Human Evolution and Dietary Ethanol
Abstract
:1. Introduction
2. Vertebrate Responses to Naturally Occurring Ethanol
3. Evolutionary Consequences of Dietary Ethanol
4. Natural Ethanol Exposure in Chimpanzees
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dudley, R. Evolutionary Origins of Human Alcoholism in Primate Frugivory. Q. Rev. Biol. 2000, 75, 3–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dudley, R. The Drunken Monkey: Why We Drink and Abuse Alcohol; University of California Press: Berkeley, CA, USA, 2014. [Google Scholar]
- Yeomans, M.R. Effects of alcohol on food and energy intake in human subjects: Evidence for passive and active over-consumption of energy. Br. J. Nutr. 2004, 92, S31–S34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janzen, D.H. Why Fruits Rot, Seeds Mold, and Meat Spoils. Am. Nat. 1977, 111, 691–713. [Google Scholar] [CrossRef]
- Williams, G.C.; Nesse, R.M. Why We Get Sick: The New Science of Darwinian Medicine; Times Books: New York, NY, USA, 1994. [Google Scholar]
- Nesse, R.M.; Berridge, K.C. Psychoactive Drug Use in Evolutionary Perspective. Science 1997, 278, 63–66. [Google Scholar] [CrossRef] [Green Version]
- McGrew, W.C.; Baldwin, P.J.; Tutin, C.E.G. Diet of wild chimpanzees (Pan troglodytes verus) at Mt. Assirik, Senegal: I. Composition. Am. J. Primatol. 1998, 16, 213–226. [Google Scholar] [CrossRef]
- Wrangham, R.W.; Chapman, C.A.; Clark-Arcadi, A.P.; Isabirye-Basuta, G. Social ecology of Kanyawara chimpanzees: Impli-cations for understanding the costs of great ape groups. In The Great Ape Societies; McGrew, W.C., Marchant, L.F., Nishida, T., Eds.; Cambridge University Press: Cambridge, UK, 1996; pp. 45–57. [Google Scholar]
- Andrews, P.; Martin, L. Hominoid dietary evolution. Philos. Trans. R. Soc. Lond. B 1991, 334, 199–209. [Google Scholar]
- Andrews, P. Palaeoecology and hominoid palaeoenvironments. Biol. Rev. Cam. Philos. Soc. 1996, 71, 257–300. [Google Scholar] [CrossRef]
- Roberts, P.; Boivin, N.; Lee-Thorp, J.; Petraglia, M.; Stock, J. Tropical forests and the genus Homo. Evol. Anthropol. 2016, 25, 306–317. [Google Scholar] [CrossRef] [Green Version]
- Dudley, R. Fermenting fruit and the historical ecology of ethanol ingestion: Is alcoholism in modern humans an evolutionary hangover? Addiction 2002, 97, 381–388. [Google Scholar] [CrossRef]
- Dominy, N.J. Fruits, Fingers, and Fermentation: The Sensory Cues Available to Foraging Primates. Integr. Comp. Biol. 2004, 44, 295–303. [Google Scholar] [CrossRef]
- Wiens, F.; Zitzmann, A.; Lachance, M.-A.; Yegles, M.; Pragst, F.; Wurst, F.M.; von Holst, D.; Guan, S.L.; Spanagel, R. Chronic intake of fermented floral nectar by wild treeshrews. Proc. Natl. Acad. Sci. USA 2008, 105, 10426–10431. [Google Scholar] [CrossRef] [Green Version]
- Schiel, N.; Sanz, C.M.; Schülke, O.; Shanee, S.; Souto, A.; Souza-Alves, J.P.; Stewart, F.; Stewart, K.M.; Stone, A.; Sun, B.; et al. Fermented food consumption in wild nonhuman primates and its ecological drivers. Am. J. Phys. Anthr. 2021, 175, 513–530. [Google Scholar] [CrossRef]
- Simmen, B. Taste discrimination and diet differentiation among New World primates. In The Digestive System in Mammals: Food, Form, and Function; Chivers, D.J., Langer, P., Eds.; Cambridge University Press: Cambridge, UK, 1994; pp. 150–165. [Google Scholar]
