The Effects of Caffeine on Jumping Performance and Maximal Strength in Female Collegiate Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Approach
2.2. Participants
2.3. Procedures
2.3.1. Randomization
2.3.2. Anthropometrics and Hydration
2.3.3. Questionnaires
2.3.4. Condition Administration and Physiological Measurements
2.3.5. Standardized Warm-Up
2.3.6. Vertical Jumps
2.3.7. Isometric Mid-Thigh Pulls
2.4. Statistics
3. Results
3.1. Hydration and Questionnaires
3.2. Physiological Measurements
3.3. Performance Measurements
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Greer, F.; McLean, C.; Graham, T.E. Caffeine, performance, and metabolism during repeated Wingate exercise tests. J. Appl. Physiol. 1998, 85, 1502–1508. [Google Scholar] [CrossRef]
- Stuart, G.R.; Hopkins, W.G.; Cook, C.; Cairns, S.P. Multiple Effects of Caffeine on Simulated High-Intensity Team-Sport Performance. Med. Sci. Sports Exerc. 2005, 37, 1998–2005. [Google Scholar] [CrossRef]
- Weber, A.; Herz, R. The Relationship between Caffeine Contracture of Intact Muscle and the Effect of Caffeine on Reticulum. J. Gen. Physiol. 1968, 52, 750–759. [Google Scholar] [CrossRef] [Green Version]
- Davis, J.K.; Green, J.M. Caffeine and Anaerobic Performance. Sports Med. 2009, 39, 813–832. [Google Scholar] [CrossRef]
- Vitale, K.; Getzin, A. Nutrition and Supplement Update for the Endurance Athlete: Review and Recommendations. Nutrients 2019, 11, 1289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Racinais, S.; Blonc, S.; Antoine-Jonville, S.; Hue, O. Time of Day Influences the Environmental Effects on Muscle Force and Contractility. Med. Sci. Sports Exerc. 2005, 37, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Bloms, L.P.; Fitzgerald, J.S.; Short, M.W.; Whitehead, J.R. The Effects of Caffeine on Vertical Jump Height and Execution in Collegiate Athletes. J. Strength Cond. Res. 2016, 30, 1855–1861. [Google Scholar] [CrossRef] [PubMed]
- Behrens, M.; Mau-Moeller, A.; Weippert, M.; Fuhrmann, J.; Wegner, K.; Skripitz, R.; Bader, R.; Bruhn, S. Caffeine-induced increase in voluntary activation and strength of the quadriceps muscle during isometric, concentric and eccentric contractions. Sci. Rep. 2015, 5, 10209. [Google Scholar] [CrossRef] [PubMed]
- Ivy, J.L.; Costill, D.L.; Fink, W.J.; Lower, R.W. Influence of caffeine and carbohydrate feedings on endurance performance. Med. Sci. Sports 1979, 11, 6–11. [Google Scholar] [CrossRef]
- Denadai, B.; Denadai, M. Effects of caffeine on time to exhaustion in exercise performed below and above the anaerobic threshold. Braz. J. Med. Biol. Res. 1998, 31, 581–585. [Google Scholar] [CrossRef] [Green Version]
- Doherty, M.; Smith, P.M. Effects of Caffeine Ingestion on Exercise Testing: A Meta-Analysis. Int. J. Sport Nutr. Exerc. Metab. 2004, 14, 626–646. [Google Scholar] [CrossRef] [PubMed]
