Bioelectrical Impedance Analysis and Mid-Upper Arm Muscle Circumference Can Be Used to Detect Low Muscle Mass in Clinical Practice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sample
2.2. Procedures
2.2.1. Assessment of Muscle Mass by Computed Tomography Scan
2.2.2. Assessment of Muscle Mass by Bio-Electrical Impedance Analysis
2.2.3. Assessment of Muscle Mass by Mid Upper-Arm Muscle Circumference
2.2.4. Assessment of Nutritional Status by PG-SGA SF
2.2.5. Assessment of Dietary Intake
2.3. Statistical Analysis
3. Results
3.1. Concordance of Muscle Mass Measurements between CT, BIA, and MAMC
3.2. Diagnostic Accuracy of BIA and MAMC to Identify Low Muscle Mass
3.3. Relation between Muscle Mass Measurements with Clinical Outcome (PG-SGA SF)
3.4. Low Muscle Mass and PG-SGA SF Cut-Offs for Malnutrition
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, L.; Lu, Y.; Fang, Y. Nutritional status and related factors of patients with advanced gastrointestinal cancer. Br. J. Nutr. 2014, 111, 1239–1244. [Google Scholar] [CrossRef] [Green Version]
- Prado, C.M.; Sawyer, M.B.; Ghosh, S.; Lieffers, J.R.; Esfandiari, N.; Antoun, S.; Baracos, V.E. Central tenet of cancer cachexia therapy: Do patients with advanced cancer have exploitable anabolic potential? Am. J. Clin. Nutr. 2013, 98, 1012–1019. [Google Scholar] [CrossRef]
- Cederholm, T.; Bosaeus, I.; Barazzoni, R.; Bauer, J.; Van Gossum, A.; Klek, S.; Muscaritoli, M.; Nyulasi, I.; Ockenga, J.; Schneider, S.M.; et al. Diagnostic criteria for malnutrition—An ESPEN Consensus Statement. Clin. Nutr. 2015, 34, 335–340. [Google Scholar] [CrossRef]
- Martin, L.; Birdsell, L.; Macdonald, N.; Reiman, T.; Clandinin, M.T.; McCargar, L.J.; Murphy, R.; Ghosh, S.; Sawyer, M.B.; Baracos, V.E. Cancer cachexia in the age of obesity: Skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J. Clin. Oncol. 2013, 31, 1539–1547. [Google Scholar] [CrossRef]
- Prado, C.M.; Baracos, V.E.; McCargar, L.J.; Reiman, T.; Mourtzakis, M.; Tonkin, K.; Mackey, J.R.; Koski, S.; Pituskin, E.; Sawyer, M.B. Sarcopenia as a determinant of chemotherapy toxicity and time to tumor progression in metastatic breast cancer patients receiving capecitabine treatment. Clin. Canc. Res. 2009, 15, 2920–2926. [Google Scholar] [CrossRef] [Green Version]
- Yip, C.; Goh, V.; Davies, A.; Gossage, J.; Mitchell-Hay, R.; Hynes, O.; Maisey, N.; Ross, P.; Gaya, A.; Landau, D.B.; et al. Assessment of sarcopenia and changes in body composition after neoadjuvant chemotherapy and associations with clinical outcomes in oesophageal cancer. Eur. Radiol. 2014, 24, 998–1005. [Google Scholar] [CrossRef] [PubMed]
- Rutten, I.J.; van Dijk, D.P.; Kruitwagen, R.F.; Beets-Tan, R.G.; Olde Damink, S.W.; van Gorp, T. Loss of skeletal muscle during neoadjuvant chemotherapy is related to decreased survival in ovarian cancer patients. J. Cachexia Sarcopenia Muscle 2016, 7, 458–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pichard, C.; Kyle, U.G.; Morabia, A.; Perrier, A.; Vermeulen, B.; Unger, P. Nutritional assessment: Lean body mass depletion at hospital admission is associated with an increased length of stay. Am. J. Clin. Nutr. 2004, 79, 613–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyamoto, Y.; Baba, Y.; Sakamoto, Y.; Ohuchi, M.; Tokunaga, R.; Kurashige, J.; Hiyoshi, Y.; Iwagami, S.; Yoshida, N.; Watanabe, M.; et al. Negative Impact of Skeletal Muscle Loss after Systemic Chemotherapy in Patients with Unresectable Colorectal Cancer. PLoS ONE 2015, 10, e0129742. [Google Scholar] [CrossRef] [PubMed]
