The Content of Minerals in the PCOS Group and the Correlation with the Parameters of Metabolism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Methods of Measurement of Body Composition
2.3. Blood Sample Collection
2.4. Biochemical Measurements
2.5. Chemical Analyses
2.5.1. Reagents
2.5.2. Instruments
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sharif, M.E.; Adam, I.; Ahmed, M.A.; Rayis, D.A.; Hamdan, H.Z. Serum level of zinc and copper in Sudanese women with polycystic ovarian syndrome. Biol. Trace Elem. Res. 2017, 180, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Dongxia, Z.; Danying, Z.; Bai, L.; Yu, R.; Cheng, W. Quercetin decreases insulin resistance in a polycystic ovary syndrome rat model by improving inflammatory microenvironment. Reprod. Sci. 2017, 24, 682–690. [Google Scholar] [CrossRef]
- Torshizi, F.F.; Chamani, M.; Khodaei, H.R.; Sadeghi, A.A.; Hejazi, S.H.; Majidzadeh, H.R.; Heravi, R.M. Therapeutic effects of organic zinc on reproductive hormones, insulin resistance and mTOR expression, as a novel component, in a rat model of Polycystic ovary syndrome. Iran. J. Basic Med. Sci. 2020, 23, 36–45. [Google Scholar] [CrossRef]
- Namvar, K. Effect of laparoscopic ovarian cauterization on Zn, Fe and Mg serum level in PCOS patient. Womens Health Gynecol. 2017, 3, 72. [Google Scholar]
- Günalan, E.; Yaba, A.; Yılmaz, B. The effect of nutrient supplementation in the management of polycystic ovary syndrome-associated metabolic dysfunctions: A critical review. J. Turk. Ger. Gynecol. Assoc. 2018, 19, 220–232. [Google Scholar] [CrossRef] [PubMed]
- Chavarro, J.E.; Rich-Edwards, J.; Rosner, B.; Willett, W. Iron Intake and Risk of Ovulatory Infertility. Obstet. Gynecol. 2006, 108, 1145–1152. [Google Scholar] [CrossRef] [PubMed]
- Teede, H.J.; Misso, M.L.; Costello, M.F. International PCOS Network Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Hum. Reprod. 2018, 33, 1602–1618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakraborty, P.; Ghosh, S.; Goswami, S.K. Altered trace mineral milieu might play an aetiological role in the pathogenesis of polycystic ovary syndrome. Biol. Trace Elem. Res. 2013, 152, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Coskun, A.; Arikan, T.; Kilinc, M. Plasma selenium levels in Turkish women with polycystic ovary syndrome. Eur. J. Obstet. Gynecol. Reprod. Biol. 2013, 168, 183–186. [Google Scholar] [CrossRef] [PubMed]
- Tatarchuk, T.F.; Kosei, N.V.; Vetokh, H.V.; Gunkov, S.V. Serum micro- and macroelements levels in women with polycystic ovary syndrome associated with pelvic inflammatory disease. Reprod. Endocrinol. 2016, 27, 26–29. [Google Scholar] [CrossRef]
- Muneyyirci-Delale, O.; Nacharaju, V.L.; Altura, B.M. Sex steroid hormones modulate serum ionized magnesiumand calcium levels throughout the menstrual cycle in women. Fertil. Steril. 1998, 69, 958–962. [Google Scholar] [CrossRef]
- Pine, M.; Lee, B.; Dearth, R. Manganese acts centrallyto stimulate luteinizing hormone secretion: A potential influenceon female pubertal development. Toxicol. Sci. 2005, 85, 880–885. [Google Scholar] [CrossRef] [Green Version]
- Zagrodzki, P.; Ratajczak, R. Selenium status, sex hor-mones, and thyroid function in young women. J. Trace Elem. Med. Biol. 2008, 22, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Capelo, A.; Cremades, A.; Tejada, F. Potassium regulates plasma testosterone and renal ornithinedecarboxylase in mice. FEBS Lett. 1993, 333, 32–34. [Google Scholar] [CrossRef] [Green Version]