- Laska, M.; Seibt, A. Olfactory sensitivity for aliphatic alcohols in squirrel monkeys and pigtail macaques. J. Exp. Biol. 2002, 205, 1633–1643. [Google Scholar] [CrossRef] [PubMed]
- Gochman, S.R.; Brown, M.B.; Dominy, N.J. Alcohol discrimination and preferences in two species of nectar-feeding primate. R. Soc. Open Sci. 2016, 3, 160217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibañez, D.D.; Salazar, L.T.H.; Laska, M. Taste Responsiveness of Spider Monkeys to Dietary Ethanol. Chem. Senses 2019, 44, 631–638. [Google Scholar] [CrossRef] [PubMed]
- Hockings, K.J.; Bryson-Morrison, N.; Carvalho, S.; Fujisawa, M.; Humle, T.; McGrew, W.C.; Nakamura, M.; Ohashi, G.; Yamanashi, Y.; Yamakoshi, G.; et al. Tools to tipple: Ethanol ingestion by wild chimpanzees using leaf-sponges. R. Soc. Open Sci. 2015, 2, 150150. [Google Scholar] [CrossRef] [Green Version]
- Peris, J.E.; Rodríguez, A.; Peña, L.; Fedriani, J.M. Fungal infestation boosts fruit aroma and fruit removal by mammals and birds. Sci. Rep. 2017, 7, 5646. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, F.; Korine, C.; Steeghs, M.; Laarhoven, L.-J.; Harren, F.J.M.; Cristescu, S.M.; Dudley, R.; Pinshow, B. Ethanol and Methanol as Possible Odor Cues for Egyptian Fruit Bats (Rousettus aegyptiacus). J. Chem. Ecol. 2006, 32, 1289–1300. [Google Scholar] [CrossRef]
- Mazeh, S.; Korine, C.; Pinshow, B.; Dudley, R. Does ethanol in fruit influence feeding in the frugivorous yellow-vented bulbul (Pycnonotus xanthopygos)? Behav. Process. 2008, 77, 369–375. [Google Scholar] [CrossRef]
- Fitzgerald, S.D.; Sullivan, J.M.; Everson, R.J. Suspected Ethanol Toxicosis in Two Wild Cedar Waxwings. Avian Dis. 1990, 34, 488–490. [Google Scholar] [CrossRef]
- Kinde, H.; Foate, E.; Beeler, E.; Uzal, F.; Moore, J.; Poppenga, R. Strong circumstantial evidence for ethanol toxicosis in Cedar Waxwings (Bombycilla cedrorum). J. Ornithol. 2012, 153, 995–998. [Google Scholar] [CrossRef]
- Carrigan, M.A.; Uryasev, O.; Frye, C.B.; Eckman, B.L.; Myers, C.R.; Hurley, T.D.; Benner, S.A. Hominids adapted to metabolize ethanol long before human-directed fermentation. Proc. Natl. Acad. Sci. USA 2015, 112, 458–463. [Google Scholar] [CrossRef] [Green Version]
- Janiak, M.C.; Pinto, S.L.; Duytschaever, G.; Carrigan, M.A.; Melin, A.D. Genetic evidence of widespread variation in ethanol metabolism among mammals: Revisiting the ‘myth’ of natural intoxication. Biol. Lett. 2020, 16, 20200070. [Google Scholar] [CrossRef]
- Starmer, W.T.; Heed, W.B.; Rockwood-Sluss, E.S. Extension of longevity in Drosophila mojavensis by environmental ethanol: Differences between subraces. Proc. Natl. Acad. Sci. USA 1977, 74, 387–391. [Google Scholar] [CrossRef] [Green Version]
- Etges, W.J.; Klassen, C.S. Influences of atmospheric ethanol on adult Drosophila mojavensis: Altered metabolic rates and increases in fitnesses among populations. Physiol. Zool. 1989, 62, 170–193. [Google Scholar] [CrossRef]
- Parsons, P.A. Acetaldehyde utilization in Drosophila: An example of hormesis. Biol. J. Linn. Soc. 1989, 37, 183–189. [Google Scholar] [CrossRef]
- Diao, Y.; Nie, J.; Tan, P.; Zhao, Y.; Tu, J.; Ji, H.; Cao, Y.; Wu, Z.; Liang, H.; Huang, H.; et al. Long-term low-dose ethanol intake improves healthspan and resists high-fat diet-induced obesity in mice. Aging 2020, 12, 13128–13146. [Google Scholar] [CrossRef] [PubMed]