- Ganio, M.S.; Klau, J.F.; Casa, D.J.; Armstrong, L.E.; Maresh, C.M. Effect of Caffeine on Sport-Specific Endurance Performance: A Systematic Review. J. Strength Cond. Res. 2009, 23, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Southward, K.; Rutherfurd-Markwick, K.J.; Ali, A. Correction to: The Effect of Acute Caffeine Ingestion on Endurance Performance: A Systematic Review and Meta-Analysis. Sports Med. 2018, 48, 2425–2441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arazi, H.; Dehlavinejad, N.; Gholizadeh, R. The Acute Effect of Caffeine Supplementation on Strength, Repetition Sustainability and Work Volume of Novice Bodybuilders. Turk. J. Kin. 2016, 2, 43–48. [Google Scholar]
- Astorino, T.A.; Rohmann, R.L.; Firth, K. Effect of caffeine ingestion on one-repetition maximum muscular strength. Graefe’s Arch. Clin. Exp. Ophthalmol. 2007, 102, 127–132. [Google Scholar] [CrossRef]
- Beck, T.W.; Housh, T.J.; Schmidt, R.J.; Johnson, G.O.; Housh, D.J.; Coburn, J.W.; Malek, M.H. The Acute Effects of a Caffeine-Containing Supplement on Strength, Muscular Endurance, and Anaerobic Capabilities. J. Strength Cond. Res. 2006, 20, 506–510. [Google Scholar] [CrossRef] [Green Version]
- Grgic, J.; Trexler, E.T.; Lazinica, B.; Pedisic, Z. Effects of caffeine intake on muscle strength and power: A systematic review and meta-analysis. J. Int. Soc. Sports Nutr. 2018, 15, 11. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; O’Donnell, J.; Foskett, A.; Rutherfurd-Markwick, K. The influence of caffeine ingestion on strength and power performance in female team-sport players. J. Int. Soc. Sports Nutr. 2016, 13, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Williams, A.D.; Cribb, P.J.; Cooke, M.; Hayes, A. The Effect of Ephedra and Caffeine on Maximal Strength and Power in Resistance-Trained Athletes. J. Strength Cond. Res. 2008, 22, 464–470. [Google Scholar] [CrossRef]
- Temple, J.L.; Ziegler, A.M. Gender Differences in Subjective and Physiological Responses to Caffeine and the Role of Steroid Hormones. J. Caffeine Res. 2011, 1, 41–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldstein, E.; Jacobs, P.L.; Whitehurst, M.; Penhollow, T.; Antonio, J. Caffeine enhances upper body strength in resistance-trained women. J. Int. Soc. Sports Nutr. 2010, 7, 18. [Google Scholar] [CrossRef] [Green Version]
- Mahdavi, R.; Daneghian, S.; Jafari, A.; Homayouni, A. Effect of Acute Caffeine Supplementation on Anaerobic Power and Blood Lactate Levels in Female Athletes. J. Caffeine Res. 2015, 5, 83–87. [Google Scholar] [CrossRef]
- Sabblah, S.; Dixon, D.; Bottoms, L. Sex differences on the acute effects of caffeine on maximal strength and muscular endurance. Comp. Exerc. Physiol. 2015, 11, 89–94. [Google Scholar] [CrossRef] [Green Version]
- Stone, M.H.; Stone, M.; Sands, W.A. Principles and Practice of Resistance Training, 1st ed.; Human Kinetics: Champaign, IL, USA, 2007; ISBN 978-0-88011-706-7. [Google Scholar]
- Lum, D.; Haff, G.G.; Barbosa, T.M. The Relationship between Isometric Force-Time Characteristics and Dynamic Performance: A Systematic Review. Sports 2020, 8, 63. [Google Scholar] [CrossRef]
- Wilson, A.; Pritchard, H.; Stewart, B.; Mann, M.; Tildesley, J. The Effects of Caffeine on Maximal Strength and Power in Recreationaly Trained Females. In Proceedings of the ASCA International Conference on Applied Strength and Conditioning, Melbourne, Australia, 4 November 2016. [Google Scholar]