- Basini, G.; Tamanini, C. Selenium stimulates estradiolproduction in bovine granulosa cells: Possible involvement ofnitric oxide. Domest. Anim. Endocrinol. 2000, 18, 1–17. [Google Scholar] [CrossRef]
- Kurdoglu, Z.; Kurdoglu, M.; Demir, H. Serum trace elements and heavy metals in polycystic ovary syndrome. Hum. Exp. Toxicol. 2012, 5, 452–456. [Google Scholar] [CrossRef]
- Al-Gubory, K.H.; Bolifraud, P.; Germain, G.; Nicole, A.; Ceballos-Bicot, I. Antioxidant enzymatic defence systems in sheep corpus luteum throughout pregnancy. Reproduction 2004, 128, 767–774. [Google Scholar] [CrossRef] [Green Version]
- Al-Jeborry, M.M. Some Altered Trace Elements in Patients with Polycystic Ovary Syndrome. J. Adv. Med. Med. Res. 2017, 20, 1–10. [Google Scholar] [CrossRef]
- Mohmmed, A.H.; Awad, N.A.; AL-Fartosy, A.J. Study of trace elements selenium, copper, zinc and manganese level in polycystic ovary syndrome (PCOS). Int. J. Res. Appli. Sci. Biotechnol. 2019, 6. [Google Scholar] [CrossRef]
- Kelly, C.C.; Lyall, H.; Petrie, J.R.; Gould, G.W.; Connell, J.M.; Sattar, N. Low grade chronic inflammation in women with polycystic ovarian syndrome. J. Clin. Endocrinol. Metab. 2001, 86, 2453–2455. [Google Scholar] [CrossRef]
- Grossi, E.; Castiglioni, S.; Moscheni, C.; Antonazzo, P.; Cetin, I.; Savasi, V.M. Serum magnesium and calcium levels in infertile women during a cycle of reproductive assistance. Magnes. Res. 2017, 30, 35–41. [Google Scholar] [CrossRef]
- Evangelopoulos, A.A.; Vallianou, N.G.; Panagiotakos, D.B.; Georgiou, A.; Zacharias, G.A.; Alevra, A.N.; Zalokosta, G.J.; Vogiatzakis, E.D.; Avgerinos, P.C. An inverse relationship between cumulating components of the metabolic syndrome and serum magnesium levels. Nutr. Res. 2008, 28, 659–663. [Google Scholar] [CrossRef]
- Harrington, J.M.; Young, D.J.; Essader, A.S.; Sumner, S.J.; Levine, K.E. Analysis of human serum and whole blood for mineral content by ICP-MS and ICP-OES: Development of a mineralomics method. Biol. Trace Elem. Res. 2004, 160, 132–142. [Google Scholar] [CrossRef] [Green Version]
- Jamilian, M.; Maktabi, M.; Asemi, Z. A trial on the effects of magnesium-zinc-calcium-vitamin d co-supplementation on glycemic control and markers of cardio-metabolic risk in women with polycystic ovary syndrome. Arch. Iran. Med. 2017, 20, 640–645. [Google Scholar]
- Norgan, N. Laboratory and field measurements of body composition. Public Health Nutr. 2005, 8, 1108–1122. [Google Scholar] [CrossRef] [Green Version]
- Currie, L.A. Nomenclature in evaluation of analytical methods including detection and quantification capabilities (IUPAC Recommendations 1995). Anal. Chim. Acta 1999, 391, 105–126. [Google Scholar] [CrossRef]
- Benaglia, L.; Paffoni, A.; Mangiarini, A.; Restelli, L.; Bettinardi, N.; Somigliana, E.; Vercellini, P.; Fedele, L. Intrafollicular iron and ferritin in women with ovarian endometriomas. Acta Obstet. Gynecol. Scand. 2015, 94, 646–653. [Google Scholar] [CrossRef]
- Donner, T.; Sarkar, S. Insulin—Pharmacology, Therapeutic Regimens and Principles of Intensive Insulin Therapy; Feingold, K.R., Anawalt, B., Boyce, A., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. Available online: https://www.ncbi.nlm.nih.gov/books/NBK278938/ (accessed on 20 February 2021).