- Poli, A.; Marangoni, F.; Avogaro, A.; Barba, G.; Bellentani, S.; Bucci, M.; Cambieri, R.; Catapano, A.; Costanzo, S.; Cricelli, C.; et al. Moderate alcohol use and health: A consensus document. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 487–504. [Google Scholar] [CrossRef] [PubMed]
- Chiva-Blanch, G.; Badimon, L. Benefits and risks of moderate alcohol consumption on cardiovascular disease: Current findings and controversies. Nutrients 2020, 12, 108. [Google Scholar] [CrossRef] [Green Version]
- Last, F.T.; Price, D. Yeasts associated with living plants and their environs. In The Yeasts; Rose, A.H., Harrison, J.S., Eds.; Academic Press: London, UK, 1969; Volume 1, pp. 183–218. [Google Scholar]
- Spencer, J.F.T.; Spencer, D.M. Ecology: Where yeasts live. In Yeasts in Natural and Artificial Habitats; Spencer, J.F.T., Spencer, D.M., Eds.; Springer: Berlin/Heidelberg, Germany, 1997; pp. 33–58. [Google Scholar]
- Benner, S.A.; Caraco, M.D.; Thomson, J.M.; Gaucher, E.A. Planetary biology–paleontological, geological, and molecular his-tories of life. Science 2002, 296, 864–868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ingram, L.O.; Buttke, T.M. Effects of Alcohols on Micro-Organisms. Adv. Microb. Physiol. 1984, 25, 253–300. [Google Scholar] [CrossRef]
- Devineni, A.V.; Heberlein, U. The evolution of Drosophila melanogaster as a model for alcohol research. Annu. Rev. Neurosci. 2013, 36, 121–138. [Google Scholar] [CrossRef] [PubMed]
- Cadieu, N.; Cadieu, J.-C.; El Ghadraoui, L.; Grimal, A.; Lamboeuf, Y. Conditioning to ethanol in the fruit fly—A study using an inhibitor of ADH. J. Insect Physiol. 1999, 45, 579–586. [Google Scholar] [CrossRef]
- Cains, S.; Blomeley, C.; Kollo, M.; Racz, R.; Burdakov, D. Agrp neuron activity is required for alcohol-induced overeating. Nat. Commun. 2017, 8, 14014. [Google Scholar] [CrossRef] [PubMed]
- Gerber, L.M.; Williams, G.C. The nutrient-toxin dosage continuum in human evolution and modern health. Q. Rev. Biol. 1999, 74, 273–289. [Google Scholar] [CrossRef] [PubMed]
- Forbes, V.E. Is hormesis an evolutionary expectation? Funct. Ecol. 2000, 14, 12–24. [Google Scholar] [CrossRef]
- Calabrese, E.J.; Baldwin, L.A. Toxicology rethinks its central belief. Nature 2003, 421, 691–692. [Google Scholar] [CrossRef]
- Oda, M.; Satta, Y.; Takenaka, O.; Takahata, N. Loss of Urate Oxidase Activity in Hominoids and its Evolutionary Implications. Mol. Biol. Evol. 2002, 19, 640–653. [Google Scholar] [CrossRef] [Green Version]
- Kratzer, J.T.; Lanaspa, M.A.; Murphy, M.N.; Cicerchi, C.; Graves, C.L.; Tipton, P.A.; Ortlund, E.A.; Johnson, R.J.; Gaucher, E.A. Evolutionary history and metabolic insights of ancient mammalian uricases. Proc. Natl. Acad. Sci. USA 2014, 111, 3763–3768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, R.J.; Titte, S.; Cade, J.R.; Rideout, B.A.; Oliver, W.J. Uric acid, evolution and primitive cultures. Semin. Nephrol. 2005, 25, 3–8. [Google Scholar] [CrossRef]
