Age-Related Cognitive Decline May Be Moderated by Frequency of Specific Food Products Consumption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Participants
2.3. Data Collection
2.4. Personal Data Assessment
2.4.1. Personal Questionnaire
2.4.2. Fatigue Assessment Scale
2.5. Dietary Assessment
Food Frequency Questionnaire
2.6. Cognitive Functioning Assessment–SynWin Task
2.7. Statistical Analysis
3. Results
3.1. Participants Characteristics
3.2. Consumption Patterns
3.3. Consumption Patterns and SynWin Multitasking Performance
3.4. Consumption Patterns and SynWin Components Performance
Memory Search
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salthouse, T.A. When Does Age-Related Cognitive Decline Begin? Neurobiol. Aging 2009, 30, 507–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rey-Mermet, A.; Gade, M. Inhibition in Aging: What Is Preserved? What Declines? A Meta-Analysis. Psychon. Bull. Rev. 2018, 25, 1695–1716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harada, C.N.; Natelson Love, M.C.; Triebel, K.L. Normal Cognitive Aging. Clin. Geriatr. Med. 2013, 29, 737–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spencer, S.J.; Korosi, A.; Layé, S.; Shukitt-Hale, B.; Barrientos, R.M. Food for Thought: How Nutrition Impacts Cognition and Emotion. NPJ Sci. Food 2017, 1, 7. [Google Scholar] [CrossRef] [Green Version]
- Noble, E.E.; Hsu, T.M.; Kanoski, S.E. Gut to Brain Dysbiosis: Mechanisms Linking Western Diet Consumption, the Microbiome, and Cognitive Impairment. Front. Behav. Neurosci. 2017, 11, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Kanoski, S.; Zhang, Y.; Zheng, W.; Davidson, T. The Effects of a High-Energy Diet on Hippocampal-Dependent Negative Occasion Setting and Blood-Brain Barrier Integrity in the Rat. J. Alzheimer. Dis. 2010, 21, 207–219. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization Global Recommendations on Physical Activity for Health; World Health Organization: Geneva, Switzerland, 2010; pp. 1–55.
- Amine, E.K.; Baba, N.H.; Belhadj, M.; Deurenberg-Yap, M.; Djazayery, A.; Forrestre, T.; Galuska, D.A.; Herman, S.; James, W.P.T.; M'Buyamba Kabangu, J.R.; et al. Diet, Nutrition and the Prevention of Chronic Diseases. World Health Organ. Tech. Rep. Ser. 2003, 916, 1–149. [Google Scholar]
- Adan, R.A.H.; van der Beek, E.M.; Buitelaar, J.K.; Cryan, J.F.; Hebebrand, J.; Higgs, S.; Schellekens, H.; Dickson, S.L. Nutritional Psychiatry: Towards Improving Mental Health by What You Eat. Eur. Neuropsychopharmacol. 2019, 29, 1321–1332. [Google Scholar] [CrossRef]
- Rodrigues, B.; Asamane, E.A.; Magalhães, R.; Sousa, N.; Thompson, J.L.; Santos, N.C. The Association of Dietary Patterns with Cognition through the Lens of Neuroimaging—A Systematic Review. Ageing Res. Rev. 2020, 63, 101145. [Google Scholar] [CrossRef]
- Loughrey, D.G.; Lavecchia, S.; Brennan, S.; Lawlor, B.A.; Kelly, M.E. The Impact of the Mediterranean Diet on the Cognitive Functioning of Healthy Older Adults: A Systematic Review and Meta-Analysis. Adv. Nutr. 2017, 8, 571. [Google Scholar] [CrossRef]