- Zheng, G.; Wang, L.; Guo, Z. Association of serum heavy metals and trace element concentrations with reproductive hormone levels and polycystic ovary syndrome in a Chinese population. Biol. Trace Elem. Res. 2015, 167, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Guler, I.O.; Himmetoglu, A.; Turp, A.; Erdem, M.; Erdem, M.A.; Onan, A. Zinc and homocysteine levels in polycystic ovarian syndrome patients with insulin resistance. Biol. Trace Elem. Res. 2014, 158, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Pisoschi, A.M.; Pop, A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem. 2015, 97, 55–74. [Google Scholar] [CrossRef] [PubMed]
- Khalaf, B.H.; Ouda, M.H.; Alghurabi, H.S.; Shubbar, A.S. Zinc and copper levels and their correlation with polycystic ovary syndrome biochemical changes. Int. J. Pharm. Sci. Res. 2018, 9, 3036–3041. [Google Scholar] [CrossRef]
- Afkhami-Ardekani, M.; Karimi, M.; Mohammadi, S.M.; Nourani, F. Effect of zinc sulfate supplementation on lipid and glucose in type 2 diabetic patients. Pak. J. Nutr. 2008, 7, 550–553. [Google Scholar] [CrossRef] [Green Version]
- Hashemipour, M.; Kelishadi, R.; Shapouri, J.; Sarrafzadegan, N.; Amini, M.; Tavakoli, N. Effect of zinc supplementation on insulin resistance and components of the metabolic syndrome in prepubertal obese children. Hormones 2009, 8, 279–285. [Google Scholar] [CrossRef]
- Kim, J.; Lee, S. Effect of zinc supplementation on insulin resistance and metabolic risk factors in obese Korean women. Nutr. Res. Pract. 2012, 6, 221–225. [Google Scholar] [CrossRef] [Green Version]
- Roozbeh, J.; Hedayati, P.; Sagheb, M.M.; Sharifian, M.; Jahromi, A.H.; Shaabani, S. Effect of zinc supplementation on triglyceride, cholesterol, LDL, and HDL levels in zinc-deficient hemodialysis patients. Ren. Fail. 2009, 2009 31, 798–801. [Google Scholar] [CrossRef]
- Seet, R.C.S.; Lee, C.-Y.J.; Lim, E.C.H.; Quek, A.M.L.; Huang, H.; Huang, S.H. Oral zinc supplementation does not improve oxidative stress or vascular function in patients with type 2 diabetes with normal zinc levels. Atherosclerosis 2011, 219, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Mehde, A.A.; Resan, A.K. Study of several biochemical features in sera of patients with polycystic ovaries and compared with the control group. Aust. J. Basic Appl. Sci. 2014, 8, 620–627. [Google Scholar]
- Prodarchuk, M.G.; Tatarchuk, T.F.; Gunkov, S.V.; Zhminko, P.G.; Regeda, S.I.; Rymarchuk, M.I. The role of macro- and microelements in the pathogenesis of polycystosis of the ovaries. Reprod. Endocrinol. 2020, 53, 19–22. [Google Scholar] [CrossRef]
- Celik, C.; Bastu, E.; Abali, R.; Alpsoy, S.; Guzel, E.C.; Aydemir, B.; Yeh, J. The relationship between copper, homocysteine and early vascular disease in lean women with polycystic ovary syndrome. Gynecol. Endocrinol. 2013, 29, 488–491. [Google Scholar] [CrossRef]
