Analysis of the Association between Fat Mass Distribution and Bone Mass in Chinese Male Adolescents at Different Stages of Puberty
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Calcaneal Quantitative Ultrasound Measurements
2.3. Body Composition Measurements
2.4. Evaluation of Covariates
2.5. Statistical Analysis
3. Results
3.1. Descriptive Characteristics
3.2. Associations of FM, FM Distribution Variables with Bone Parameters in the Total Sample
3.3. Associations of FM, FM Distribution Variables with Bone Parameters in the Prepubertal Boys
3.4. Associations of FM, FM Distribution Variables with Bone Parameters in the Pubertal Boys
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sioen, I.; Lust, E.; de Henauw, S.; Moreno, L.A.; Jiménez-Pavón, D. Associations Between Body Composition and Bone Health in Children and Adolescents: A Systematic Review. Calcif. Tissue Int. 2016, 99, 557–577. [Google Scholar] [CrossRef]
- He, L.Y.; Sun, Y.; Yao, W.J.; Pan, K.Q. The prevalence rate of osteoporosis in the elderly in China between 2010 and 2016: A Meta analysis of single rate. China J. Osteoporos. 2016, 22, 1590–1596. [Google Scholar]
- Bianchi, M.L. Osteoporosis in children and adolescents. Bone 2007, 41, 486–495. [Google Scholar] [CrossRef] [PubMed]
- Kouda, K.; Ohara, K.; Nakamura, H.; Fujita, Y.; Jaalkhorol, M.; Iki, M. Fat mass is positively associated with bone mass acquisition in children with small or normal lean mass: A three-year follow-up study. Bone 2018, 107, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Bland, V.L.; Bea, J.W.; Blew, R.M.; Roe, D.J.; Lee, V.R.; Funk, J.L.; Going, S.B. Influence of Changes in Soft Tissue Composition on Changes in Bone Strength in Peripubertal Girls: The STAR Longitudinal Study. J. Bone Miner. Res. 2021, 36, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Dolan, E.; Swinton, P.A.; Sale, C.; Healy, A.; O’Reilly, J. Influence of adipose tissue mass on bone mass in an overweight or obese population: Systematic review and meta-analysis. Nutr. Rev. 2017, 75, 858–870. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Jin, Y.; Xu, S.; Zheng, J.; Zhang, Q.; Chen, J.; Huang, Y.; Shao, H.; Yang, D.; Ying, Q. Associations of Fat Mass and Fat Distribution with Bone Mineral Density in Chinese Obese Population. J. Clin. Densitom. 2015, 18, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Fu, X.; Ma, X.; Wu, Z.; He, W.; Wang, Z.; Allison, D.B.; Heymsfield, S.B.; Zhu, S. Relationships of percent body fat and percent trunk fat with bone mineral density among Chinese, black, and white subjects. Osteoporos. Int. 2011, 22, 3029–3035. [Google Scholar] [CrossRef]
- Liu, Y.-H.; Xu, Y.; Wen, Y.-B.; Guan, K.; Ling, W.-H.; He, L.-P.; Su, Y.-X.; Chen, Y.-M. Association of Weight-Adjusted Body Fat and Fat Distribution with Bone Mineral Density in Middle-Aged Chinese Adults: A Cross-Sectional Study. PLoS ONE 2013, 8, e63339. [Google Scholar] [CrossRef]
- Rosenquist, K.J.; Pedley, A.; Massaro, J.M.; Therkelsen, K.E.; Murabito, J.M.; Hoffmann, U.; Fox, C.S. Visceral and Subcutaneous Fat Quality and Cardiometabolic Risk. JACC Cardiovasc. Imaging 2013, 6, 762–771. [Google Scholar] [CrossRef] [Green Version]
- Neeland, I.J.; Ross, R.; Després, J.-P.; Matsuzawa, Y.; Yamashita, S.; Shai, I.; Seidell, J.; Magni, P.; Santos, R.D.; Arsenault, B.; et al. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: A position statement. Lancet Diabetes Endocrinol. 2019, 7, 715–725. [Google Scholar] [CrossRef]