- Caro, M.M.; Laviano, A.; Pichard, C.; Candela, C.G. Relationship between nutritional intervention and quality of life in cancer patients. Nutr. Hosp. 2007, 22, 337–350. [Google Scholar]
- Arends, J.; Bachmann, P.; Baracos, V.; Barthelemy, N.; Bertz, H.; Bozzetti, F.; Fearon, K.; Hutterer, E.; Isenring, E.; Kaasa, S.; et al. ESPEN guidelines on nutrition in cancer patients. Clin. Nutr. 2017, 36, 11–48. [Google Scholar] [CrossRef] [Green Version]
- Isenring, E.; Zabel, R.; Bannister, M.; Brown, T.; Findlay, M.; Kiss, N.; Loeliger, J.; Johnstone, C.; Camilleri, B.; Davidson, W.; et al. Updated evidence-based practice guidelines for the nutritional management of patients receiving radiation therapy and/or chemotherapy. Nutr. Diet. 2013, 70, 312–324. [Google Scholar] [CrossRef]
- Ravasco, P.; Monteiro-Grillo, I.; Camila, M. Individualized nutrition intervention is of major benefit to colorectal cancer patients: Long-term follow-up of a randomized controlled trial of nutritional therapy. Am. J. Clin. Nutr. 2012, 96, 1346–1353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.; Hui, K.; McCauley, S.M. What Is a Registered Dietitian Nutritionist’s Role in Addressing Malnutrition? J. Acad. Nutr. Diet. 2018, 118, 1804. [Google Scholar] [CrossRef] [Green Version]
- Fleurke, M.; Voskuil, D.W.; Kolmer, D.M.B.G. The role of the dietitian in the management of malnutrition in the elderly: A systematic review of current practices. Nutr. Diet. 2020, 77, 60–75. [Google Scholar] [CrossRef] [PubMed]
- Luther, A.; Gabriel, J.; Watson, R.P.; Francis, N.K. The Impact of Total Body Prehabilitation on Post-Operative Outcomes After Major Abdominal Surgery: A Systematic Review. World J. Surg. 2018, 42, 2781–2791. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.C.; Caan, B.J.; Meyerhardt, J.A.; Weltzien, E.; Xiao, J.; Feliciano, E.M.C.; Kroenke, C.H.; Castillo, A.; Kwan, M.L.; Prado, C.M. The deterioration of muscle mass and radiodensity is prognostic of poor survival in stage I-III colorectal cancer: A population-based cohort study (C-SCANS). J. Cachexia Sarcopenia Muscle 2018, 9, 664–672. [Google Scholar] [CrossRef]
- Aprile, G.; Basile, D.; Giaretta, R.; Schiavo, G.; La Verde, N.; Corradi, E.; Monge, T.; Agustoni, F.; Stragliotto, S. The Clinical Value of Nutritional Care before and during Active Cancer Treatment. Nutrients 2021, 13, 1196. [Google Scholar] [CrossRef] [PubMed]
- Rier, H.N.; Jager, A.; Sleijfer, S.; Maier, A.B.; Levin, M.D. The Prevalence and Prognostic Value of Low Muscle Mass in Cancer Patients: A Review of the Literature. Oncologist 2016, 21, 1396–1409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prado, C.M.; Lieffers, J.R.; McCargar, L.J.; Reiman, T.; Sawyer, M.B.; Martin, L.; Baracos, V.E. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: A population-based study. Lancet Oncol. 2008, 9, 629–635. [Google Scholar] [CrossRef]
- Prado, C.M.; Siervo, M.; Mire, E.; Heymsfield, S.B.; Stephan, B.C.; Broyles, S.; Smith, S.R.; Wells, J.C.; Katzmarzyk, P.T. A population-based approach to define body-composition phenotypes. Am. J. Clin. Nutr. 2014, 99, 1369–1377. [Google Scholar] [CrossRef] [Green Version]
- Bauer, J.; Capra, S.; Ferguson, M. Use of the scored Patient-Generated Subjective Global Assessment (PG-SGA) as a nutrition assessment tool in patients with cancer. Eur. J. Clin. Nutr. 2002, 56, 779–785. [Google Scholar] [CrossRef]