- Spritzer, P.M.; Lecke, S.B.; Fabris, V.C. Blood trace element concentrations in polycystic ovary syndrome: Systematic review and meta-analysis. Biol. Trace Elem. Res. 2017, 175, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Shangari, N.; Chan, T.S.; Chan, K. Copper-catalyzed ascorbate oxidation results in glyoxal/AGE formation and cytotoxicity. Mol. Nutr. Food Res. 2007, 51, 445–455. [Google Scholar] [CrossRef]
- Gunkov, S.; Tatarchuk, T.; Zhminko, P.; Regeda, S. Effect of manganese and nickel on prolactin levels in women with polycystic ovary syndrome. Georgian Med. News 2019, 289, 21–25. (In Russian) [Google Scholar]
- Escobar-Morreale, H.F. Iron metabolism and the polycystic ovary syndrome. Trends Endocrinol. Metab. 2012, 23, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Tang, Y.; Lin, C.; Huang, O.; Lei, D.; Hu, Y. Serum macroelement and microelement concentrations in patients with polycystic ovary syndrome: A cross-sectional study. Biol. Trace Elem. Res. 2017, 176, 73–80. [Google Scholar] [CrossRef]
- Escobar-Morreale, H.F.; Luque-Ramírez, M.; Álvarez-Blasco, F.; Botella-Carretero, J.I.; Sancho, J.; San Millán, J.L. Body iron stores are increased in overweight and obese women with polycystic ovary syndrome. Diabetes Care 2005, 28, 2042–2044. [Google Scholar] [CrossRef] [Green Version]
- Luque-Ramírez, M.; Álvarez-Blasco, F.; Botella-Carretero, J.; Sanchón, R.; San Millán, J.; Escobar-Morreale, H.F. Increased body iron stores of obese women with polycystic ovary syndrome are a consequence of insulin resistance and hyperinsulinism and are not a result of reduced menstrual losses. Diabetes Care 2007, 30, 2309–2313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Hakeim, H.K. Correlation between Iron status parameters and hormone levels in women with polycystic ovary syndrome. Clin. Med. Insights Women’s Health 2012, 5, 1–8. [Google Scholar] [CrossRef]
- Mhaibes, S.A.; Taher, M.A.; Badr, A.H. A comparative study of blood levels of manganese, some macroelements and heavy metals in obese and non-obese polycystic ovary syndrome patients. Iraqi J. Pharm. Sci. 2017, 26, 85–94. [Google Scholar]
- Morais, J.B.S.; Severo, J.S.; Alencar, G.R.R.; Oliveira, A.R.S.; Cruz, K.J.C.; Marreiro, D.D.N.; Freitas, B.J.E.; Carvalho, C.M.R.; Martins, M.D.C.; Frota, K.M.G. Effect of magnesium supplementation on insulin resistance in humans: A systematic review. Nutrition 2017, 38, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Babapour, M.; Mohammadi, H.; Kazemi, M.; Hadi, A.; Rezazadegan, M.; Askari, G. Associations between serum magnesium concentrations and polycystic ovary syndrome status: A systematic review and meta-analysis. Biol. Trace Elem. Res. 2021, 199, 1297–1305. [Google Scholar] [CrossRef]