- Petersson, S.D.; Philippou, E. Mediterranean Diet, Cognitive Function, and Dementia: A Systematic Review of the Evidence. Adv. Nutr. 2016, 7, 889–904. [Google Scholar] [CrossRef] [Green Version]
- Keenan, T.D.; Agrón, E.; Mares, J.A.; Clemons, T.E.; van Asten, F.; Swaroop, A.; Chew, E.Y. Adherence to a Mediterranean Diet and Cognitive Function in the Age-Related Eye Disease Studies 1 & 2. Alzheimer’s Dement. 2020, 16, 831–842. [Google Scholar] [CrossRef]
- Huhn, S.; Kharabian Masouleh, S.; Stumvoll, M.; Villringer, A.; Witte, A.V. Components of a Mediterranean Diet and Their Impact on Cognitive Functions in Aging. Front. Aging Neurosci. 2015, 7. [Google Scholar] [CrossRef] [Green Version]
- Statovci, D.; Aguilera, M.; MacSharry, J.; Melgar, S. The Impact of Western Diet and Nutrients on the Microbiota and Immune Response at Mucosal Interfaces. Front. Immunol. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Kanoski, S.E.; Davidson, T.L. Western Diet Consumption and Cognitive Impairment: Links to Hippocampal Dysfunction and Obesity. Physiol. Behav. 2011, 103, 59–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suarez, A.N.; Noble, E.E.; Kanoski, S.E. Regulation of Memory Function by Feeding-Relevant Biological Systems: Following the Breadcrumbs to the Hippocampus. Front. Mol. Neurosci. 2019, 12, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Cordner, Z.A.; Tamashiro, K.L.K. Effects of High-Fat Diet Exposure on Learning & Memory. Physiol. Behav. 2015, 152, 363–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunstrom, J.M.; Burn, J.F.; Sell, N.R.; Collingwood, J.M.; Rogers, P.J.; Wilkinson, L.L.; Hinton, E.C.; Maynard, O.M.; Ferriday, D. Episodic Memory and Appetite Regulation in Humans. PLoS ONE 2012, 7, e50707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevenson, R.J.; Francis, H.M.; Attuquayefio, T.; Gupta, D.; Yeomans, M.R.; Oaten, M.J.; Davidson, T. Hippocampal-Dependent Appetitive Control Is Impaired by Experimental Exposure to a Western-Style Diet. R. Soc. Open Sci. 2020, 7, 191338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paul, R.H.; Richard, C.C.; Lawrence, J.; Goldberg, E.; Williams, L.M.; Cooper, N.; Cohen, R.A.; Brickman, A.M.; Gordon, E. Age-Dependent Change in Executive Functionand Gamma 40 HZ Phase Synchrony. J. Integr. Neurosci. 2005, 04, 63–76. [Google Scholar] [CrossRef]
- Nyberg, L.; Lövdén, M.; Riklund, K.; Lindenberger, U.; Bäckman, L. Memory Aging and Brain Maintenance. Trends Cogn. Sci. 2012, 16, 292–305. [Google Scholar] [CrossRef] [Green Version]
- Attuquayefio, T.; Stevenson, R.J.; Oaten, M.J.; Francis, H.M. A Four-Day Western-Style Dietary Intervention Causes Reductions in Hippocampal-Dependent Learning and Memory and Interoceptive Sensitivity. PLoS ONE 2017, 12, e0172645. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.A.; Riby, L.M.; van Eekelen, J.A.M.; Foster, J.K. Glucose Enhancement of Human Memory: A Comprehensive Research Review of the Glucose Memory Facilitation Effect. Neurosci. Biobehav. Rev. 2011, 35, 770–783. [Google Scholar] [CrossRef] [Green Version]
