Use of the Spectroscopy-Based Veggie Meter® to Objectively Assess Fruit and Vegetable Intake in Low-Income Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Sample
2.2. Measures
2.2.1. Carotenoid Levels (VM Scores)
2.2.2. Participant Characteristics and Self-Reported FV Intake
2.3. Statistical Analysis
3. Results
3.1. Participant Characteristics and VM Scores
3.2. Repeatability of VM Scores
3.3. Bivariate Relationships with VM Scores
3.4. Determinants of VM Scores
4. Discussion
Study Limitations and Strengths
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aune, D.; Giovannucci, E.; Boffetta, P.; Fadnes, L.T.; Keum, N.; Norat, T.; Greenwood, D.C.; Riboli, E.; Vatten, L.J.; Tonstad, S. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality- a systematic review and dose-response meta-analysis of prospective studies. Int. J. Epidemiol. 2017, 46, 1029–1056. [Google Scholar] [CrossRef]
- Wallace, T.C.; Bailey, R.L.; Blumberg, J.B.; Burton-Freeman, B.; Chen, C.O.; Crowe-White, K.M.; Drewnowski, A.; Hooshmand, S.; Johnson, E.; Lewis, R.; et al. Fruits, vegetables, and health: A comprehensive narrative, umbrella review of the science and recommendations for enhanced public policy to improve intake. Crit. Rev. Food. Sci. Nutr. 2020, 60, 2174–2211. [Google Scholar] [CrossRef] [Green Version]
- Scherr, R.E.; Laugero, K.D.; Graham, D.J.; Cunningham, B.T.; Jahns, L.; Lora, K.R.; Reicks, M.; Mobley, A.R. Innovative techniques for evaluating behavioral nutrition interventions. Adv. Nutr. 2017, 8, 113–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roark, R.A.; Niederhauser, V.P. Fruit and vegetable intake: Issues with definition and measurement. Public Health Nutr. 2013, 16, 2–7. [Google Scholar] [CrossRef] [Green Version]
- Thompson, F.E.; Kirkpatrick, S.I.; Subar, A.F.; Reedy, J.; Schap, T.E.; Wilson, M.M.; Krebs-Smith, S.M. The national cancer institute’s dietary assessment primer: A resource for diet research. J. Acad. Nutr. Diet. 2015, 115, 1986–1995. [Google Scholar] [CrossRef] [Green Version]
- Radtke, M.D.; Pitts, S.J.; Jahns, L.; Firnhaber, G.C.; Loofbourrow, B.M.; Zeng, A.; Scherr, R.E. Criterion-related validity of spectroscopy-based skin carotenoid measurements as a proxy for fruit and vegetable intake: A systematic review. Adv. Nutr. 2020, 11, 1282–1299. [Google Scholar] [CrossRef] [PubMed]
- Mayne, S.T.; Cartmel, B.; Scarmo, S.; Lin, H.; Leffell, D.J.; Welch, E.; Ermakov, I.; Bhosale, P.; Bernstein, P.S.; Gellermann, W. Noninvasive assessment of dermal carotenoids as a biomarker of fruit and vegetable intake. Am. J. Clin. Nutr. 2010, 92, 794–800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pitts, S.B.; Jahns, L.; Wu, Q.; Moran, N.E.; Bell, R.A.; Truesdale, K.P.; Laska, M.N. A non-invasive assessment of skin carotenoid status through reflection spectroscopy is a feasible, reliable and potentially valid measure of fruit and vegetable consumption in a diverse community sample. Public Health Nutr. 2018, 21, 1664–1670. [Google Scholar] [CrossRef]
- Ermakov, I.V.; Ermakova, M.; Sharifzadeh, M.; Gorusupudi, A.; Farnsworth, K.; Bernstein, P.S.; Stookey, J.; Evans, J.; Arana, T.; Tao-Lew, L.; et al. Optical assessment of skin carotenoid status as a biomarker of vegetable and fruit intake. Arch. Biochem. Biophys. 2018, 646, 46–54. [Google Scholar] [CrossRef]
- Rush, E.; Amoah, I.; Diep, T.; Jalili-Moghaddam, S. Determinants and suitability of carotenoid reflection score as a measure of carotenoid status. Nutrients 2020, 12, 113. [Google Scholar] [CrossRef] [Green Version]