- El Hage, R.; Moussa, E.; Jacob, C. Bone Mineral Content and Density in Obese, Overweight, and Normal-Weighted Sedentary Adolescent Girls. J. Adolesc. Health 2010, 47, 591–595. [Google Scholar] [CrossRef]
- Liang, J.; Chen, Y.; Zhang, J.; Ma, B.; Hu, Y.; Liu, Y.; Lin, S.; Zhang, Z.; Song, Y. Associations of Weight-Adjusted Body Fat and Fat Distribution with Bone Mineral Density in Chinese Children Aged 6–10 Years. Int. J. Environ. Res. Public Health 2020, 17, 1763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soininen, S.; Sidoroff, V.; Lindi, V.; Mahonen, A.; Kröger, L.; Kröger, H.; Jääskeläinen, J.; Atalay, M.; Laaksonen, D.E.; Laitinen, T.; et al. Body fat mass, lean body mass and associated biomarkers as determinants of bone mineral density in children 6–8 years of age—The Physical Activity and Nutrition in Children (PANIC) study. Bone 2018, 108, 106–114. [Google Scholar] [CrossRef] [Green Version]
- Suárez, C.G.; Singer, B.H.; Gebremariam, A.; Lee, J.M.; Singer, K. The relationship between adiposity and bone density in U.S. children and adolescents. PLoS ONE 2017, 12, e0181587. [Google Scholar] [CrossRef]
- Rokoff, L.B.; Rifas-Shiman, S.L.; Switkowski, K.M.; Young, J.G.; Rosen, C.J.; Oken, E.; Fleisch, A.F. Body composition and bone mineral density in childhood. Bone 2019, 121, 9–15. [Google Scholar] [CrossRef]
- Kim, W.; Chung, S.G.; Kim, K.; Gil Seo, H.; Oh, B.-M.; Yi, Y.; Kim, M.J. The relationship between body fat and bone mineral density in Korean men and women. J. Bone Miner. Metab. 2013, 32, 709–717. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-J.; Wu, Y.; Fried, S.K. Adipose tissue heterogeneity: Implication of depot differences in adipose tissue for obesity complications. Mol. Asp. Med. 2013, 34, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, M.; Mendes, N.; Miller, K.K.; Rosen, C.J.; Lee, H.; Klibanski, A.; Misra, M. Visceral Fat is a Negative Predictor of Bone Density Measures in Obese Adolescent Girls. J. Clin. Endocrinol. Metab. 2010, 95, 1247–1255. [Google Scholar] [CrossRef]
- Lee, K. Regional percent fat and bone mineral density in Korean adolescents: The Fourth Korea National Health and Nutrition Examination Survey (KNHANES IV-3), 2009. Asia Pac. J. Clin. Nutr. 2013, 22, 69–73. [Google Scholar]
- Kindblom, J.M.; Lorentzon, M.; Norjavaara, E.; Lönn, L.L.; Brandberg, J.; Angelhed, J.-E.; Hellqvist, A.; Nilsson, S.; Ohlsson, C. Pubertal Timing is an Independent Predictor of Central Adiposity in Young Adult Males: The Gothenburg Osteoporosis and Obesity Determinants Study. Diabetes 2006, 55, 3047–3052. [Google Scholar] [CrossRef] [Green Version]
- Forero-Bogotá, M.A.; Ojeda-Pardo, M.L.; García-Hermoso, A.; Correa-Bautista, J.E.; González-Jiménez, E.; Schmidt-Ríovalle, J.; Navarro-Pérez, C.F.; Gracia-Marco, L.; Vlachopoulos, D.; Martínez-Torres, J.; et al. Body Composition, Nutritional Profile and Muscular Fitness Affect Bone Health in a Sample of Schoolchildren from Colombia: The Fuprecol Study. Nutrients 2017, 9, 106. [Google Scholar] [CrossRef] [PubMed]
- Heydenreich, J.; Schweter, A.; Lührmann, P. Association between Body Composition, Physical Activity, Food Intake and Bone Status in German Children and Adolescents. Int. J. Environ. Res. Public Health 2020, 17, 7294. [Google Scholar] [CrossRef]