- Small, D.M.; DiFeliceantonio, A.G. Processed Foods and Food Reward. Science 2019, 363, 346–347. [Google Scholar] [CrossRef]
- Hsu, T.M.; Kanoski, S.E. Blood-Brain Barrier Disruption: Mechanistic Links between Western Diet Consumption and Dementia. Front. Aging Neurosci. 2014, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madore, C.; Leyrolle, Q.; Morel, L.; Rossitto, M.; Greenhalgh, A.D.; Delpech, J.C.; Martinat, M.; Bosch-Bouju, C.; Bourel, J.; Rani, B.; et al. Essential Omega-3 Fatty Acids Tune Microglial Phagocytosis of Synaptic Elements in the Mouse Developing Brain. Nat. Commun. 2020, 11, 6133. [Google Scholar] [CrossRef] [PubMed]
- Bazinet, R.P.; Layé, S. Polyunsaturated Fatty Acids and Their Metabolites in Brain Function and Disease. Nat. Rev. Neurosci. 2014, 15, 771–785. [Google Scholar] [CrossRef]
- Horman, T.; Fernandes, M.F.; Tache, M.C.; Hucik, B.; Mutch, D.M.; Leri, F. Dietary N-6/n-3 Ratio Influences Brain Fatty Acid Composition in Adult Rats. Nutrients 2020, 12, 1847. [Google Scholar] [CrossRef]
- Sobesky, J.L.; D’Angelo, H.M.; Weber, M.D.; Anderson, N.D.; Frank, M.G.; Watkins, L.R.; Maier, S.F.; Barrientos, R.M. Glucocorticoids Mediate Short-Term High-Fat Diet Induction of Neuroinflammatory Priming, the NLRP3 Inflammasome, and the Danger Signal HMGB1. Eneuro 2016, 3. [Google Scholar] [CrossRef] [Green Version]
- Baym, C.L.; Khan, N.A.; Monti, J.M.; Raine, L.B.; Drollette, E.S.; Moore, R.D.; Scudder, M.R.; Kramer, A.F.; Hillman, C.H.; Cohen, N.J. Dietary Lipids Are Differentially Associated with Hippocampal-Dependent Relational Memory in Prepubescent Children. Am. J. Clin. Nutr. 2014, 99, 1026–1032. [Google Scholar] [CrossRef]
- Hassevoort, K.M.; Lin, A.S.; Khan, N.A.; Hillman, C.H.; Cohen, N.J. Added Sugar and Dietary Fiber Consumption Are Associated with Creativity in Preadolescent Children. Nutr. Neurosci. 2020, 23, 791–802. [Google Scholar] [CrossRef]
- Sample, C.H.; Jones, S.; Hargrave, S.L.; Jarrard, L.E.; Davidson, T.L. Western Diet and the Weakening of the Interoceptive Stimulus Control of Appetitive Behavior. Behav. Brain Res. 2016, 312, 219–230. [Google Scholar] [CrossRef] [Green Version]
- Cole, J.H.; Marioni, R.E.; Harris, S.E.; Deary, I.J. Brain Age and Other Bodily ‘Ages’: Implications for Neuropsychiatry. Mol. Psychiatry 2019, 24, 266–281. [Google Scholar] [CrossRef] [Green Version]
- Francis, H.; Stevenson, R. Validity and Test-Retest Reliability of a Short Dietary Questionnaire to Assess Intake of Saturated Fat and Free Sugars: A Preliminary Study. J. Hum. Nutr. Diet. 2013, 26, 234–242. [Google Scholar] [CrossRef]
- Costa, P.T.; McCrae, R.R. Revised NEO Personality Inventory (NEO-PI-R) and NEO Five-Factor Inventory (NEO-FFI); Psychological Assessment Resources: Lutz, FL, USA, 1992; ISBN 9789995833466. [Google Scholar]