- McGuirt, J.T.; Jilcott Pitts, S.B.; Gustafson, A. Association between spatial access to food outlets, frequency of grocery shopping, and objectively-assessed and self-reported fruit and vegetable consumption. Nutrients 2018, 10, 1974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, C.; O’Brien, D.; Paschall, M.; Bersamin, A. Validity of reflection spectroscopy as a biomarker of vegetable and fruit intake in a Yu’pik Alaska Native population (P18-124-19). Curr. Dev. Nutr. 2019, 3 (Suppl. S1). [Google Scholar] [CrossRef] [Green Version]
- Valentine, H.; Mount, R.; Wolff, K.; Ousley, L.; Worm, E.; Lee, J.; Sullivan, D.; Gibson, C. Measurement of fruit and vegetable intake using skin carotenoid measures among individuals receiving aid from food pantries (P04-087-19). Curr. Dev. Nutr. 2019, 3 (Suppl. S1). [Google Scholar] [CrossRef] [Green Version]
- Stephenson, T.; Syeda, U.A.; Fowler, M.; Oo, K.; Brewer, D.; Koempel, A. P4 Recipe sampling at farmers’ market: Implications on self-reported fruit and vegetable intake, dermal carotenoid scores, and intent to prepare. J. Nutr. Educ. Behav. 2020, 52, S17. [Google Scholar] [CrossRef]
- Jilcott Pitts, S.B.; Wu, Q.; Truesdale, K.P.; Laska, M.N.; Grinchak, T.; McGuirt, J.T.; Haynes-Maslow, L.; Bell, R.A.; Ammerman, A.S. Baseline assessment of a healthy corner store initiative: Associations between food store environments, shopping patterns, customer purchases, and dietary intake in eastern North Carolina. Int. J. Environ. Res. Public Health 2017, 14, 1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, A.; Radtke, M.; Chodur, G.; Scherr, R. Assessing the Relationship between Nutrition Knowledge and Skin Carotenoids in University Students. Curr. Dev. Nutr. 2020, 4 (Suppl. S2), 1313. [Google Scholar] [CrossRef]
- Obana, A.; Gohto, Y.; Gellermann, W.; Ermakov, I.V.; Sasano, H.; Seto, T.; Bernstein, P.S. Skin carotenoid index in a large Japanese population sample. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Keller, J.; Taylor, M.; Spaeth, K.; Littrell, J.; Burns, J.; Sullivan, D. Comparison of skin carotenoid content and dietary carotenoid intake. Curr. Dev. Nutr. 2020, 4 (Suppl. S2), 115. [Google Scholar] [CrossRef]
- Jilcott Pitts, S.B.; Wu, Q.; Truesdale, K.P.; Haynes-Maslow, L.; McGuirt, J.T.; Ammerman, A.; Bell, R.; Laska, M.N. One-year follow-up examination of the impact of the North Carolina healthy food small retailer program on healthy food availability, purchases, and consumption. Int. J. Environ. Res. Public Health 2018, 15, 2681. [Google Scholar] [CrossRef] [Green Version]
- Thomson, J.L.; Goodman, M.H.; Landry, A.S.; Donoghue, A.; Chandler, A.; Bilderback, R. Feasibility of online nutrition education in the workplace: Working toward healthy lifestyles. J. Nutr. Educ. Behav. 2018, 50, 868–875. [Google Scholar] [CrossRef] [Green Version]
- Kelley, C.J.; Hanson, K.L.; Marshall, G.A.; Volpe, L.C.; Pitts, S.J.; Rafferty, A.P.; Seguin-Fowler, R. Associations between farmers’ market shopping behaviors and objectively-measured and self-reported fruit and vegetable intake in a diverse sample of farmers’ market shoppers: A cross-sectional study. Res. Sq. 2020. [Google Scholar] [CrossRef]
- Rush, E.; Jalili-Moghaddam, S.; Diep, T.; Amoah, I. Who is eating their veggies? Proceedings 2019, 37, 14. [Google Scholar] [CrossRef] [Green Version]