- Ferrer, F.S.; Castell, E.C.; Marco, F.C.; Ruiz, M.J.; Rico, J.A.Q.; Roca, A.P.N. Influence of weight status on bone mineral content measured by DXA in children. BMC Pediatr. 2021, 21, 1–8. [Google Scholar] [CrossRef]
- Wang, K.C.; Amirabadi, A.; Cheung, E.; Uleryk, E.; Moineddin, R.; Doria, A.S. Evidence-based outcomes on diagnostic accuracy of quantitative ultrasound for assessment of pediatric osteoporosis—A systematic review. Pediatr. Radiol. 2014, 44, 1573–1587. [Google Scholar] [CrossRef]
- Falcini, F.; Bindi, G.; Ermini, M.; Galluzzi, F.; Poggi, G.; Rossi, S.; Masi, L.; Brandi, M.L. Comparison of quantitative calcaneal ultrasound and dual energy X-ray absorptiometry in the evaluation of osteoporotic risk in children with chronic rheumatic diseases. Calcif. Tissue Int. 2000, 67, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Alwis, G.; Rosengren, B.E.; Nilsson, J.Å.; Stenevi-Lundgren, S.; Sundberg, M.; Sernbo, I.; Karlsson, M.K. Normative Calcaneal Quantitative Ultrasound Data as an Estimation of Skeletal Development in Swedish Children and Adolescents. Calcif. Tissue Int. 2010, 87, 493–506. [Google Scholar] [CrossRef]
- Ceniccola, G.D.; Castro, M.G.; Piovacari, S.M.F.; Horie, L.M.; Corrêa, F.G.; Barrere, A.P.N.; Toledo, D.O. Current technologies in body composition assessment: Advantages and disadvantages. Nutrients 2019, 62, 25–31. [Google Scholar] [CrossRef]
- Zamrazilová, H.; Hlavatý, P.; Dusátková, L.; Sedlácková, B.; Hainerová, I.A.; Kunesová, M.; Skoch, A.; Hájek, M.; Hainer, V. A new simple method for estimating trunk and visceral fat by bioelectrical impedance: Comparison with magnetic resonance imaging and dual X-ray absorptiometry in Czech adolescents. Cas. Lek. Ceskych 2010, 149, 417–422. [Google Scholar]
- Orkin, S.; Yodoshi, T.; Rd, E.R.; Rd, K.H.; Arce-Clachar, A.C.; Bramlage, K.; Sun, Q.; Fei, L.; Xanthakos, S.A.; Trout, A.T.; et al. Body composition measured by bioelectrical impedance analysis is a viable alternative to magnetic resonance imaging in children with nonalcoholic fatty liver disease. J. Parenter. Enter. Nutr. 2021. [Google Scholar] [CrossRef] [PubMed]
- De Castro, J.A.; Lima, T.R.; Silva, D.A.S. Body composition estimation in children and adolescents by bioelectrical impedance analysis: A systematic review. J. Bodyw. Mov. Ther. 2018, 22, 134–146. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Laslett, L.; Zhang, Q. Threshold Effects of Vitamin D Status on Bone Health in Chinese Adolescents with Low Calcium Intake. J. Clin. Endocrinol. Metab. 2015, 100, 4481–4489. [Google Scholar] [CrossRef] [PubMed]
- Zhai, F.; Du, S.F.; Wang, Z.; Zhang, J.G.; Du, W.; Popkin, B.M. Dynamics of the Chinese diet and the role of urbanicity, 1991-2011. Obes. Rev. 2014, 15 (Suppl. 1), 16–26. [Google Scholar] [CrossRef] [Green Version]
- George, S.M.S.; van Horn, M.L.; Lawman, H.G.; Wilson, D.K. Reliability of 24-Hour Dietary Recalls as a Measure of Diet in African-American Youth. J. Acad. Nutr. Diet. 2016, 116, 1551–1559. [Google Scholar] [CrossRef] [PubMed]
- Ollberding, N.J.; Couch, S.C.; Woo, J.G.; Kalkwarf, H.J. Within- and Between-Individual Variation in Nutrient Intake in Children and Adolescents. J. Acad. Nutr. Diet. 2014, 114, 1749–1758. [Google Scholar] [CrossRef]