- Michielsen, H.J.; De Vries, J.; Van Heck, G.L. Psychometric Qualities of a Brief Self-Rated Fatigue Measure. J. Psychosom. Res. 2003, 54, 345–352. [Google Scholar] [CrossRef]
- Jeżewska-Zychowicz, M.; Wadolowska, L.; Galiński, G.; Roszkowski, W. Kwestionariusz Do Badania Poglądów i Zwyczajów Żywieniowych Oraz Procedura Opracowania Danych; Wydawnictwo Komitetu Nauki o Żywieniu Człowieka Polskiej Akademii Nauk: Warsaw, Poland, 2014; pp. 21–33. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Wądołowska, L. Walidacja Kwestionariusza Czestotliwosci Spozycia Zywnosci FFQ. Ocena Powtarzalnosci. Bromatol. Chem. Toksykol. 2005, 38, 27–33. [Google Scholar]
- Elsmore, T.F. SYNWORK1: A PC-Based Tool for Assessment of Performance in a Simulated Work Environment. Behav. Res. Methods Instrum. Comput. 1994, 26, 421–426. [Google Scholar] [CrossRef] [Green Version]
- Lucassen, P.J.; Meerlo, P.; Naylor, A.S.; van Dam, A.M.; Dayer, A.G.; Fuchs, E.; Oomen, C.A.; Czéh, B. Regulation of Adult Neurogenesis by Stress, Sleep Disruption, Exercise and Inflammation: Implications for Depression and Antidepressant Action☆. Eur. Neuropsychopharmacol. 2010, 20, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Bisht, K.; Sharma, K.; Tremblay, M.-È. Chronic Stress as a Risk Factor for Alzheimer’s Disease: Roles of Microglia-Mediated Synaptic Remodeling, Inflammation, and Oxidative Stress. Neurobiol. Stress 2018, 9, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Carrillo-de Sauvage, M.Á.; Maatouk, L.; Arnoux, I.; Pasco, M.; Sanz Diez, A.; Delahaye, M.; Herrero, M.T.; Newman, T.A.; Calvo, C.F.; Audinat, E.; et al. Potent and Multiple Regulatory Actions of Microglial Glucocorticoid Receptors during CNS Inflammation. Cell Death Differ. 2013, 20, 1546–1557. [Google Scholar] [CrossRef]
- Eckel, R.H.; Jakicic, J.M.; Ard, J.D.; de Jesus, J.M.; Houston Miller, N.; Hubbard, V.S.; Lee, I.-M.; Lichtenstein, A.H.; Loria, C.M.; Millen, B.E.; et al. 2013 AHA/ACC Guideline on Lifestyle Management to Reduce Cardiovascular Risk. J. Am. Coll. Cardiol. 2014, 63, 2960–2984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arruda, A.P.; Milanski, M.; Coope, A.; Torsoni, A.S.; Ropelle, E.; Carvalho, D.P.; Carvalheira, J.B.; Velloso, L.A. Low-Grade Hypothalamic Inflammation Leads to Defective Thermogenesis, Insulin Resistance, and Impaired Insulin Secretion. Endocrinology 2011, 152, 1314–1326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, M.R.; Nichols, P.D.; Carter, C.G. N -3 Oil Sources for Use in Aquaculture—Alternatives to the Unsustainable Harvest of Wild Fish. Nutr. Res. Rev. 2008, 21, 85–96. [Google Scholar] [CrossRef] [Green Version]
- Global Report on Diabetes; World Health Organization: Geneva, Switzerland, 2016; pp. 1–83.