- Ottery, F.D. Definition of standardized nutritional assessment and interventional pathways in oncology. Nutrition 1996, 12 (Suppl. 1), S15–S19. [Google Scholar] [CrossRef]
- Detsky, A.S.; McLaughlin, J.R.; Baker, J.P.; Johnston, N.; Whittaker, S.; Mendelson, R.A.; Jeejeebhoy, K.N. What is subjective global assessment of nutritional status? J. Parenter Enteral Nutr. 1987, 11, 8–13. [Google Scholar] [CrossRef] [Green Version]
- Wiegert, E.V.M.; Padilha, P.C.; Peres, W.A.F. Performance of Patient-Generated Subjective Global Assessment (PG-SGA) in Patients With Advanced Cancer in Palliative Care. Nutr. Clin. Pract. 2017, 32, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mourtzakis, M.; Prado, C.M.; Lieffers, J.R.; Reiman, T.; McCargar, L.J.; Baracos, V.E. A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. Appl. Physiol. Nutr. Metab. 2008, 33, 997–1006. [Google Scholar] [CrossRef]
- Shen, W.; Punyanitya, M.; Wang, Z.; Gallagher, D.; St-Onge, M.P.; Albu, J.; Heymsfield, S.B.; Heshka, S. Total body skeletal muscle and adipose tissue volumes: Estimation from a single abdominal cross-sectional image. J. Appl. Physiol. 2004, 97, 2333–2338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teigen, L.M.; Kuchnia, A.J.; Mourtzakis, M.; Earthman, C.P. The Use of Technology for Estimating Body CompositionStrengths and Weaknesses of Common Modalities in a Clinical Setting [Formula: See text]. Nutr. Clin. Pract. 2017, 32, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Tosato, M.; Marzetti, E.; Cesari, M.; Savera, G.; Miller, R.R.; Bernabei, R.; Landi, F.; Calvani, R. Measurement of muscle mass in sarcopenia: From imaging to biochemical markers. Aging Clin. Exp. Res. 2017, 29, 19–27. [Google Scholar] [CrossRef]
- Raeder, H.; Kvaerner, A.S.; Henriksen, C.; Florholmen, G.; Henriksen, H.B.; Bohn, S.K.; Paur, I.; Smeland, S.; Blomhoff, R. Validity of bioelectrical impedance analysis in estimation of fat-free mass in colorectal cancer patients. Clin. Nutr. 2017, 37, 292–300. [Google Scholar] [CrossRef]
- Wijnhoven, H.A.; van Bokhorst-de van der Schueren, M.A.; Heymans, M.W.; de Vet, H.C.; Kruizenga, H.M.; Twisk, J.W.; Visser, M. Low mid-upper arm circumference, calf circumference, and body mass index and mortality in older persons. J. Gerontol. 2010, 65, 1107–1114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janssen, I.; Heymsfield, S.B.; Baumgartner, R.N.; Ross, R. Estimation of skeletal muscle mass by bioelectrical impedance analysis. J. Appl. Physiol. 2000, 89, 465–471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, G.L.; Cederholm, T.; Correia, M.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; de Baptista, G.A.; Barazzoni, R.; Blaauw, R.; Coats, A.J.S.; et al. GLIM Criteria for the Diagnosis of Malnutrition: A Consensus Report From the Global Clinical Nutrition Community. J. Parenter Enteral Nutr. 2019, 43, 32–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozawa, Y.; Nakano, T.; Taniyama, Y.; Sakurai, T.; Onodera, Y.; Kamiya, K.; Hikage, M.; Sato, C.; Takaya, K.; Konno, T.; et al. Evaluation of the impact of psoas muscle index, a parameter of sarcopenia, in patients with esophageal squamous cell carcinoma receiving neoadjuvant therapy. Esophagus 2019, 16, 345–351. [Google Scholar] [CrossRef]
- Seca. Available online: https://www.seca.com/nl_nl/producten/alle-producten/produkt-details/seca525.html (accessed on 8 April 2021).