- Tapia, E.; Cristóbal, M.; Garcia, F.; Soto, V.; Monroy-Sánchez, F.; Pacheco, U.; Lanaspa, M.A.; Roncal-Jiménez, C.A.; Cruz-Robles, D.; Ishimoto, T.; et al. Synergistic effect of uricase blockade plus physiological amounts of fructose-glucose on glomerular hypertension and oxidative stress in rats. Am. J. Physiol. Renal. Physiol. 2013, 304, F727–F736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Softic, S.; Meyer, J.G.; Wang, G.X.; Gupta, M.K.; Batista, T.M.; Lauritzen, H.; Fujisaka, S.; Serra, D.; Herrero, L.; Willoughby, J.; et al. Dietary sugars alter hepatic fatty acid oxidation via transcriptional and post-translational modifications of mitochondrial proteins. Cell Metab. 2019, 30, 735–753.e734. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Lozada, L.G.; Andres-Hernando, A.; Garcia-Arroyo, F.E.; Cicerchi, C.; Li, N.; Kuwabara, M.; Roncal-Jimenez, C.; Johnson, R.J.; Lanaspa, M. Uric acid activates aldose reductase and the polyol pathway for endogenous fructose production and fat accumulation in the development of fatty liver. J. Biol. Chem. 2019, 294, 4272–4281. [Google Scholar] [CrossRef]
- Wang, M.; Chen, W.Y.; Zhang, J.; Gobejishvili, L.; Barve, S.S.; McClain, C.J.; Joshi-Barve, S. Elevated fructose and uric acid through aldose reductase contribute to experimental and human alcoholic liver disease. Hepatology 2020, 72, 1617–1637. [Google Scholar] [CrossRef]
- Lustig, R.H. Fructose: It’s “alcohol without the buzz”. Adv. Nutr. 2013, 4, 226–235. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.-C.; Fan, J.-H.; Edenberg, H.J.; Li, T.-K.; Cui, Y.-H.; Wang, Y.-F.; Tian, C.-H.; Zhou, C.-F.; Zhou, R.-L.; Wang, J.; et al. Polymorphism of ADH and ALDH genes among four ethnic groups in China and effects upon the risk for alcoholism. Alcohol. Clin. Exp. Res. 1997, 21, 1272–1277. [Google Scholar] [CrossRef]
- Osier, M.V.; Pakstis, A.J.; Soodyall, H.; Comas, D.; Goldman, D.; Odunsi, A.; Okonofua, F.; Parnas, J.; Schulz, L.O.; Bertranpetit, J.; et al. A Global Perspective on Genetic Variation at the ADH Genes Reveals Unusual Patterns of Linkage Disequilibrium and Diversity. Am. J. Hum. Genet. 2002, 71, 84–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarwal, D.P.; Goedde, H.W. Alcohol Metabolism, Alcohol Intolerance, and Alcoholism: Biochemical and Pharmacogenetic Approaches; Springer: Berlin/Heidelberg, Germany, 1990. [Google Scholar]
- Helzer, J.E.; Canino, G.J. (Eds.) Alcoholism in North America, Europe, and Asia; Oxford University Press: New York, NY, USA, 1992. [Google Scholar]
- Li, T.-K. Pharmacogenetics of responses to alcohol and genes that influence alcohol drinking. J. Stud. Alcohol. Drugs 2000, 61, 5–12. [Google Scholar] [CrossRef]
- Ezquer, F.; Quintanilla, M.E.; Moya-Flores, F.; Morales, P.; Munita, J.M.; Olivares, B.; Landskron, G.; Hermoso, M.A.; Ezquer, M.; Herrera-Marschitz, M.; et al. Innate gut microbiota predisposes to high alcohol consumption. Addict. Biol. 2021, 26, e13018. [Google Scholar] [CrossRef]
- Potts, K.B.; Baken, E.; Levang, A.; Watts, D.P. Ecological factors influencing habitat use by chimpanzees at Ngogo, Kibale National Park, Uganda. Am. J. Primatol. 2016, 78, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Watts, D.P.; Potts, K.B.; Lwanga, J.S.; Mitani, J.C. Diet of chimpanzees (Pan troglodytes schweinfurthii) at Ngogo, Kibale National Park, Uganda, 2. temporal variation and fallback foods. Am. J. Primatol. 2012, 74, 130–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pusey, A.E.; Oehlert, G.W.; Williams, J.M.; Goodall, J. Influence of ecological and social factors on body mass of wild chimpanzees. Int. J. Primatol. 2005, 26, 3–31. [Google Scholar] [CrossRef]