- Castro-Acosta, M.L.; Stone, S.G.; Mok, J.E.; Mhajan, R.K.; Fu, C.-I.; Lenihan-Geels, G.N.; Corpe, C.P.; Hall, W.L. Apple and Blackcurrant Polyphenol-Rich Drinks Decrease Postprandial Glucose, Insulin and Incretin Response to a High-Carbohydrate Meal in Healthy Men and Women. J. Nutr. Biochem. 2017, 49, 53–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinert, R.E.; Feinle-Bisset, C.; Asarian, L.; Horowitz, M.; Beglinger, C.; Geary, N.; Ghrelin, C.C.K. GLP-1, and PYY(3–36): Secretory Controls and Physiological Roles in Eating and Glycemia in Health, Obesity, and After RYGB. Physiol. Rev. 2017, 97, 411–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunachowicz, H.; Nadolna, I.; Przygoda, B.; Iwanow, K. Tabele Składu i Wartości Odżywczej Żywności, 2nd ed.; Wydawnictwo Lekarskie PZWL: Warsaw, Poland, 2019. [Google Scholar]
- Williamson, C.S.; Foster, R.K.; Stanner, S.A.; Buttriss, J.L. Red Meat in the Diet. Nutr. Bull. 2005, 30, 323–355. [Google Scholar] [CrossRef]
- Jackson, J.; Williams, R.; McEvoy, M.; MacDonald-Wicks, L.; Patterson, A. Is Higher Consumption of Animal Flesh Foods Associated with Better Iron Status among Adults in Developed Countries? A Systematic Review. Nutrients 2016, 8, 89. [Google Scholar] [CrossRef] [Green Version]
- Cavallucci, V.; Fidaleo, M.; Pani, G. Nutrients and Neurogenesis: The Emerging Role of Autophagy and Gut Microbiota. Curr. Opin. Pharmacol. 2020, 50, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Baines, S.; Powers, J.; Brown, W.J. How Does the Health and Well-Being of Young Australian Vegetarian and Semi-Vegetarian Women Compare with Non-Vegetarians? Public Health Nutr. 2007, 10, 436–442. [Google Scholar] [CrossRef] [Green Version]
- Zupo, R.; Griseta, C.; Battista, P.; Donghia, R.; Guerra, V.; Castellana, F.; Lampignano, L.; Bortone, I.; Lozupone, M.; Giannelli, G.; et al. Role of Plant-Based Diet in Late-Life Cognitive Decline: Results from the Salus in Apulia Study. Nutr. Neurosci. 2021, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C.; Bosco, N.; Bourdet-Sicard, R.; Capuron, L.; Delzenne, N.; Doré, J.; Franceschi, C.; Lehtinen, M.J.; Recker, T.; Salvioli, S.; et al. Health Relevance of the Modification of Low Grade Inflammation in Ageing (Inflammageing) and the Role of Nutrition. Ageing Res. Rev. 2017, 40, 95–119. [Google Scholar] [CrossRef] [PubMed]
- Milanski, M.; Degasperi, G.; Coope, A.; Morari, J.; Denis, R.; Cintra, D.E.; Tsukumo, D.M.L.; Anhe, G.; Amaral, M.E.; Takahashi, H.K.; et al. Saturated Fatty Acids Produce an Inflammatory Response Predominantly through the Activation of TLR4 Signaling in Hypothalamus: Implications for the Pathogenesis of Obesity. J. Neurosci. 2009, 29, 359–370. [Google Scholar] [CrossRef] [PubMed]
- Granic, A.; Davies, K.; Adamson, A.; Kirkwood, T.; Hill, T.R.; Siervo, M.; Mathers, J.C.; Jagger, C. Dietary Patterns High in Red Meat, Potato, Gravy, and Butter Are Associated with Poor Cognitive Functioning but Not with Rate of Cognitive Decline in Very Old Adults. J. Nutr. 2016, 146, 265–274. [Google Scholar] [CrossRef] [Green Version]
- Kolodziejczyk, A.A.; Zheng, D.; Elinav, E. Diet–Microbiota Interactions and Personalized Nutrition. Nat. Rev. Microbiol. 2019, 17, 742–753. [Google Scholar] [CrossRef]