- Arazi, H.; Hoseinihaji, M.; Eghbali, E. The effects of different doses of caffeine on performance, rating of perceived exertion and pain perception in teenagers female karate athletes. Braz. J. Pharm. Sci. 2016, 52, 685–692. [Google Scholar] [CrossRef] [Green Version]
- Grgic, J.; Del Coso, J. Ergogenic Effects of Acute Caffeine Intake on Muscular Endurance and Muscular Strength in Women: A Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 5773. [Google Scholar] [CrossRef] [PubMed]
- Graham, T.E.; Spriet, L.L. Metabolic, catecholamine, and exercise performance responses to various doses of caffeine. J. Appl. Physiol. 1995, 78, 867–874. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, E.R.; Ziegenfuss, T.; Kalman, D.; Kreider, R.; Campbell, B.; Wilborn, C.; Taylor, L.; Willoughby, D.; Stout, J.; Graves, B.S.; et al. International society of sports nutrition position stand: Caffeine and performance. J. Int. Soc. Sports Nutr. 2010, 7, 5–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lane, J.D.; Steege, J.F.; Rupp, S.L.; Kuhn, C.M. Menstrual cycle effects on caffeine elimination in the human female. Eur. J. Clin. Pharmacol. 1992, 43, 543–546. [Google Scholar] [CrossRef] [PubMed]
- Patwardhan, R.V.; Desmond, P.V.; Johnson, R.F.; Schenker, S. Impaired elimination of caffeine by oral contraceptive steroids. J. Lab. Clin. Med. 1980, 95, 603–608. [Google Scholar]
- Kellmann, M.; Kölling, S. Recovery and Stress in Sport: A Manual for Testing and Assessment; Routledge: London, UK, 2019; ISBN 978-0-429-42385-7. [Google Scholar]
- Travis, S.K.; Goodin, J.R.; Beckham, G.K.; Bazyler, C.D. Identifying a Test to Monitor Weightlifting Performance in Competitive Male and Female Weightlifters. Sports 2018, 6, 46. [Google Scholar] [CrossRef] [Green Version]
- Linthorne, N. Analysis of standing vertical jumps using a force platform. Am. J. Phys. 2001, 69, 1198–1204. [Google Scholar] [CrossRef] [Green Version]
- Bazyler, C.D.; Mizuguchi, S.; Kavanaugh, A.A.; McMahon, J.J.; Comfort, P.; Stone, M.H. Returners Exhibit Greater Jumping Performance Improvements During a Peaking Phase Compared With New Players on a Volleyball Team. Int. J. Sports Physiol. Perform. 2018, 13, 709–716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bazyler, C.D.; Mizuguchi, S.; Sole, C.J.; Suchomel, T.J.; Sato, K.; Kavanaugh, A.A.; DeWeese, B.H.; Stone, M.H. Jumping Performance is Preserved but Not Muscle Thickness in Collegiate Volleyball Players After a Taper. J. Strength Cond. Res. 2018, 32, 1020–1028. [Google Scholar] [CrossRef]
- Folland, J.P.; McCauley, T.M.; Williams, A. Allometric scaling of strength measurements to body size. Graefe’s Arch. Clin. Exp. Ophthalmol. 2008, 102, 739–745. [Google Scholar] [CrossRef]
- Carroll, K.M.; Bernards, J.; Bazyler, C.D.; Taber, C.B.; Stuart, C.A.; Deweese, B.H.; Sato, K.; Stone, M.H. Divergent Performance Outcomes Following Resistance Training Using Repetition Maximums or Relative Intensity. Int. J. Sports Physiol. Perform. 2019, 14, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Diaz-Lara, F.J.; Del Coso, J.; García, J.M.; Portillo, L.J.; Areces, F.; Abian-Vicen, J. Caffeine improves muscular performance in elite Brazilian Jiu-jitsu athletes. Eur. J. Sport Sci. 2016, 16, 1079–1086. [Google Scholar] [CrossRef]