- Schutz, Y.; Kyle, U.U.; Pichard, C. Fat-free mass index and fat mass index percentiles in Caucasians aged 18–98 y. Int. J. Obes. Relat. Metab. Disord. 2002, 26, 953–960. [Google Scholar] [CrossRef] [Green Version]
- Sergi, G.; De Rui, M.; Veronese, N.; Bolzetta, F.; Berton, L.; Carraro, S.; Bano, G.; Coin, A.; Manzato, E.; Perissinotto, E. Assessing appendicular skeletal muscle mass with bioelectrical impedance analysis in free-living Caucasian older adults. Clin. Nutr. 2015, 34, 667–673. [Google Scholar] [CrossRef]
- Gould, H.; Brennan, S.L.; Kotowicz, M.A.; Nicholson, G.C.; Pasco, J.A. Total and appendicular lean mass reference ranges for Australian men and women: The Geelong osteoporosis study. Calcif. Tissue Int. 2014, 94, 363–372. [Google Scholar] [CrossRef]
- Frisancho, A.R. New standards of weight and body composition by frame size and height for assessment of nutritional status of adults and the elderly. Am. J. Clin. Nutr. 1984, 40, 808–819. [Google Scholar] [CrossRef] [Green Version]
- Sealy, M.J.; Hass, U.; Ottery, F.D.; van der Schans, C.P.; Roodenburg, J.L.N.; Jager-Wittenaar, H. Translation and Cultural Adaptation of the Scored Patient-Generated Subjective Global Assessment: An Interdisciplinary Nutritional Instrument Appropriate for Dutch Cancer Patients. Cancer Nurs 2018, 41, 450–462. [Google Scholar] [CrossRef]
- Gabrielson, D.K.; Scaffidi, D.; Leung, E.; Stoyanoff, L.; Robinson, J.; Nisenbaum, R.; Brezden-Masley, C.; Darling, P.B. Use of an abridged scored Patient-Generated Subjective Global Assessment (abPG-SGA) as a nutritional screening tool for cancer patients in an outpatient setting. Nutr. Cancer 2013, 65, 234–239. [Google Scholar] [CrossRef]
- Vigano, A.; Del Fabbro, E.; Bruera, E.; Borod, M. The cachexia clinic: From staging to managing nutritional and functional problems in advanced cancer patients. Crit. Rev. Oncog. 2012, 17, 293–303. [Google Scholar] [CrossRef]
- Pt-Global. Available online: https://pt-global.org/ (accessed on 8 April 2021).
- Cicchetti, D.V. Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychol. Assessment 1994, 6, 284–290. [Google Scholar] [CrossRef]
- Glas, A.S.; Lijmer, J.G.; Prins, M.H.; Bonsel, G.J.; Bossuyt, P.M. The diagnostic odds ratio: A single indicator of test performance. J. Clin. Epidemiol. 2003, 56, 1129–1135. [Google Scholar] [CrossRef]
- Looijaard, W.; Stapel, S.N.; Dekker, I.M.; Rusticus, H.; Remmelzwaal, S.; Girbes, A.R.J.; Weijs, P.J.M.; Oudemans-van Straaten, H.M. Identifying critically ill patients with low muscle mass: Agreement between bioelectrical impedance analysis and computed tomography. Clin. Nutr. 2019, 39, 1809–1817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giusto, M.; Lattanzi, B.; Albanese, C.; Galtieri, A.; Farcomeni, A.; Giannelli, V.; Lucidi, C.; Di Martino, M.; Catalano, C.; Merli, M. Sarcopenia in liver cirrhosis: The role of computed tomography scan for the assessment of muscle mass compared with dual-energy X-ray absorptiometry and anthropometry. Eur. J. Gastroenterol. Hepatol. 