- Cornier, M.-A.; Dabelea, D.; Hernandez, T.L.; Lindstrom, R.C.; Steig, A.J.; Stob, N.R.; Van Pelt, R.E.; Wang, H.; Eckel, R.H. The Metabolic Syndrome. Endocr. Rev. 2008, 29, 777–822. [Google Scholar] [CrossRef] [PubMed]
- Karpe, F.; Dickmann, J.R.; Frayn, K.N. Fatty Acids, Obesity, and Insulin Resistance: Time for a Reevaluation. Diabetes 2011, 60, 2441–2449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beilharz, J.E.; Maniam, J.; Morris, M.J. Short-Term Exposure to a Diet High in Fat and Sugar, or Liquid Sugar, Selectively Impairs Hippocampal-Dependent Memory, with Differential Impacts on Inflammation. Behav. Brain Res. 2016, 306, 1–7. [Google Scholar] [CrossRef]
- Sliwinski, M.J.; Smyth, J.M.; Hofer, S.M.; Stawski, R.S. Intraindividual Coupling of Daily Stress and Cognition. Psychol. Aging 2006, 21, 545–557. [Google Scholar] [CrossRef] [Green Version]
- Noble, E.E.; Olson, C.A.; Davis, E.; Tsan, L.; Chen, Y.-W.; Schade, R.; Liu, C.; Suarez, A.; Jones, R.B.; de La Serre, C.; et al. Gut Microbial Taxa Elevated by Dietary Sugar Disrupt Memory Function. Transl. Psychiatry 2021, 11, 194. [Google Scholar] [CrossRef]
Characteristics | I. All (n = 181) Number/Mean (SD) | II. Age Group ≤ 35 (n = 102) Number/Mean (SD) | II. Age Group ≥ 36 (n = 79) Number/Mean (SD) | II. Test Differences for Age Groups |
---|---|---|---|---|
Sex | ♂ 92; ♀ 89 | ♂ 46; ♀ 56 | ♂ 46; ♀ 33 | X2: 3.071 |
Age | 35.5 (9.2) | 28.7 (4.3) | 44.2 (5.8) | t: −20.061 *** |
Employment | 83.50% | 82.4% | 84.8% | X2: 0.194 |
Education | X2: 0.858 | |||
secondary | 38.1% | 35.3% | 41.8% | |
vocational | 1.1% | 1% | 1.3% | |
higher | 60.8% | 63.7% | 57% | |
Health | 7.2 (1.7) | 7.5 (1.6) | 6.9 (1.7) | t: 2.235 * |
BMI | 24.7 (4.9) | 23.1 (4.0) | 26.9 (5.2) | t: −5.534 *** |
FAS score | 22.83 (7.3) | 23.1 (7.3) | 22.4 (7.2) | t: 0.638 |
Dietary knowledge | 12.4 (4.5) | 11.9 (4.4) | 13.0 (4.5) | t: −1.660 |
Pro-Healthy Diet Index | 20.1 (10.0) | 20.0 (10.5) | 20.2 (9.4) | t: −0.140 |
Non-Healthy Diet Index | 16.3 (8.2) | 16.9 (8.7) | 15.6 (7.5) | t: 1.08 |
Smoking | 22.7% | 19.6% | 26.6% | X2: 1.236 |
Sleeping quality (weeks): | X2: 5.919 * | |||
7–8 h | 61.9% | 69.6% | 51.9% | |
<7 h or >8 h | 38.1% | 30.4% | 48.1% | |
Sleep quality (weekends): | X2: 0.297 | |||
7–8 h | 63.0% | 64.7% | 60.8% | |
<7 h or >8 h | 37.0% | 35.3% | 39.2% | |
Physical activity | X2:2.792 | |||
sedentary or light | 59.1% | 63.7% | 53.2% | |
medium active | 37.6% | 32.4% | 44.3% | |
vigorously active | 3.3% | 3.9% | 2.5% | |
Diet type | X2: 0.002 | |||
omnivore | 95% | 95.1% | 94.9% | |
vegan | 5% | 4.9% | 5.1% |
Fruit and Vegetables | Fermented Dairy, Cottages | Legumes, Whole Grain | White Meat and Fish | |
---|---|---|---|---|
whole meal bread | 0.536 | 0.073 | 0.155 | 0.017 |
whole grain cereal | 0.163 | 0.373 | 0.623 | −0.046 |
milk | 0.387 | 0.456 | −0.185 | 0.208 |
fermented dairy | 0.091 | 0.845 | 0.02 | 0.005 |
fresh stretched curd cheeses | 0.016 | 0.687 | 0.404 | 0.12 |
white meat | 0.040 | 0.182 | −0.130 | 0.837 |
fish | 0.072 | −0.061 | 0.443 | 0.734 |
legume vegetables | 0.128 | −0.038 | 0.854 | 0.099 |