- Burrows, T.L.; Martin, R.J.; Collins, C.E. A Systematic Review of the Validity of Dietary Assessment Methods in Children when Compared with the Method of Doubly Labeled Water. J. Am. Diet. Assoc. 2010, 110, 1501–1510. [Google Scholar] [CrossRef]
- Yang, Y.X.; Wang, G.Y.; Pan, X.C. China Food Composition Table; Institute of Nutrition and Food Safety, Peking University Medical Press: Beijing, China, 2009. [Google Scholar]
- Watanabe, T.; Kawai, R. Advances in food composition tables in Japan-Standard Tables Of Food Composition in Japan—2015—(Seventh Revised Edition). Food Chem. 2018, 238, 16–21. [Google Scholar] [CrossRef]
- Huang, W.; Wong, S.H.; Salmon, J. Reliability and Validity of the Modified Chinese Version of the Children’s Leisure Activities Study Survey (CLASS) Questionnaire in Assessing Physical Activity among Hong Kong Children. Pediatr. Exerc. Sci. 2009, 21, 339–353. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Bruton, A.; Montero-Marín, J.; González-Agüero, A.; García-Campayo, J.; Moreno, L.A.; Casajús, J.A.; Vicente-Rodríguez, G. The Effect of Swimming During Childhood and Adolescence on Bone Mineral Density: A Systematic Review and Meta-Analysis. Sports Med. 2016, 46, 365–379. [Google Scholar] [CrossRef] [PubMed]
- Deere, K.; Sayers, A.; Rittweger, J.; Tobias, J.H. Habitual levels of high, but not moderate or low, impact activity are positively related to hip BMD and geometry: Results from a population-based study of adolescents. J. Bone Miner. Res. 2012, 27, 1887–1895. [Google Scholar] [CrossRef] [Green Version]
- Chan, N.P.T.; Sung, R.Y.T.; Nelson, E.A.S.; So, H.K.; Tse, Y.K.; Kong, A.P.S. Measurement of Pubertal Status with a Chinese Self-report Pubertal Development Scale. Matern. Child Health J. 2009, 14, 466–473. [Google Scholar] [CrossRef]
- World Health Organization. Growth Reference 5–19 Years; World Health Organization: Geneva, Switzerland, 2007. [Google Scholar]
- Krishnan, S.; Anderson, M.P.; Fields, D.A.; Misra, M. Abdominal obesity adversely affects bone mass in children. World J. Clin. Pediatr. 2018, 7, 43–48. [Google Scholar] [CrossRef]
- Júnior, I.F.F.; Cardoso, J.R.; Christofaro, D.G.D.; Codogno, J.S.; de Moraes, A.C.F.; Fernandes, R.A. The relationship between visceral fat thickness and bone mineral density in sedentary obese children and adolescents. BMC Pediatr. 2013, 13, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glass, N.A.; Torner, J.C.; Letuchy, E.M.; Burns, T.L.; Janz, K.F.; Gilmore, J.M.E.; Schlechte, J.; Levy, S.M. Does Visceral or Subcutaneous Fat Influence Peripheral Cortical Bone Strength During Adolescence? A Longitudinal Study. J. Bone Miner. Res. 2017, 33, 580–588. [Google Scholar] [CrossRef] [PubMed]
- Pollock, N.K. Childhood obesity, bone development, and cardiometabolic risk factors. Mol. Cell. Endocrinol. 2015, 410, 52–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halade, G.V.; Rahman, M.; Williams, P.J.; Fernandes, G. High fat diet-induced animal model of age-associated obesity and osteoporosis. J. Nutr. Biochem. 2010, 21, 1162–1169. [Google Scholar] [CrossRef] [Green Version]