- Hager, E.R.; Quigg, A.M.; Black, M.M.; Coleman, S.M.; Heeren, T.; Rose-Jacobs, R.; Cook, J.T.; de Cuba, S.A.; Casey, P.H.; Chilton, M.; et al. Development and validity of a 2-item screen to identify families at risk for food insecurity. Pediatrics 2010, 126, e26–e32. [Google Scholar] [CrossRef] [Green Version]
- Bihan, H.; Castetbon, K.; Mejean, C.; Peneau, S.; Pelabon, L.; Jellouli, F.; Le Clesiau, H.; Hercberg, S. Sociodemographic factors and attitudes toward food affordability and health are associated with fruit and vegetable consumption in a low-income French population. J. Nutr. 2010, 140, 823–830. [Google Scholar] [CrossRef] [PubMed]
- Dubowitz, T.; Smith-Warner, S.A.; Acevedo-Garcia, D.; Subramanian, S.V.; Peterson, K.E. Nativity and duration of time in the United States: Differences in fruit and vegetable intake among low-income postpartum women. Am. J. Public Health 2007, 97, 1787–1790. [Google Scholar] [CrossRef] [PubMed]
- Di Noia, J.; Monica, D.; Cullen, K.W.; Pérez-Escamilla, R.; Gray, H.L.; Sikorskii, A. Differences in fruit and vegetable intake by race/ethnicity and by Hispanic origin and nativity among women in the Special Supplemental Nutrition Program for Women, Infants and Children, 2015. Prev. Chronic. Dis. 13 2016. [Google Scholar] [CrossRef] [Green Version]
- Harley, A.E.; Yang, M.; Stoddard, A.M.; Adamkiewicz, G.; Walker, R.; Tucker-Seeley, R.D.; Allen, J.D.; Sorensen, G. Patterns and predictors of health behaviors among racially/ethnically diverse residents of low-income housing developments. Am. J. Health Promot. 2014, 29, 59–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Havas, S.; Treiman, K.; Langenberg, P.; Ballesteros, M.; Anliker, J.; Damron, D.; Feldman, R. Factors associated with fruit and vegetable consumption among women participating in WIC. J. Am. Diet. Assoc. 1998, 98, 1141–1148. [Google Scholar] [CrossRef]
- Gustat, J.; O’Malley, K.; Luckett, B.G.; Johnson, C.C. Fresh produce consumption and the association between frequency of food shopping, car access and distance to supermarkets. Prev. Med. Rep. 2015, 2, 47–52. [Google Scholar] [CrossRef] [Green Version]
- Steptoe, A.; Perkins-Porras, L.; McKay, C.; Rink, E.; Hilton, S.; Cappuccio, F.P. Psychological factors associated with fruit and vegetable intake and with biomarkers in adults from a low-income neighborhood. Health Psychol. 2003, 22, 148. [Google Scholar] [CrossRef]
- Di Noia, J.; Monica, D.; Sikorskii, A.; Nelson, J. Pilot study of a farm-to-Special Supplemental Nutrition Program for Women, Infants and Children (WIC) intervention promoting vegetable consumption. J. Acad. Nutr. Diet. 2021. [Google Scholar] [CrossRef]
- Parker, K.; Morin, R.; Horowitz, J.M.; Lopez, M.H.; Rohal, M. Multiracial in America: Proud, Diverse and Growing in Numbers; Pew Research Center: Washington, DC, USA, 2015. [Google Scholar]
- U.S. Household Food Security Survey Module. Available online: https://www.ers.usda.gov/topics/food-nutrition-assistance/food-security-in-the-us/survey-tools/ (accessed on 12 September 2020).
- About Adult BMI. Available online: https://www.cdc.gov/healthyweight/assessing/bmi/adult_bmi/index.html (accessed on 18 April 2021).
- National Health and Nutrition Examination Survey (NHANES) Anthropometry Procedures Manual. Available online: https://wwwn.cdc.gov/nchs/data/nhanes/2017-2018/manuals/2017_Anthropometry_Procedures_Manual.pdf (accessed on 28 June 2020).