fruits | 0.850 | 0.083 | 0.037 | 0.048 |
vegetables | 0.815 | 0.052 | 0.095 | 0.025 |
High-Carbohydrates, High-Fat Food (HCHF) | Fast Food, High-Sugar Drinks | Meat and Animal Fat | Refined Grains, Cheeses; | |
---|---|---|---|---|
white flour baked products | 0.742 | 0.060 | −0.190 | 0.076 |
refined grains | 0.043 | 0.057 | −0.014 | 0.726 |
fast food | 0.022 | 0.631 | 0.265 | 0.282 |
fried food | 0.647 | 0.235 | 0.025 | 0.167 |
butter | 0.576 | −0.202 | 0.116 | 0.172 |
lard | −0.049 | 0.073 | 0.762 | 0.281 |
moldy, processed, semi-hard cheeses | 0.318 | −0.029 | 0.145 | 0.515 |
lunch meat | 0.631 | −0.033 | 0.343 | −0.170 |
red meat | 0.395 | −0.008 | 0.603 | −0.187 |
confectionery | 0.434 | 0.350 | −0.158 | 0.285 |
canned meat | −0.002 | 0.295 | 0.734 | −0.022 |
carbonated soft drinks | 0.143 | 0.774 | 0.054 | −0.054 |
energy drinks | −0.279 | 0.578 | 0.451 | 0.029 |
alcohol | 0.026 | 0.595 | 0.039 | −0.479 |
High-Carbohydrates, High-Fat Food | Fast Food, High-Sugar Drinks | Meat and Animal Fat | Refined Grains, Cheeses | |
---|---|---|---|---|
Fruit and vegetables; | 0.06 | −0.193 ** | −0.08 | 0.101 |
Fermented dairy, cottages; | 0.105 | −0.091 | −0.041 | 0.203 ** |
Legume vegetables, whole grain | −0.315 ** | 0.015 | 0.306 ** | 0.218 ** |
White meat and fish | 0.283 ** | 0.073 | 0.379 ** | −0.119 |
Stepwise Regression on SynWin Multitasking Performance | |||||||||
Variables | B | SE | β | t | p | R2 | ΔR2 | F Statistic | AIC |
Step 1 | 0.000 | 0.155 | - | 32.839 | 1833.5 | ||||
Age | −67.087 | 11.707 | −0.394 | −5.731 | 0.000 | ||||
Step 2 | 0.457 | 0.162 | 0.007 | 0.787 | 1835.9 | ||||
Age | −66.730 | 11.736 | −0.392 | −5.686 | 0.000 | ||||
HCHF food | 10.498 | 11.722 | 0.062 | 0.896 | 0.372 | ||||
Meat and animal fat | −10.308 | 11.735 | −0.060 | −0.878 | 0.381 | ||||
Step 3 | 0.003 | 0.217 | 0.054 | 6.065 | 1827.7 | ||||
Age | −68.677 | 11.461 | −0.403 | −5.992 | 0.000 | ||||
HCHF food | 9.44 | 11.512 | 0.055 | 0.82 | 0.413 | ||||
Meat and animal fat | −12.668 | 11.52 | −0.074 | −1.100 | 0.273 | ||||
Age × HCHF food | −24.734 | 12.209 | −0.138 | −2.026 | 0.044 | ||||
Age × Meat and animal fat | −34.386 | 13.442 | −0.175 | −2.558 | 0.011 | ||||
Final Model on SynWin Multitasking Performance | |||||||||
Variables | B | SE | β | t | p | R2 | ΔR2 | F Statistic | AIC |
Final model | 0.000 | 0.208 | - | 15.538 | 1825.6 | ||||
Age | −68.913 | 11.446 | −0.404 | −6.021 | 0.000 | ||||
Age × HCHF food | −26.852 | 12.081 | −0.150 | −2.223 | 0.028 | ||||
Age × Meat and animal fat | −31.740 | 13.293 | −0.161 | −2.388 | 0.018 |
Variables | B | SE | β | t | p | R2 | F Statistic |
---|---|---|---|---|---|---|---|
Age below 35 | 0.22 | 0.03 | 1.535 | ||||
HCHF food | 26.589 | 15.441 | 0.170 | 1.722 | 0.088 | ||
Meat and animal fat | 5.624 | 15.308 | 0.036 | 0.367 | 0.714 | ||
Age above 35 | 0.081 | 0.064 | 2.595 | ||||
HCHF food | −16.063 | 17.892 | −0.100 | −0.898 | 0.372 | ||
Meat and animal fat | −37.382 | 18.187 | −0.228 | −2.055 | 0.043 |