- De Pablo, P.; Cooper, M.S.; Buckley, C.D. Association between bone mineral density and C-reactive protein in a large population-based sample. Arthritis Rheum. 2012, 64, 2624–2631. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.; Hunter, M.; James, A.; Lim, E.; Cooke, B.; Walsh, J. Relationship between visceral adipose tissue and bone mineral density in Australian baby boomers. Osteoporos. Int. 2020, 31, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Pollock, N.K.; Bernard, P.J.; Gutin, B.; Davis, C.L.; Zhu, H.; Dong, Y. Adolescent Obesity, Bone Mass, and Cardiometabolic Risk Factors. J. Pediatr. 2011, 158, 727–734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fricke, O.; Land, C.; Semler, O.; Tutlewski, B.; Stabrey, A.; Remer, T.; Schoenau, E. Subcutaneous Fat and Body Fat Mass Have Different Effects on Bone Development at the Forearm in Children and Adolescents. Calcif. Tissue Int. 2008, 82, 436–444. [Google Scholar] [CrossRef]
- Ackerman, A.; Thornton, J.C.; Wang, J.; Pierson, R.N.; Horlick, M. Sex Difference in the Effect of Puberty on the Relationship between Fat Mass and Bone Mass in 926 Healthy Subjects, 6 to 18 Years Old. Obes. 2006, 14, 819–825. [Google Scholar] [CrossRef] [Green Version]
- Clark, E.M.; Ness, A.R.; Tobias, J.H. Adipose Tissue Stimulates Bone Growth in Prepubertal Children. J. Clin. Endocrinol. Metab. 2006, 91, 2534–2541. [Google Scholar] [CrossRef]
- Garnett, S.P.; Högler, W.; Blades, B.; Baur, L.A.; Peat, J.; Lee, J.; Cowell, C.T. Relation between hormones and body composition, including bone, in prepubertal children. Am. J. Clin. Nutr. 2004, 80, 966–972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, R.W.; Grant, A.M.; Williams, S.M.; Goulding, A. Sex Differences in Regional Body Fat Distribution From Pre- to Postpuberty. Obesity 2010, 18, 1410–1416. [Google Scholar] [CrossRef]
- Sandhu, J.; Ben-Shlomo, Y.; Cole, T.J.; Holly, J.; Smith, G.D. The impact of childhood body mass index on timing of puberty, adult stature and obesity: A follow-up study based on adolescent anthropometry recorded at Christ’s Hospital (1936–1964). Int. J. Obes. 2006, 30, 14–22. [Google Scholar] [CrossRef] [Green Version]
- Chrzanowska, M.; Suder, A. Ontogenesis changes and sex dimorphism of subcutaneous fat distribution: 12-Year longitudinal study of children and adolescents from Cracow, Poland. Am. J. Hum. Biol. 2008, 20, 424–430. [Google Scholar] [CrossRef] [PubMed]
- Koziel, S.; Malina, R.M. Variation in relative fat distribution associated with maturational timing: The Wroclaw Growth study. Ann. Hum. Biol. 2005, 32, 691–701. [Google Scholar] [CrossRef] [PubMed]
- Rey-López, J.P.; Vicente-Rodríguez, G.; Biosca, M.; Moreno, L.A. Sedentary behaviour and obesity development in children and adolescents. Nutr. Metab. Cardiovasc. Dis. 2008, 18, 242–251. [Google Scholar] [CrossRef]
- Golubic, R.; on behalf of the ProActive study group; Wijndaele, K.; Sharp, S.J.; Simmons, R.K.; Griffin, S.J.; Wareham, N.J.; Ekelund, U.; Brage, S. Physical activity, sedentary time and gain in overall and central body fat: 7-year follow-up of the ProActive trial cohort. Int. J. Obes. 2014, 39, 142–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, K.A.B.; Sprung, V.S.; Norman, J.A.; Thompson, A.; Mitchell, K.L.; Halford, J.C.G.; Harrold, J.A.; Wilding, J.; Kemp, G.J.; Cuthbertson, D.J. Short-term decreased physical activity with increased sedentary behaviour causes metabolic derangements and altered body composition: Effects in individuals with and without a first-degree relative with type 2 diabetes. Diabetologia 2018, 61, 1282–1294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zemel, B. Bone mineral accretion and its relationship to growth, sexual maturation and body composition during childhood and adolescence. World Rev. Nutr. Diet 2013, 106, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Delshad, M.; Beck, K.L.; Conlon, C.A.; Mugridge, O.; Kruger, M.C.; von Hurst, P.R. Validity of quantitative ultrasound and bioelectrical impedance analysis for measuring bone density and body composition in children. Eur. J. Clin. Nutr. 2020, 75, 1–7. [Google Scholar] [CrossRef]
