73 | 3.75 | 0.13 | 0.12 | <1.0 |
Mutton leg | 44.52 | 0.28 | 0.13 | 0.18 | 4,37 | 0.13 | 0.84 | 0 |
Veal leg | 23.70 | 0.24 | 0.14 | 0.22 | 5.14 | 0.24 | 1.03 | 0 |
Horse meat | 30.00 | 0.52 | 0.14 | 0.27 | 4.50 | 0.50 | 3.10 | 0 |
Pork shoulder | 0.00 | 0.33 | 0.49 | 0.23 | 4.86 | 0.25 | 0.57 | 0 |
Beef sirloin | 11.00 | 0.20 | 0.12 | 0.26 | 5.54 | 0.25 | 1.40 | 0 |
Rabbit carcass | 0.00 | 0.10 | 0.02 | 0.05 | 5.53 | 0.47 | 7.90 | 0 |
Goose carcass | 12.30 | 0.08 | 0.05 | 0.01 | 2.62 | 0.24 | 0.12 | 0 |
Duck carcass | 15.36 | 0.13 | 0.11 | 0.14 | 2.21 | 0.06 | 0.13 | 0 |
Turkey breast | 9.00 | 0.02 | 0.04 | 0.15 | 4.92 | 0.59 | 0.70 | 0 |
Turkey drumstick | 20.00 | 0.02 | 0.08 | 0.21 | 3.26 | 0.30 | 1.70 | 0 |
Chicken breast | 6.00 | 0.30 | 0.09 | 0.15 | 12.44 | 0.55 | 0.40 | 0 |
Chicken drumstick | 20.00 | 0.30 | 0.08 | 0.25 | 3.06 | 0.33 | 0.40 | 0 |
DRNI* Species | Vit. A 700 µg | Vit. E 8 mg | Vit. B1 1.1 mg | Vit. B2 1.1 mg | Vit. PP 14 mg | Vit. B6 1.3 mg | Vit. B12 2.4 µm | Vit. C 75 mg |
---|---|---|---|---|---|---|---|---|
Acheta domesticus A | 128.04 | 3.88 | 0.50 | 42.55 | 3.76 | 2.43 | 3.03 | 0.55 |
Acheta domesticus L | 654.55 | 1.22 | 3.33 | 23.05 | 3.58 | 2.00 | 5.54 | 0.37 |
Gryllus bimaculatus A | - | - | 5.73 | 30.39 | 3.88 | - | - | - |
Tenebrio molitor A | 505.62 | 0.50 | 1.07 | 9.12 | 4.75 | 7.35 | 2.75 | 0.85 |
Tenebrio molitor L | 278.74 | 1.71 | 1.39 | 7.42 | 2.59 | 5.30 | 1.68 | 0.49 |
Zophobas morio L | 434.99 | 0.22 | 1.57 | 10.33 | 2.56 | 2.50 | 4.19 | 0.76 |
Bombyx mori L | 795.48 | 0.87 | 3.52 | 10.04 | 2.21 | - | 0.59 | 0.16 |
Pyralidae L | 327.63 | 0.85 | 1.60 | 5.07 | 2.05 | 1.45 | 0.38 | 0.10 |
Mutton leg | 679.49 | 0.37 | 1.31 | 1.79 | 3.33 | 0.76 | 3.74 | 0 |
Veal leg | 833.33 | 0.73 | 3.18 | 4.95 | 9.03 | 1.10 | 10.53 | 0 |
Horse meat | 825.69 | 1.25 | 2.45 | 4.73 | 6.19 | 4.49 | 24.89 | 0 |
Pork shoulder | 0 | 0.66 | 7.17 | 3.29 | 5.56 | 7.41 | 3.83 | 0 |
Beef sirloin | 294.64 | 0.47 | 1.99 | 4.40 | 7.42 | 3.03 | 10.94 | 0 |
Rabbit carcass | 0 | 0.22 | 0.37 | 0.73 | 6.73 | 3.61 | 56.09 | 0 |
Goose carcass | 262.39 | 0.15 | 0.67 | 0.18 | 2.80 | 6.11 | 0.77 | 0 |
Duck carcass | 231.51 | 0.17 | 1.09 | 1.39 | 1.66 | 2.73 | 0.56 | 0 |
Turkey breast | 325.30 | 0.06 | 0.83 | 3.45 | 8.89 | 0.52 | 7.38 | 0 |
Turkey drumstick | 600.00 | 0.05 | 1.49 | 4.07 | 4.89 | 11.48 | 14.88 | 0 |
Chicken breast | 183.67 | 0.80 | 1.75 | 2.98 | 19.04 | 4.85 | 3.57 | 0 |
Chicken drumstick | 480.00 | 0.63 | 1.22 | 3.76 | 3.67 | 9.07 | 2.80 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orkusz, A. Edible Insects versus Meat—Nutritional Comparison: Knowledge of Their Composition Is the Key to Good Health. Nutrients 2021, 13, 1207. https://doi.org/10.3390/nu13041207
Orkusz A. Edible Insects versus Meat—Nutritional Comparison: Knowledge of Their Composition Is the Key to Good Health. Nutrients. 2021; 13(4):1207. https://doi.org/10.3390/nu13041207
Chicago/Turabian StyleOrkusz, Agnieszka. 2021. "Edible Insects versus Meat—Nutritional Comparison: Knowledge of Their Composition Is the Key to Good Health" Nutrients 13, no. 4: 1207. https://doi.org/10.3390/nu13041207
APA StyleOrkusz, A. (2021). Edible Insects versus Meat—Nutritional Comparison: Knowledge of Their Composition Is the Key to Good Health. Nutrients, 13(4), 1207. https://doi.org/10.3390/nu13041207