Stepwise Regression on SynWin Memory Search Score | |||||||||
Variables | B | SE | β | t | p | R2 | ΔR2 | F Statistic | AIC |
Step 1 | 0.000 | 0.102 | - | 20.229 | 1676.7 | ||||
Age | −34.153 | 7.593 | −0.319 | −4.498 | 0.000 | ||||
Step 2 | 0.125 | 0.130 | 0.029 | 1.939 | 1676.9 | ||||
Age | −33.040 | 7.557 | −0.308 | −4.372 | 0.000 | ||||
White meat and fish | 12.411 | 8.565 | 0.116 | 1.449 | 0.149 | ||||
HCHF food | 4.671 | 7.916 | 0.044 | 0.590 | 0.556 | ||||
Meat and animal fat | −16.743 | 8.220 | −0.156 | −2.037 | 0.043 | ||||
Step 3 | 0.007 | 0.189 | 0.058 | 4.152 | 1670.3 | ||||
Age | −34.215 | 7.389 | −0.319 | −4.630 | 0.000 | ||||
White meat and fish | 14.273 | 8.387 | 0.133 | 1.702 | 0.091 | ||||
HCHF food | 4.948 | 7.764 | 0.046 | 0.637 | 0.525 | ||||
Meat and animal fat | −20.356 | 8.146 | −0.190 | −2.499 | 0.013 | ||||
Age × White meat and fish | 16.551 | 7.683 | 0.171 | 2.154 | 0.033 | ||||
Age × HCHF food | |||||||||
Age × Meat and animal fat | −13.538 | 8.095 | −0.120 | −1.672 | 0.096 | ||||
−29.585 | 9.676 | −0.239 | −3.058 | 0.003 | |||||
Final Model on SynWin Memory Search Score | |||||||||
Variables | B | SE | β | t | p | R2 | ΔR2 | F Statistic | AIC |
Final model | 0.000 | 0.173 | - | 7.301 | 1669.8 | ||||
Age | −34.399 | 7.412 | −0.321 | −4.641 | 0.000 | ||||
White meat and fish | 16.831 | 8.031 | 0.157 | 2.096 | 0.038 | ||||
Meat and animal fat | −21.854 | 8.117 | −0.204 | −2.692 | 0.008 | ||||
Age × White meat and fish | 13.217 | 7.491 | 0.136 | 1.765 | 0.079 | ||||
Age × Meat and animal fat | −29.290 | 9.699 | −0.237 | −3.020 | 0.003 |
Variables | B | SE | β | t | p | R2 | F Statistic |
---|---|---|---|---|---|---|---|
Age below 35 | 0.913 | 0.002 | 0.091 | ||||
White meat and fish | 2.322 | 9.738 | 0.026 | 0.238 | 0.812 | ||
Meat and animal fat | 2.281 | 9.360 | 0.026 | 0.244 | 0.808 | ||
Age above 35 | 0.001 | 0.164 | 7.453 | ||||
White meat and fish | 32.732 | 13.303 | 0.283 | 2.461 | 0.016 | ||
Meat and animal fat | −52.614 | 14.135 | −0.428 | −3.722 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bramorska, A.; Zarzycka, W.; Podolecka, W.; Kuc, K.; Brzezicka, A. Age-Related Cognitive Decline May Be Moderated by Frequency of Specific Food Products Consumption. Nutrients 2021, 13, 2504. https://doi.org/10.3390/nu13082504
Bramorska A, Zarzycka W, Podolecka W, Kuc K, Brzezicka A. Age-Related Cognitive Decline May Be Moderated by Frequency of Specific Food Products Consumption. Nutrients. 2021; 13(8):2504. https://doi.org/10.3390/nu13082504
Chicago/Turabian StyleBramorska, Aleksandra, Wanda Zarzycka, Wiktoria Podolecka, Katarzyna Kuc, and Aneta Brzezicka. 2021. "Age-Related Cognitive Decline May Be Moderated by Frequency of Specific Food Products Consumption" Nutrients 13, no. 8: 2504. https://doi.org/10.3390/nu13082504
APA StyleBramorska, A., Zarzycka, W., Podolecka, W., Kuc, K., & Brzezicka, A. (2021). Age-Related Cognitive Decline May Be Moderated by Frequency of Specific Food Products Consumption. Nutrients, 13(8), 2504. https://doi.org/10.3390/nu13082504