- McLester, C.N.; Nickerson, B.S.; Kliszczewicz, B.M.; McLester, J.R. Reliability and Agreement of Various In Body Body Composition Analyzers as Compared to Dual-Energy X-Ray Absorptiometry in Healthy Men and Women. J. Clin. Densitom. 2020, 23, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.-W.; Liao, Y.-S.; Lu, H.-K.; Hsiao, P.-L.; Chen, Y.-Y.; Chi, C.-C.; Hsieh, K.-C. Validation of two portable bioelectrical impedance analyses for the assessment of body composition in school age children. PLoS ONE 2017, 12, e0171568. [Google Scholar] [CrossRef]
- Noradilah, M.J.; Ang, Y.N.; Kamaruddin, N.A.; Deurenberg, P.; Ismail, M.N.; Poh, B.K. Assessing Body Fat of Children by Skinfold Thickness, Bioelectrical Impedance Analysis, and Dual-Energy X-Ray Absorptiometry: A Validation Study Among Malay Children Aged 7 to 11 Years. Asia Pac. J. Public Health 2016, 28 (Suppl. 5), 74s–84s. [Google Scholar] [CrossRef] [PubMed]
Variables | Total (n = 693) | Prepubertal (n = 246) | Pubertal (n = 447) | p |
---|---|---|---|---|
Age (years) | 14.95 ± 1.45 | 13.20 ± 0.75 | 15.93 ± 0.53 | <0.001 |
Height (m) | 1.65 ± 0.11 | 1.56 ± 0.09 | 1.71 ± 0.06 | <0.001 |
Weight (kg) | 52.30 ± 12.31 | 43.94 ± 11.25 | 57.27 ± 10.01 | <0.001 |
BMI (kg/m2) | 18.95 ± 3.22 | 17.96 ± 3.27 | 19.63 ± 2.93 | <0.001 |
Physical activity (MET·h/d) | 13.23 ± 9.30 | 12.87 ± 8.65 | 13.42 ± 9.62 | 0.455 |
Sedentary behavior (h/d) | 3.88 ± 2.23 | 3.66 ± 2.63 | 4.06 ± 1.96 | 0.005 |
Dietary energy intake (kcal/d) | 2474 ± 767 | 2321 ± 839 | 2557 ± 705 | <0.001 |
Dietary calcium intake (mg/d) | 438.96 ± 182.12 | 436.07 ± 191.94 | 441.02 ± 176.06 | 0.732 |
Dietary vitamin D intake (ug/d) | 1.94 ± 1.51 | 1.93 ± 1.56 | 1.95 ± 1.49 | 0.827 |
BUA (dB/MHz) | 68.94 ± 15.92 | 68.11 ± 17.43 | 69.92 ± 18.41 | 0.208 |
SOS (m/s) | 1548.89 ± 25.60 | 1547.03 ± 25.24 | 1552.00 ± 30.91 | <0.001 |
SI | 59.88 ± 15.64 | 58.80 ± 16.66 | 61.41 ± 19.23 | 0.074 |
Total body FM (kg) | 7.53 ± 5.30 | 7.16 ± 5.52 | 7.73 ± 5.18 | 0.177 |
Total body FM% (%) | 13.71 ± 6.97 | 15.38 ± 8.43 | 12.79 ± 5.82 | <0.001 |
Trunk FM (kg) | 2.99 ± 2.99 | 2.67 ± 3.00 | 3.17 ± 2.97 | <0.001 |
Limb FM (kg) | 3.66 ± 2.22 | 3.68 ± 2.41 | 3.65 ± 2.12 | 0.860 |
Trunk-to-limb FM ratio | 0.68 ± 0.32 | 0.56 ± 0.33 | 0.74 ± 0.29 | <0.001 |
Total body FM-to-lean mass ratio | 0.31 ± 0.21 | 0.37 ± 0.28 | 0.27 ± 0.15 | <0.001 |
BUA | SOS | SI | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 1 | Model 2 | Model 1 | Model 2 | |||||||
sβ | p | sβ | p | sβ | p | sβ | p | sβ | p | sβ | p | |
Total body FM (kg) | −0.162 | 0.069 | −0.163 | 0.069 | −0.434 | <0.001 | −0.437 | <0.001 | −0.299 | 0.001 | −0.302 | 0.001 |
Total body FM% (%) | −0.062 | 0.385 | −0.061 | 0.390 | −0.342 | <0.001 | −0.340 | <0.001 | −0.192 | 0.007 | −0.180 | 0.008 |
Trunk FM (kg) | −0.152 | 0.113 | −0.152 | 0.114 | −0.449 | <0.001 | −0.454 | <0.001 | −0.299 | 0.002 | −0.302 | 0.002 |