- Tarleton, E.K. Factors influencing magnesium consumption among adults in the United States. Nutr. Rev. 2018, 76, 526–538. [Google Scholar] [CrossRef] [PubMed]
- Swetha, N.; Vyshnavi, R.; Modgan, P.; Rajgopalan, B. Ccorrelative study of biochemical parameters in polycystic ovarian syndrome. Int. J. Biol. Med. Res. 2013, 4, 3148–3154. [Google Scholar]
- Sharifi, F.; Mazloomi, S.; Hajihosseini, R.; Mazloomzadeh, S. Serum magnesium concentrations in polycystic ovary syndrome and its association with insulin resistance. Gynecol. Endocrinol. 2012, 28, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Kauffman, R.P.; Tullar, P.E.; Nipp, R.D.; Castracane, V.D. Serum magnesium concentrations and metabolic variables in polycystic ovary syndrome. Acta Obstet. Gynecol. Scand. 2011, 5, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, K.P.; Zelig, R.; Parker, A.R.; Haggag, A. Insulin resistance and serum magnesium concentrations among women with polycystic ovary syndrome. Curr. Dev. Nutr. 2019, 3, nzz108. [Google Scholar] [CrossRef]
- Romani, L. Cellular magnesium homeostasis. Arch. Biochem. Biophys. 2011, 512, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Cornelius, F.; Habeck, M.; Kanai, R.; Toyoshima, C.; Karlish, S.J.D. General and specific lipid–proteininteractions in Na, K-ATPase. Biochim. Biophys. Acta Biomembr. 2015, 1848, 1729–1743. [Google Scholar] [CrossRef] [Green Version]
- Matchkov, V.V.; Krivoi, I.I. Specialized Functional Diversity and Interactions of the Na, K-ATPase. Front. Physiol. 2016, 7, 179. [Google Scholar] [CrossRef] [Green Version]
- Jain, S.K.; Lim, G. Lipoic acid decreases lipid peroxidation and protein glycosylation and increases (Na+ + K+)- and Ca++-ATPase activities in high glucose-treated human erythrocytes. Free Radic. Biol. Med. 2000, 29, 1122–1128. [Google Scholar] [CrossRef]
- Liu, H.; Guo, D.; Ruzi, A.; Chen, Y.; Pan, T.; Yang, F. Testosterone improves the differentiation efficiency of insulin- producing cells from human induced pluripotent stem cells. PLoS ONE 2017, 12, e0179353. [Google Scholar] [CrossRef]
Parameters | PCOS-IR (n = 28) | PCOS-NIR (n = 19) | TOTAL PCOS (n = 47) | CG (n = 16) | ||||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | |||
Age (y) | 27.7 | 5.5 | 29.2 | 3.4 | 28.3 | 4.6 | 29.0 | 4.4 |
Height (m) | 1.67 a* | 0.06 | 1.67 a | 0.05 | 1.67 | 0.06 | 1.68 | 0.05 |
body weight (kg) | 90.13 a | 16.08 | 72.28 b | 10.24 | 82.91 | 16.47 | 65.8 | 6.2 |
BM (kcal) | 1536 a | 177 | 1426 b | 97 | 1492 | 158 | 1404 | 96 |
TM (kcal) | 2181 a | 239 | 2053 b | 141 | 2129 | 213 | 2066 | 122 |
Na/K | 0.93 a | 0.19 | 0.99 a | 0.13 | 0.95 | 0.17 | 1.19 | 0.82 |
BCMI | 10.17 a | 2.99 | 9.05 a | 2.59 | 9.72 | 2.86 | 9.8 | 2.81 |
TBW (L) | 38.12 a | 4.88 | 33.74 b | 3.24 | 36.35 | 4.78 | 31.92 | 4.07 |