2015, 27, 328–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garth, A.K.; Newsome, C.M.; Simmance, N.; Crowe, T.C. Nutritional status, nutrition practices and post-operative complications in patients with gastrointestinal cancer. J. Hum. Nutr. Diet. 2010, 23, 393–401. [Google Scholar] [CrossRef]
- Weerink, L.B.M.; van der Hoorn, A.; van Leeuwen, B.L.; de Bock, G.H. Low skeletal muscle mass and postoperative morbidity in surgical oncology: A systematic review and meta-analysis. J. Cachexia Sarcopenia Muscle 2020, 11, 636–649. [Google Scholar] [CrossRef]
- Hopkins, J.J.; Skubleny, D.; Bigam, D.L.; Baracos, V.E.; Eurich, D.T.; Sawyer, M.B. Barriers to the Interpretation of Body Composition in Colorectal Cancer: A Review of the Methodological Inconsistency and Complexity of the CT-Defined Body Habitus. Ann. Surg. Oncol. 2018, 25, 1381–1394. [Google Scholar] [CrossRef]
- Van Wijk, L.; van der Snee, L.; Buis, C.I.; Hentzen, J.; Haveman, M.E.; Klaase, J.M. A prospective cohort study evaluating screening and assessment of six modifiable risk factors in HPB cancer patients and compliance to recommended prehabilitation interventions. Perioper Med. 2021, 10, 1–12. [Google Scholar] [CrossRef]
- Mitsiopoulos, N.; Baumgartner, R.N.; Heymsfield, S.B.; Lyons, W.; Gallagher, D.; Ross, R. Cadaver validation of skeletal muscle measurement by magnetic resonance imaging and computerized tomography. J. Appl. Physiol. 1998, 85, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Kyle, U.G.; Bosaeus, I.; De Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Manuel, G.J.; Lilienthal, H.B.; Kent-Smith, L.; Melchior, J.C.; Pirlich, M.; et al. Bioelectrical impedance analysis-part II: Utilization in clinical practice. Clin. Nutr. 2004, 23, 1430–1453. [Google Scholar] [CrossRef]
- Landi, F.; Camprubi-Robles, M.; Bear, D.E.; Cederholm, T.; Malafarina, V.; Welch, A.A.; Cruz-Jentoft, A.J. Muscle loss: The new malnutrition challenge in clinical practice. Clin. Nutr. 2019, 38, 2113–2120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deutz, N.E.P.; Ashurst, I.; Ballesteros, M.D.; Bear, D.E.; Cruz-Jentoft, A.J.; Genton, L.; Landi, F.; Laviano, A.; Norman, K.; Prado, C.M. The Underappreciated Role of Low Muscle Mass in the Management of Malnutrition. J. Am. Med. Dir. Assoc. 2019, 20, 22–27. [Google Scholar] [CrossRef] [Green Version]
- Klassen, P.; Baracos, V.; Gramlich, L.; Nelson, G.; Mazurak, V.; Martin, L. Computed-Tomography Body Composition Analysis Complements Pre-Operative Nutrition Screening in Colorectal Cancer Patients on an Enhanced Recovery after Surgery Pathway. Nutrients 2020, 12, 3745. [Google Scholar] [CrossRef] [PubMed]