- Martínez, C.; Galván, S.; Garcia-Martin, E.; Ramos, M.I.; Gutiérrez-Martín, Y.; Agúndez, J.A. Variability in ethanol biodisposition in whites is modulated by polymorphisms in the ADH1B and ADH1C genes. Hepatology 2010, 51, 491–500. [Google Scholar] [CrossRef] [PubMed]
- Bjerregaard, P.; Mikkelsen, S.S.; Becker, U.; Hansen, T.; Tolstrup, J.S. Genetic variation in alcohol metabolizing enzymes among Inuit and its relation to drinking patterns. Drug Alcohol Depend. 2014, 144, 239–244. [Google Scholar] [CrossRef]
- Dominy, N.J.; Yeakel, J.D.; Bhat, U.; Ramsden, L.; Wrangham, R.W.; Lucas, P.W. How chimpanzees integrate sensory information to select figs. Interface Focus 2016, 6, 20160001. [Google Scholar] [CrossRef] [Green Version]
- Houle, A.; Conklin-Brittain, N.L.; Wrangham, R.W. Vertical stratification of the nutritional value of fruit: Macronutrients and condensed tannins. Am. J. Primatol. 2014, 76, 1207–1232. [Google Scholar] [CrossRef]
Prediction | Supporting Evidence | References |
---|---|---|
Ethanol occurs naturally at low levels within many fruits and nectars. | A variety of tropical fruits, as well as some nectars, contain ethanol at low concentrations. | [12,13,14,15] |
Olfaction can be used to localize and preferentially select ethanol-containing nutritional resources. | Fruits consumed by primates produce numerous volatiles, including ethanol. Olfactory abilities are well-developed in primates, but have not been explicitly tested relative to use in fruit localization or selection. | [16,17] |
Ethanol at low concentrations is not aversive to frugivores and nectarivores. | Diverse vertebrates consume food items containing low-concentration ethanol. | [18,19,20,21,22,23,24,25] |
Ethanol acts as a feeding stimulant. | Modern humans increase caloric ingestion following consumption of an aperitif. Effects of dietary ethanol on ingestion rates for free-ranging primates have not yet been evaluated. | [3] |
Genetic variation in the ability to metabolize ethanol is correlated with the extent of dietary exposure. | Substantial variation in ADH tracks dietary inclusion of fruit and nectar among mammals. Ethanol catabolism was up-regulated in African apes ~10 Mya ago, in parallel with terrestrialization. | [26,27] |
Hormetic advantage derives from chronic consumption of ethanol. | Mortality is reduced at low levels of ethanol ingestion in modern humans and rodents, and also in Drosophila flies exposed to low-concentration ethanol vapor. | [28,29,30,31,32,33] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dudley, R.; Maro, A. Human Evolution and Dietary Ethanol. Nutrients 2021, 13, 2419. https://doi.org/10.3390/nu13072419
Dudley R, Maro A. Human Evolution and Dietary Ethanol. Nutrients. 2021; 13(7):2419. https://doi.org/10.3390/nu13072419
Chicago/Turabian StyleDudley, Robert, and Aleksey Maro. 2021. "Human Evolution and Dietary Ethanol" Nutrients 13, no. 7: 2419. https://doi.org/10.3390/nu13072419
APA StyleDudley, R., & Maro, A. (2021). Human Evolution and Dietary Ethanol. Nutrients, 13(7), 2419. https://doi.org/10.3390/nu13072419