TBW (%) | 42.78 a | 4.29 | 46.54 b | 5.03 | 44.30 | 4.92 | 50.8 | 5.22 |
TBW IN (L) | 20.23 a | 4.25 | 17.33 b | 2.39 | 19.06 | 3.86 | 16.88 | 2.51 |
TBW IN (%) | 52.89 a | 6.95 | 51.27 a | 3.76 | 52.23 | 5.88 | 51.78 | 4.86 |
TBW EX (L) | 17.86 a | 3.23 | 16.41 a | 1.77 | 17.27 | 2.80 | 15.3 | 2.81 |
TBW EX (%) | 46.96 a | 7.07 | 47.09 a | 8.22 | 47.01 | 7.47 | 47.0 | 7.14 |
Phase angle (PA) | 6.87 a | 5.42 | 5.44 a | 0.73 | 6.29 | 4.24 | 6.38 | 4.83 |
fat mass (kg) | 38.31 a | 11.64 | 26.82 b | 9.05 | 33.67 | 12.00 | 20.12 | 7.48 |
fat mass (%) | 41.85 a | 7.49 | 36.55 a | 8.74 | 39.71 | 8.35 | 30.9 | 8.69 |
BCM (kg) | 27.39 a | 7.51 | 23.34 b | 3.34 | 25.75 | 6.45 | 22.7 | 5.14 |
BCM (%) | 51.40 a | 8.78 | 50.53 a | 4.01 | 51.05 | 7.19 | 50.31 | 4.17 |
muscle m (kg) | 36.45 a | 8.90 | 30.91 b | 6.83 | 34.21 | 8.50 | 30.26 | 6.96 |
muscle m (%) | 41.34 a | 12.02 | 43.11 a | 9.75 | 42.05 | 11.08 | 48.44 | 11.64 |
BMI (m2/kg) | 32.64 a | 6.26 | 26.00 b | 3.41 | 29.95 | 6.20 | 2.3 | 3.8 |
WHR | 0.96 a | 0.07 | 0.87 b | 0.06 | 0.93 | 0.08 | 0.79 | 0.03 |
Parameters | PCOS-IR (n = 28) | PCOS-NIR (n = 19) | TOTAL (n = 47) | |||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | |
DHEA-SO4 (μg/d) | 246.81 | 90.00 | 236.89 | 89.66 | 242.80 | 89.02 |
Androstendione (ng/mL) | 3.54 | 1.05 | 3.84 | 1.63 | 3.66 | 1.31 |
Estradiol (ng/mL) | 43.76 | 11.53 | 35.80 | 14.31 | 40.54 | 13.18 |
SHBG (nmol/L) | 32.59 | 13.08 | 44.07 | 20.77 | 37.23 | 17.37 |
Testosterone (ng/mL) | 1.04 | 1.39 | 0.48 | 0.19 | 0.81 | 1.11 |
Insulin test 0 (mU/L) | 15.79 a* | 4.29 | 7.11 b | 1.93 | 12.28 | 5.55 |
Insulin test after 2 h (mU/L) | 99.12 a | 50.02 | 45.02 b | 27.14 | 77.25 | 49.77 |
Glukose test 0 (mg/dl) | 94.07 a | 9.01 | 88.45 b | 9.09 | 91.80 | 9.36 |
Glukose test after 2 h (mg/dL) | 123.9 a | 30.4 | 100.0 b | 19.6 | 114.24 | 28.87 |
IR | 0.17 a | 0.05 | 0.08 b | 0.02 | 0.13 | 0.06 |
HOMA-IR | 3.66 a | 1.02 | 1.56 b | 0.47 | 2.81 | 1.33 |
Total cholesterol (mg/dL) | 185.4 a | 27.9 | 184.8 a | 24.6 | 185.2 | 26.3 |
LDL (mg/dL) | 120.8 a | 27.3 | 104.2 b | 20.1 | 114.1 | 25.7 |
TG (mg/dL) | 123.3 a | 55.2 | 95.3 a | 41.0 | 112.0 | 51.4 |
HDL (mg/dL) | 51.0 a | 12.3 | 65.8 b | 17.5 | 57.0 | 16.2 |
Element | PCOS-IR n = 28 | PCOS-NIR n = 19 | Control Group (CG) n = 16 | p-Value * PCOS-IR vs. PCOS-NIR | p-Value * PCOS-IR vs. CG | p-Value * PCOS-NIR vs. CG | |||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | ||||
(Range) | (Range) | (Range) | |||||||
Zn | 9.40 | 2.32 | 8.20 | 1.95 | 8.96 | 2.28 | 0.381 | 0.871 | 0.711 |
(5.30–14.79) | (6.18–12.62) | (5.20–12.60) | |||||||
Fe | 12.03 | 4.86 | 11.12 | 4.20 | 11.22 | 4.04 | 0.869 | 0.888 | 0.746 |
(6.47–23.30) | (7.76–21.04) | (5.13–16.07) | |||||||
Cu | 1.19 | 0.49 | 1.07 | 0.35 | 1.08 | 0.41 | 0.791 | 0.788 | 0.843 |