Limb FM (kg) | −0.157 | 0.043 | −0.144 | 0.067 | −0.382 | <0.001 | −0.385 | <0.001 | −0.273 | <0.001 | −0.275 | <0.001 |
Trunk-to-limb FM ratio | 0.053 | 0.429 | 0.054 | 0.423 | −0.088 | 0.192 | −0.078 | 0.253 | −0.004 | 0.948 | −0.006 | 0.930 |
Total body FM-to-lean mass ratio | −0.058 | 0.381 | −0.057 | 0.390 | −0.319 | <0.001 | −0.319 | <0.001 | −0.180 | 0.007 | −0.179 | 0.007 |
BUA | SOS | SI | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 1 | Model 2 | Model 1 | Model 2 | |||||||
sβ | p | sβ | p | sβ | p | sβ | p | sβ | p | sβ | p | |
Total body FM (kg) | 0.150 | 0.364 | 0.150 | 0.372 | −0.372 | 0.023 | −0.389 | 0.019 | −0.053 | 0.750 | −0.060 | 0.721 |
Total body FM% (%) | 0.184 | 0.156 | 0.194 | 0.140 | −0.221 | 0.087 | −0.226 | 0.083 | 0.035 | 0.787 | 0.040 | 0.762 |
Trunk FM (kg) | 0.207 | 0.242 | 0.207 | 0.250 | −0.374 | 0.034 | −0.392 | 0.028 | −0.013 | 0.940 | −0.021 | 0.906 |
Limb FM (kg) | 0.070 | 0.625 | 0.069 | 0.635 | −0.363 | 0.011 | −0.375 | 0.009 | −0.105 | 0.469 | −0.110 | 0.450 |
Trunk-to-limb FM ratio | 0.122 | 0.271 | 0.135 | 0.232 | 0.052 | 0.635 | 0.060 | 0.594 | 0.108 | 0.334 | 0.120 | 0.290 |
Total body FM-to-lean mass ratio | 0.138 | 0.270 | 0.143 | 0.256 | −0.239 | 0.054 | −0.243 | 0.053 | −0.005 | 0.970 | −0.002 | 0.985 |
BUA | SOS | SI | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 1 | Model 2 | Model 1 | Model 3 | |||||||
sβ | p | sβ | p | sβ | p | sβ | p | sβ | p | sβ | p | |
Total body FM (kg) | −0.310 | 0.004 | −0.305 | 0.004 | −0.427 | <0.001 | −0.431 | <0.001 | −0.391 | <0.001 | −0.390 | <0.001 |
Total body FM% (%) | −0.209 | 0.015 | −0.204 | 0.018 | −0.339 | <0.001 | −0.337 | <0.001 | −0.287 | 0.001 | −0.283 | 0.001 |
Trunk FM (kg) | −0.336 | 0.003 | −0.330 | 0.004 | −0.475 | <0.001 | −0.479 | <0.001 | −0.429 | <0.001 | −0.427 | <0.001 |
Limb FM (kg) | −0.255 | 0.006 | −0.251 | 0.007 | −0.341 | <0.001 | −0.347 | <0.001 | −0.317 | 0.001 | −0.317 | 0.001 |
Trunk-to-limb FM ratio | <0.001 | 1.000 | 0.002 | 0.976 | −0.156 | 0.051 | −0.145 | 0.075 | −0.070 | 0.375 | −0.064 | 0.429 |
Total body FM-to-lean mass ratio | −0.218 | 0.010 | −0.214 | 0.012 | −0.321 | <0.001 | −0.322 | <0.001 | −0.284 | 0.001 | −0.282 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, K.-L.; Li, H.; Yang, W.-Y.; Hou, J.-L.; Xu, Y.; Xiao, S.-M. Analysis of the Association between Fat Mass Distribution and Bone Mass in Chinese Male Adolescents at Different Stages of Puberty. Nutrients 2021, 13, 2163. https://doi.org/10.3390/nu13072163
Deng K-L, Li H, Yang W-Y, Hou J-L, Xu Y, Xiao S-M. Analysis of the Association between Fat Mass Distribution and Bone Mass in Chinese Male Adolescents at Different Stages of Puberty. Nutrients. 2021; 13(7):2163. https://doi.org/10.3390/nu13072163
Chicago/Turabian StyleDeng, Kai-Li, Hui Li, Wan-Yu Yang, Jin-Li Hou, Yang Xu, and Su-Mei Xiao. 2021. "Analysis of the Association between Fat Mass Distribution and Bone Mass in Chinese Male Adolescents at Different Stages of Puberty" Nutrients 13, no. 7: 2163. https://doi.org/10.3390/nu13072163
APA StyleDeng, K. -L., Li, H., Yang, W. -Y., Hou, J. -L., Xu, Y., & Xiao, S. -M. (2021). Analysis of the Association between Fat Mass Distribution and Bone Mass in Chinese Male Adolescents at Different Stages of Puberty. Nutrients, 13(7), 2163. https://doi.org/10.3390/nu13072163