- Ali, A.; O’Donnell, J.; Starck, C.; Rutherfurd-Markwick, K. The Effect of Caffeine Ingestion during Evening Exercise on Subsequent Sleep Quality in Females. Int. J. Sports Med. 2015, 36, 433–439. [Google Scholar] [CrossRef]
- Graham, T.E. Caffeine and Exercise. Sports Med. 2001, 31, 785–807. [Google Scholar] [CrossRef] [PubMed]
- Bell, D.G.; McLellan, T.M. Exercise endurance 1, 3, and 6 h after caffeine ingestion in caffeine users and nonusers. J. Appl. Physiol. 2002, 93, 1227–1234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, A. Caffeine, Performance, Mood and States of Reduced Alertness. Pharmacopsychoecologia 1994, 7, 75–86. [Google Scholar]
Title 1 | Mean | Range |
---|---|---|
Age (yrs) | 19.7 ± 0.9 | 18.1–21.3 |
Height (cm) | 166.4 ± 10.2 | 149.0–178.0 |
Mass (kg) | 67.7 ± 9.4 | 54.1–85.0 |
Experience (yrs) * | 1.9 ± 1.2 | 1.0–5.0 |
Daily Caffeine Intake (mg) # | 90.4 ± 85.7 | 14.0–312.0 |
Physiological Variables | |||
---|---|---|---|
Placebo Condition | Time Point 1 | Time Point 2 | Time Point 3 |
Heart Rate (beats/min) | 79 ± 12 | 75 ± 11 | 92 ± 12 * |
Systolic Blood Pressure (mmHg) | 110 ± 8 | 110 ± 8 | 121 ± 4 * |
Diastolic Blood Pressure (mmHg) | 73 ± 5 | 75 ± 7 | 77 ± 7 * |
Tympanic Temperature (F) | 97.7 ± 0.8 | 97.8 ± 0.6 | 98.4 ± 0.8 * |
Caffeine Condition | |||
Heart Rate (beats/min) | 74 ± 11 | 71 ± 6 | 91 ± 14 * |
Systolic Blood Pressure (mmHg) | 108 ± 6 | 117 ± 9 *,# | 122 ± 10 * |
Diastolic Blood Pressure (mmHg) | 71 ± 6 | 76 ± 7 * | 79 ± 8 * |
Tympanic Temperature (F) | 97.5 ± 0.9 | 97.6 ± 0.8 | 98.5 ± 1.0 * |
Performance Variables | Placebo | Caffeine | p-Value | Hedge’s g [95% CI] | Typical Error |
---|---|---|---|---|---|
SJH 0 kg (cm) | 23.49 ± 3.15 | 24.55 ± 2.86 | 0.035 * | 0.35 [0.08, 0.63] | 1.02 |
SJH 20 kg (cm) | 15.79 ± 2.26 | 16.98 ± 2.56 | 0.002 * | 0.49 [0.25, 0.74] | 0.69 |
CMJH 0 kg (cm) | 25.30 ± 3.77 | 26.00 ± 3.23 | 0.015 * | 0.19 [0.07, 0.33] | 0.55 |
CMJH 20 kg (cm) | 17.05 ± 2.84 | 18.15 ± 3.03 | <0.001 * | 0.37 [0.24, 0.50] | 0.43 |
IPF (N) | 2976.15 ± 566.13 | 3043.76 ± 565.06 | 0.369 | 0.12 [−0.07, 0.31] | 168.57 |
IPFa (N/kg 0.67) | 177.68 ± 31.46 | 181.49 ± 28.17 | 0.2 | 0.13 [−0.08, 0.34] | 10.32 |
RFD 200 ms (N·s−1) | 4921.85 ± 1693.07 | 5455.67 ± 1596.08 | 0.235 | 0.32 [−0.10, 0.75] | 990.63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burke, B.I.; Travis, S.K.; Gentles, J.A.; Sato, K.; Lang, H.M.; Bazyler, C.D. The Effects of Caffeine on Jumping Performance and Maximal Strength in Female Collegiate Athletes. Nutrients 2021, 13, 2496. https://doi.org/10.3390/nu13082496
Burke BI, Travis SK, Gentles JA, Sato K, Lang HM, Bazyler CD. The Effects of Caffeine on Jumping Performance and Maximal Strength in Female Collegiate Athletes. Nutrients. 2021; 13(8):2496. https://doi.org/10.3390/nu13082496
Chicago/Turabian StyleBurke, Benjamin I., S. Kyle Travis, Jeremy A. Gentles, Kimitake Sato, Henry M. Lang, and Caleb D. Bazyler. 2021. "The Effects of Caffeine on Jumping Performance and Maximal Strength in Female Collegiate Athletes" Nutrients 13, no. 8: 2496. https://doi.org/10.3390/nu13082496