(0.55–2.43) | (0.70–1.91) | (0.48–1.80) | |||||||
Mg | 282.21 | 88.54 | 328.13 | 85.60 | 299.01 | 55.85 | 0.336 | 0.852 | 0.682 |
(176.77–583.99) | (204.38–472.19) | (201.50–385.15) | |||||||
Na | 3024.99 | 844.38 | 2542.22 | 770.89 | 2867.27 | 468.18 | 0.245 | 0.847 | 0.572 |
(2066.85–5073.79) | (1329.71–3795.77) | (2001.1–3598.2) | |||||||
K | 3704.23 | 2124.93 | 3157.57 | 1165.88 | 3551.73 | 379.06 | 0.659 | 0.966 | 0.830 |
(1559.0–8430.1) | (1967.2–5362.3) | (3006.2–4012.5) |
Element | PCOS-IR n = 28 | PCOS-NIR n = 19 | Control Group (CG) n = 16 | p-Value * PCOS-IR vs. PCOS-NIR | p-Value * PCOS-IR vs. CG | p-Value * PCOS-NIR vs. CG | |||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | ||||
Zn (µg/g) | 10.14 | 2.11 | 9.89 | 1.44 | 10.30 | 1.67 | 0.910 | 0.970 | 0.825 |
Ni (µg/g) | 0.001 | 0.0009 | 0.001 | 0.0006 | 0.002 | 0.000 | 0.348 | 0.230 | 0.116 |
Fe (µg/g) | 868.0 | 155.8 | 835.3 | 156.4 | 833.0 | 94.6 | 0.766 | 0.799 | 0.999 |
Mn (µg/g) | 0.017 | 0.006 | 0.017 | 0.008 | 0.020 | 0.009 | 0.970 | 0.527 | 0.653 |
Cu (µg/g) | 0.714 | 0.129 | 0.713 | 0.114 | 0.761 | 0.146 | 0.999 | 0.608 | 0.594 |
Mg (µg/g) | 48.4 | 8.3 | 50.0 | 8.4 | 45.3 | 10.7 | 0.849 | 0.637 | 0.359 |
Na (µg/g) | 374.3 | 84.3 | 396.3 | 66.6 | 367.9 | 88.9 | 0.678 | 0.975 | 0.620 |
K (µg/g) | 2541.8 | 330.9 | 2409.6 | 347.1 | 2336.9 | 211.4 | 0.401 | 0.203 | 0.813 |
Zn (µg/g) | Ni (µg/g) | Fe (µg/g) | Mn (µg/g) | Cu (µg/g) | Mg (µg/g) | Na (µg/g) | K (µg/g) | |
---|---|---|---|---|---|---|---|---|
Insulin test 0 (mU/L) | PCOS-NIR | PCOS-NIR | PCOS-NIR | PCOS-NIR | PCOS-NIR | PCOS-NIR | PCOS-NIR | PCOS-NIR |
p = −0.270 | p = 0.22 | p = 0.050 | p = −0.091 | p = −0.197 | p = −0.258 | p = 0.148 | p = −0.290 | |
PCOS-IR | PCOS-IR | PCOS-IR | PCOS-IR | PCOS-IR | PCOS-IR | PCOS-IR | PCOS-IR | |
p = −0.003 | p = 0.112 | p = 0.193 | p = −0.063 | p = 0.108 | p = −0.218 | p = −0.177 | p = 0.133 | |
Insulin test after 2 h (mU/L) | PCOS-NIR | PCOS-NIR | PCOS-NIR | PCOS-NIR | PCOS-NIR | PCOS-NIR | PCOS-NIR | PCOS-NIR |
p = −0336 | p = 0.010 | p = −0.069 | p = −0.027 | p = −0.336 | p = −0.190 | p = 0.207 | p = −0.006 | |
PCOS-IR | PCOS-IR | PCOS-IR | PCOS-IR | PCOS-IR | PCOS-IR | PCOS-IR | PCOS-IR | |
p = 0.044 | p = 0.058 | p = −0.005 | p = −0.011 | p = 0.278 | p = −0.164 | p = 0.279 | p = 0.192 | |
Glukose test 0 (mg/dL) | PCOS-NIR | PCOS-NIR | PCOS-NIR | PCOS-NIR | PCOS-NIR | PCOS-NIR | PCOS-NIR | PCOS-NIR |
p = −0.396 | p = 0.245 | p = 0.121 | p = 0.171 | p = −0.158 | p = −0.165 | p = 0.143 | p = −0.407 | |
PCOS-IR | PCOS-IR | PCOS-IR | PCOS-IR | PCOS-IR | PCOS-IR | PCOS-IR | PCOS-IR | |
p = 0.304 | p = −0.300 | p = 0.275 | p = 0.254 | p = −0.062 | p = 0.192 | p = −0.018 | p = 0.015 | |
Glukose test after 2 h (mg/dL) | PCOS-NIR | PCOS-NIR | PCOS-NIR | PCOS-NIR | PCOS-NIR | PCOS-NIR | PCOS-NIR | PCOS-NIR |