- Sangi-Haghpeykar, H.; Lam, K.; Raine, S.P. Gestational weight gain among Hispanic women. Matern. Child Health J. 2014, 18, 153–160. [Google Scholar] [CrossRef]
- Marshall, A.L.; Smith, B.J.; Bauman, A.E.; Kaur, S. Reliability and validity of a brief physical activity assessment for use by family doctors. Br. J. Sport. Med. 2005, 39, 294–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yaroch, A.L.; Tooze, J.; Thompson, F.E.; Blanck, H.M.; Thompson, O.M.; Colon-Ramos, U.; Shaikh, A.R.; McNutt, S.; Nebeling, L.C. Evaluation of three short dietary instruments to assess fruit and vegetable intake: The national cancer Institute’s food attitudes and behaviors (FAB) survey. J. Acad. Nutr. Diet. 2012, 112, 1570–1577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogunbode, A.; Owolabi, M.; Ogunbode, O.; Ogunniyi, A. What’s in your hands? A systematic review of dietary assessment methods and estimation of food sizes in a Primary Care Clinic. J. Med. Trop. 2018, 20, 93. [Google Scholar] [CrossRef]
- Power and Precision. Available online: https://www.power-analysis.com/ (accessed on 19 May 2021).
- Rosenthal, J.A. Qualitative descriptors of strength of association and effect size. J. Soc. Serv. Res. 1996, 21, 37–59. [Google Scholar] [CrossRef]
- After the Harvest’s Outcome Study: Measuring our Impact to Make a Difference. Available online: https://aftertheharvestkc.org/wp-content/uploads/ATH-Outcomes-Study-2018.pdf (accessed on 18 April 2021).
- How to Use your WIC Checks. Available online: https://www.state.nj.us/health/fhs/wic/participants/use-wic-checks/#:~:text=New%20Jersey%20WIC%20participants%20can,month%20in%20Cash%20Value%20Vouchers (accessed on 18 April 2021).
- Mier, N.; Ory, M.G.; Zhan, D.; Conkling, M.; Sharkey, J.R.; Burdine, J.N. Health-related quality of life among Mexican Americans living in colonias at the Texas-Mexico border. Soc. Sci. Med. 2008, 66, 1760–1771. [Google Scholar] [CrossRef] [PubMed]
- Kirkpatrick, S.I.; Dodd, K.W.; Reedy, J.; Krebs-Smith, S.M. Income and race/ethnicity are associated with adherence to food-based dietary guidance among US adults and children. J. Acad. Nutr. Diet. 2012, 112, 624–635. [Google Scholar] [CrossRef] [Green Version]
- Hough, G.; Sosa, M. Food choice in low income populations: A review. Food Qual. Prefer. 2015, 40, 334–342. [Google Scholar] [CrossRef]
- Scarmo, S.; Cartmel, B.; Lin, H.; Leffell, D.J.; Ermakov, I.V.; Gellermann, W.; Bernstein, P.S.; Mayne, S.T. Single v. multiple measures of skin carotenoids by resonance Raman spectroscopy as a biomarker of usual carotenoid status. Br. J. Nutr. 2013, 110, 911–917. [Google Scholar] [CrossRef] [Green Version]
- Siega-Riz, A.M.; Sotres-Alvarez, D.; Ayala, G.X.; Ginsberg, M.; Himes, J.H.; Liu, K.; Loria, C.M.; Mossavar-Rahmani, Y.; Rock, C.L.; Rodriguez, B.; et al. Food-group and nutrient-density intakes by Hispanic and Latino backgrounds in the Hispanic Community Health Study/Study of Latinos. Am. J. Clin. Nutr. 2014, 99, 1487–1498. [Google Scholar] [CrossRef] [Green Version]
- Britton, G.; Khachik, F. Carotenoids; Birkhäuser Basel: Basel, Switzerland, 2009; pp. 45–66. [Google Scholar]
- Pérez-Escamilla, R.; Putnik, P. The role of acculturation in nutrition, lifestyle, and incidence of type 2 diabetes among Latinos. J. Nutr. 2007, 137, 860–870. [Google Scholar] [CrossRef] [Green Version]
- Ayala, G.X.; Baquero, B.; Klinger, S. A systematic review of the relationship between acculturation and diet among Latinos in the United States: Implications for future research. J. Am. Diet. Assoc. 2008, 108, 1330–1344. [Google Scholar] [CrossRef] [Green Version]