- Mulasi, U.; Kuchnia, A.J.; Cole, A.J.; Earthman, C.P. Bioimpedance at the bedside: Current applications, limitations, and opportunities. Nutr. Clin. Pract. 2015, 30, 180–193. [Google Scholar] [CrossRef] [Green Version]
Characteristics | All Patients (n = 49) | Men (n = 26) | Women (n = 23) |
---|---|---|---|
Age (years; median, IQR) | 62.0 (56.0–70.0) | 65.0 (57.0–68.5) | 62.0 (50.5–71.5) |
Height (cm; mean (SD) | 174 ± 8.5 | 179 ± 6.2 | 167 ± 6.4 |
Weight (kg; mean (SD) | 80.8 ± 17.1 | 88.7 ± 15.3 | 71.9 ± 14.6 |
BMI (kg/m2; mean ± SD) a | 26.8 ± 5.0 | 27.7 ± 4.6 | 25.7 ± 5.4 |
Underweight (n, %) | 1 (2.0) | 0 (0.0) | 1 (4.3) |
Normal weight (n, %) | 20 (40.8) | 9 (34.6) | 11 (47.8) |
Overweight (n, %) | 15 (30.6) | 9 (34.6) | 6 (26.1) |
Obesity or obese (n, %) | 13 (26.5) | 8 (30.8) | 5 (21.7) |
Weight loss past month b | |||
No weight loss (n, %) | 35 (71.4) | 18 (69.2) | 17 (74.0) |
0–5% weight loss (n, %) | 9 (18.4) | 6 (23.2) | 3 (13.0) |
5–10% weight loss (n, %) | 2 (4.1) | 1 (3.8) | 1 (4.3) |
>10% weight loss (n, %) | 2 (4.1) | 1 (3.8) | 1 (4.3) |
Missing: 1 | Missing: 1 | ||
Weight loss past 6 months b | |||
No weight loss (n, %) | 19 (38.8) | 8 (30.8) | 11 (47.8) |
0–5% weight loss (n, %) | 14 (28.6) | 9 (34.6) | 5 (21.7) |
5–10% weight loss (n, %) | 6 (12.2) | 3 (11.5) | 3 (13.0) |
>10% weight loss (n, %) | 5 (10.2) | 3 (11.5) | 2 (8.7) |
Missing: 5 | Missing: 3 | Missing: 2 | |
Waist circumference (cm; mean ± SD) c | 99.8 ± 19.0 | 107 ± 20.1 | 91.5 ± 13.8 |
Underweight (n, %) | 0 (0) | 0 (0) | 0 (0) |
Healthy waist (n, %) | 13 (26.5) | 8 (30.8) | 5 (21.7) |
Overweight (n, %) | 9 (18.4) | 3 (11.5) | 6 (26.1) |
Obesity or obese (n, %) | 27 (55.1) | 15 (57.7) | 12 (52.2) |
Dietary intake (mean ± SD) | |||
Calorie intake (kcal/d) | 1950 ± 461 | 2020 ± 399 | 1880 ± 516 |
Calorie intake (kcal/kg) | 25.6 ± 9.3 | 23.4 ± 6.6 | 27.8 ± 11.0 |
Protein intake (gram/d) | 88.0 ± 20.1 | 92.2 ± 20.2 | 83.7 ± 19.6 |
Protein intake (gram/kg) | 1.2 ± 0.4 | 1.1 ± 0.3 | 1.2 ± 0.4 |
Missing: 5 | Missing: 4 | Missing: 1 | |
PAL (median, IQR) | 1.8 (1.6–1.8) | 1.8 (1.6–1.8) | 1.8 (1.6–1.8) |
Diagnosis (n, %) | |||
Esophageal cancer | 24 (51) | 18 (69.2) | 6 (26) |
Peritonitis Carcinomatosa | 25 (49) | 8 (30.8) | 17 (74) |
Time between CT and BIA, MAMC, PG-SGA SF (days; median, IQR) | 14.0 (12.0–34.0) | 13.0 (10.3–20.4) | 19.0 (12.0–43.0) |
All Patients (n = 49) | Men (n = 26) | Women (n = 23) | |
---|---|---|---|
CTSMI (mean ± SD) | 45.5 ± 13.4 | 43.3 ± 12.4 | 47.8 ± 14.3 |
Low muscle mass (n, %) | 23 (46.9) | 15 (57.7) | 8 (34.8) |
Missing: 1 | Missing: 1 | ||
CTPMI (median, IQR) | 58.0 (50.0–71.0) | 69.5 (56.5–83.0) | 53.0 (44.0–59.0) |
Low muscle mass (n, %) | 13 (26.5) | 7 (26.9) | 6 (26.1) |
BIAFFMI (mean ± SD) | 18.8 ± 2.8 | 20.6 ± 2.1 | 16.7 ± 1.7 |
Low muscle mass (n, %) | 5 (10.2) | 3 (11.5) | 2 (8.7) |