p = −0.325 | p = −0.026 | p = −0.254 | p = 0.058 | p = −0.105 | p = −0.200 | p = 0.160 | p = −0.003 | |
PCOS-IR | PCOS-IR | PCOS-IR | PCOS-IR | PCOS-IR | PCOS-IR | PCOS-IR | PCOS-IR | |
p = 0.127 | p = −0.216 | p = 0.058 | p = 0.087 | p = −0.055 | p = −0.063 | p = 0.092 | p = −0.063 | |
Total cholesterol (mg/dL) | PCOS-NIR | PCOS-NIR | PCOS-NIR | PCOS-NIR | PCOS-NIR | PCOS-NIR | PCOS-NIR | PCOS-NIR |
p = 0.150 | p = −0.132 | p = 0.113 | p = 0.102 | p = −0.043 | p = 0.439 | p = −0.233 | p = −0.150 | |
PCOS-IR | PCOS-IR | PCOS-IR | PCOS-IR | PCOS-IR | PCOS-IR | PCOS-IR | PCOS-IR | |
p = 0.146 | p = 0.360 | p = −0.068 | p = −0.094 | p = 0.050 | p = 0.094 | p = −0.089 | p = 0.017 | |
LDL (mg/dL) | PCOS-NIR | PCOS-NIR | PCOS-NIR | PCOS-NIR | PCOS-NIR | PCOS-NIR | PCOS-NIR | PCOS-NIR |
p = −0.029 | p = −0.074 | p = 0.082 | p = 0.234 | p = −0.177 | p = 0.250 | p = −0.069 | p = −0.210 | |
PCOS-IR | PCOS-IR | PCOS-IR | PCOS-IR | PCOS-IR | PCOS-IR | PCOS-IR | PCOS-IR | |
p = 0.034 | p = 0.501 | p = 0.113 | p = 0.027 | p = −0.080 | p = 0.061 | p = −0.122 | p = −0.093 | |
TG (mg/dL) | PCOS-NIR | PCOS-NIR | PCOS-NIR | PCOS-NIR | PCOS-NIR | PCOS-NIR | PCOS-NIR | PCOS-NIR |
p = −0.215 | p = 0.213 | p = −0.172 | p = 0.010 | p = 0.005 | p = −0.139 | p = 0.123 | p = −0.337 | |
PCOS-IR | PCOS-IR | PCOS-IR | PCOS-IR | PCOS-IR | PCOS-IR | PCOS-IR | PCOS-IR | |
p = 0.079 | p = 0.251 | p = −0.065 | p = 0.006 | p = 0.146 | p = 0.063 | p = 0.084 | p = 0.093 | |
HDL (mg/dL) | PCOS-NIR | PCOS-NIR | PCOS-NIR | PCOS-NIR | PCOS-NIR | PCOS-NIR | PCOS-NIR | PCOS-NIR |
p = 0.611 | p = −0.509 | p = 0.259 | p = −0.257 | p = 0.207 | p = 0.519 | p = −0.559 | p = 0.238 | |
PCOS-IR | PCOS-IR | PCOS-IR | PCOS-IR | PCOS-IR | PCOS-IR | PCOS-IR | PCOS-IR | |
p = 0.128 | p = −0.017 | p = −0.024 | p = 0.023 | p = −0.135 | p = −0.077 | p = 0.257 | p = 0.125 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pokorska-Niewiada, K.; Brodowska, A.; Szczuko, M. The Content of Minerals in the PCOS Group and the Correlation with the Parameters of Metabolism. Nutrients 2021, 13, 2214. https://doi.org/10.3390/nu13072214
Pokorska-Niewiada K, Brodowska A, Szczuko M. The Content of Minerals in the PCOS Group and the Correlation with the Parameters of Metabolism. Nutrients. 2021; 13(7):2214. https://doi.org/10.3390/nu13072214
Chicago/Turabian StylePokorska-Niewiada, Kamila, Agnieszka Brodowska, and Małgorzata Szczuko. 2021. "The Content of Minerals in the PCOS Group and the Correlation with the Parameters of Metabolism" Nutrients 13, no. 7: 2214. https://doi.org/10.3390/nu13072214
APA StylePokorska-Niewiada, K., Brodowska, A., & Szczuko, M. (2021). The Content of Minerals in the PCOS Group and the Correlation with the Parameters of Metabolism. Nutrients, 13(7), 2214. https://doi.org/10.3390/nu13072214