- Leslie, D.A.; Hesketh, K.D.; Campbell, K.J. Breastfeeding mothers consume more vegetables and a greater variety of fruits and vegetables than non-breastfeeding peers: The influence of socioeconomic position. Nutr. Diet. 2012, 69, 84–90. [Google Scholar] [CrossRef]
- George, G.C.; Hanss-Nuss, H.; Milani, T.J.; Freeland-Graves, J.H. Food choices of low-income women during pregnancy and postpartum. J. Am. Diet. Assoc. 2005, 105, 899–907. [Google Scholar] [CrossRef] [PubMed]
- MacMillan Uribe, A.L.; Olson, B.H. Exploring healthy eating and exercise behaviors among low-income breastfeeding mothers. J. Hum. Lact. 2019, 35, 59–70. [Google Scholar] [CrossRef]
- Lee-Kwan, S.H.; Moore, L.V.; Blanck, H.M.; Harris, D.M.; Galuska, D. Disparities in state-specific adult fruit and vegetable consumption-United States, 2015. MMWR Morb. Mortal. Wkly. Rep. 2017, 66, 1241. [Google Scholar] [CrossRef] [PubMed]
- Mayne, S.T.; Cartmel, B.; Scarmo, S.; Jahns, L.; Ermakov, I.V.; Gellermann, W. Resonance Raman spectroscopic evaluation of skin carotenoids as a biomarker of carotenoid status for human studies. Arch. Biochem. Biophys. 2013, 539, 163–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, N.; Yan, S.; Guo, Y.; Wang, H.; Li, X.; Wang, L.; Hu, W.; Li, B.; Cui, W. The association between carotenoids and subjects with overweight or obesity: A systematic review and meta-analysis. Food Funct. 2021, 12, 4768–4782. [Google Scholar] [CrossRef]
- Andersen, L.F.; Jacobs, D.R.; Gross, M.D.; Schreiner, P.J.; Williams, O.D.; Lee, D.H. Longitudinal associations between body mass index and serum carotenoids: The CARDIA study. Br. J. Nutr. 2006, 95, 358–365. [Google Scholar] [CrossRef] [Green Version]
- Jago, R.; Baranowski, T.; Baranowski, J.C. Fruit and vegetable availability: A micro environmental mediating variable? Public Health Nutr. 2007, 10, 681–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guillaumie, L.; Godin, G.; Vézina-Im, L.A. Psychosocial determinants of fruit and vegetable intake in adult populations: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2010, 7, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Fu, P.L. Review of the multi-level factors contributing to fruit and vegetable consumption in the US. N. Am. J. Med. Sci. 2011, 4, 232–237. [Google Scholar] [CrossRef] [Green Version]
- Ansu, V.; Dickinson, S.; Fly, A. Digit variability in carotenoid scores obtained with the Veggie Meter: A pilot study. Curr. Dev. Nutr. 2019, 3 (Suppl. S1), 86. [Google Scholar] [CrossRef] [Green Version]
- Conrady, C.D.; Bell, J.P.; Besch, B.M.; Gorusupudi, A.; Farnsworth, K.; Ermakov, I.; Sharifzadeh, M.; Ermakova, M.; Gellermann, W.; Bernstein, P.S. Correlations between macular, skin and serum carotenoids. Investig. Ophthalmol. Vis. Sci. 2017, 58, 3616–3627. [Google Scholar] [CrossRef] [Green Version]
- Obana, A.; Gohto, Y.; Nakazawa, R.; Moriyama, T.; Gellermann, W.; Bernstein, P.S. Effect of an antioxidant supplement containing high dose lutein and zeaxanthin on macular pigment and skin carotenoid levels. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef] [PubMed]
Reference | Sample (Sex, Race/Ethnicity, and Age) | Mean Score | Range |
---|---|---|---|
Rush et al. [10] | 571 adults from diverse community groups in New Zealand (57% female; 7% Māori, 15% Pacific, 17% Asian, 13% South Asian, 41% European, and 8 Other; mean age 39 ± 17 years (range 16–85 years)) | 342 ± 116 315 ± 110 (Māori) 257 ± 85 (Pacific) 388 ± 115 (Asian) 341 ± 113 (South Asian) 352 ± 111 (European) 367 ± 126 (Other) | 83–769 |
McGuirt et al. [11] | 136 adults recruited through two North Carolina supermarkets (76% female; 86% AA; mean age 46 ± 15 years) | 251 ± 75 284 (WIC-enrolled) 247 (not WIC-enrolled) | 11–450 |