BIAASMI (mean ± SD) | 7.0 ± 1.2 | 7.7 ± 0.9 | 6.2 ± 0.9 |
Low muscle mass (n, %) | 10 (20.4) | 5 (19.2) | 5 (21.7) |
Missing: 1 | Missing: 1 | ||
MAMC (mean ± SD) | 25.2 ± 4.7 | 26.7 ± 4.9 | 23.4 ± 3.7 |
Low muscle mass (n, %) | 9 (18.4) | 5 (19.2) | 4 (17.4) |
PG-SGA SF score (median, IQR) | 3.0 (0.0–7.0) | 1.0 (0.0–6.8) | 3.0 (1.0–6.0) |
4 points (n, %) | 20 (40.8) | 11 (42.3) | 9 (39.1) |
9 points (n, %) | 8 (16.3) | 4 (15.4) | 4 (17.4) |
CTSMI | CTPMI | BIAFFMI | BIAASMI | MAMC | |
---|---|---|---|---|---|
CTSMI | - | −0.07 | −0.06 | −0.07 | −0.01 |
(95%CI −0.35–0.21) | (95%CI −0.33–0.23) | (95%CI −0.34–0.22) | (95%CI −0.29–0.27) | ||
CTPMI | - | - | 0.73 a | 0.69 a | 0.37 a |
(95%CI 0.57–0.84) | (95%CI 0.51–0.81) | (95%CI 0.1–0.59) | |||
BIAFFMI | - | - | - | - | 0.64 a |
(95%CI 0.44–0.78) | |||||
BIAASMI | - | - | - | - | 0.71 a |
(95%CI 0.54–0.83) | |||||
MAMC | - | - | - | - | - |
True Positive (n) | False Positive (n) | False Negative (n) | True Negative (n) | Sensitivity | Specificity | DOR | |
---|---|---|---|---|---|---|---|
BIAFFMI | 3 | 2 | 10 | 34 | 23 | 94 | 5.1 |
BIAASMI | 5 | 5 | 8 | 30 | 38 | 86 | 3.8 |
MAMC | 4 | 5 | 9 | 31 | 30 | 86 | 2.8 |
Low Muscle Mass * | Normal Muscle Mass * | |
---|---|---|
(n = 13) | (n = 36) | |
PG-SGA SF score (median, IQR) | 5 (2.0–9.0) | 1.5 (0.0–6.0) |
PG-SGA SF ≥4 points (n, %) | 8 (62) | 12 (33) |
PG-SGA SF ≥9 points (n, %) | 4 (31) | 4 (11) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gort-van Dijk, D.; Weerink, L.B.M.; Milovanovic, M.; Haveman, J.-W.; Hemmer, P.H.J.; Dijkstra, G.; Lindeboom, R.; Campmans-Kuijpers, M.J.E. Bioelectrical Impedance Analysis and Mid-Upper Arm Muscle Circumference Can Be Used to Detect Low Muscle Mass in Clinical Practice. Nutrients 2021, 13, 2350. https://doi.org/10.3390/nu13072350
Gort-van Dijk D, Weerink LBM, Milovanovic M, Haveman J-W, Hemmer PHJ, Dijkstra G, Lindeboom R, Campmans-Kuijpers MJE. Bioelectrical Impedance Analysis and Mid-Upper Arm Muscle Circumference Can Be Used to Detect Low Muscle Mass in Clinical Practice. Nutrients. 2021; 13(7):2350. https://doi.org/10.3390/nu13072350
Chicago/Turabian StyleGort-van Dijk, Dorienke, Linda B.M. Weerink, Milos Milovanovic, Jan-Willem Haveman, Patrick H.J. Hemmer, Gerard Dijkstra, Robert Lindeboom, and Marjo J.E. Campmans-Kuijpers. 2021. "Bioelectrical Impedance Analysis and Mid-Upper Arm Muscle Circumference Can Be Used to Detect Low Muscle Mass in Clinical Practice" Nutrients 13, no. 7: 2350. https://doi.org/10.3390/nu13072350
APA StyleGort-van Dijk, D., Weerink, L. B. M., Milovanovic, M., Haveman, J.-W., Hemmer, P. H. J., Dijkstra, G., Lindeboom, R., & Campmans-Kuijpers, M. J. E. (2021). Bioelectrical Impedance Analysis and Mid-Upper Arm Muscle Circumference Can Be Used to Detect Low Muscle Mass in Clinical Practice. Nutrients, 13(7), 2350. https://doi.org/10.3390/nu13072350