Hill et al. [12] | 84 Alaska Native adults (45% male; 84% Yup’ik Alaska Native; mean age 48 years) | 222 ± 106 | NR |
Valentine et al. [13] | 57 adults receiving aid from food pantries and food assistance agencies in the Kansas City area | 175 ± 77 | NR |
Stephenson et al. [14] | 525 farmers’ market patrons in Kentucky | 200 ± 88 | NR |
Jilcott Pitts et al. [15] | 479 corner store customers in North Carolina (41% female; 66% AA; mean age 43 ± 15 years) | 234 ± 86 | NR |
Pitts et al. [8] | 30 adults in Eastern North Carolina recruited from a medical school email listserv (57% AA; mean age 33 ± 12 years) | 296 ± 110 | NR |
Jones et al. [16] | 40 undergraduate and graduate students at a public university in California (72% female) | 334 | NR |
Obana et al. [17] | 985 patients and staff members of an ophthalmology clinic in Hamamatsu Seirei Hospital, Japan (59% male; mean age 70 ± 14 years) | 343 ± 142 | 32–914 |
Keller at al. [18] | 61 cognitively normal adults ≥ 65 years of age participating in a nutrition intervention at the University of Kansas Medical Center | 279 ± 72 | NR |
Ermakov et al. [9] | 54 adults from a diverse cohort of patients and staff at a tertiary care eye clinic in Utah | 297 | NR |
569 adults enrolled in a clinical epidemiology study carried out at the eye clinic of the Hamamatsu Seirei Hospital, Japan | 335 | 32–892 | |
49 adults residing in colonias along the US-Mexico border (77% female; 90% Hispanic) | 299 | NR | |
Jilcott Pitts et al. [19] | 279 adults participating in a policy intervention to promote healthier foods among small food retailers in North Carolina (Int: 44% female; 40% AA; mean age 44 ± 15 years; Ctl: 42% female; 87% AA; mean age 44 ± 14 years) | 230 ± 72 (Int) 241 ± 100 (Ctl) | NR |
Thompson et al. [20] | 26 federal government employees participating in an online dietary intervention (54% male; 89% non-Hispanic white) | 229 | NR |
Kelley et al. [21] | 649 farmers’ market shoppers (381 in NYC and 268 in rural NC) (80% female; 45% Caucasian; 37% aged 60+ years) | 290 315 (NYC shoppers) 253 (NC shoppers) | NR |
Model 1 | Model 2 | |||
---|---|---|---|---|
Full Sample (n = 297) | Hispanics (n = 217) | |||
Predictor | β | SE | β | SE |
Nativity | 0.28 *** | 11.7 | 0.20 ** | 18.2 |
Breastfeeding status | 0.09 | 12.3 | 0.06 | 14.5 |
Smoking status | −0.10 | 23.3 | −0.10 | 36.1 |
BMI | −0.15 ** | 0.80 | −0.18 ** | 1.0 |
Self-reported FV intake | 0.17 *** | 10.6 | 0.20 ** | 12.5 |
Model R2 = 0.17 | ||||
Puerto Rican origin | −0.10 | 23.7 | ||
Ecuadorian origin | 0.14 | 20.9 | ||
Dominican origin | 0.10 | 17.0 | ||
Mexican origin | 0.11 | 21.2 | ||
Model R2 = 0.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Noia, J.; Gellermann, W. Use of the Spectroscopy-Based Veggie Meter® to Objectively Assess Fruit and Vegetable Intake in Low-Income Adults. Nutrients 2021, 13, 2270. https://doi.org/10.3390/nu13072270
Di Noia J, Gellermann W. Use of the Spectroscopy-Based Veggie Meter® to Objectively Assess Fruit and Vegetable Intake in Low-Income Adults. Nutrients. 2021; 13(7):2270. https://doi.org/10.3390/nu13072270
Chicago/Turabian StyleDi Noia, Jennifer, and Werner Gellermann. 2021. "Use of the Spectroscopy-Based Veggie Meter® to Objectively Assess Fruit and Vegetable Intake in Low-Income Adults" Nutrients 13, no. 7: 2270. https://doi.org/10.3390/nu13072270
APA StyleDi Noia, J., & Gellermann, W. (2021). Use of the Spectroscopy-Based Veggie Meter® to Objectively Assess Fruit and Vegetable Intake in Low-Income Adults. Nutrients, 13(7), 2270. https://doi.org/10.3390/nu13072270