Development and Validation of a Predictive Model of Hypovitaminosis D in General Adult Population: SCOPYD Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Outcome
2.3. Serum 25(OH)D Measurement
2.4. Risk Factors
2.5. Statistical Analysis
2.5.1. Sample Size
2.5.2. Statistical Analysis
3. Results
3.1. Population Characteristics and Vitamin D Concentrations
3.2. Modeling of Seasonal Changes
3.3. Prediction Model
3.4. Model Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Risk Factors for Vitamin D Deficiency Included in the Questionnaire
Section | Items |
---|---|
Socio-demographic data | Country of birth Education level Residential location Type and level of employment |
Clinical data | Weight Size Skin type For women: number of pregnancies, age at first pregnancy, year of birth of last child, menopausal status Smoking status Physical activities (type, number of hours) Chronic muscle, joint, or bone pain with no known cause (presence, level of intensity) |
Sun exposure | Usual sun exposure during working hours: frequency and number of hours spent for outdoor work and outdoor lunch. Usual sun exposure during leisure time: number of hours spend outdoors during the week and the weekend, according to the season Sun exposure last week: number of hours Holiday sun exposure in the last 12 months: vacation spots, time spent outdoors |
Treatments | Vitamin D intake in drops, ampoules, or tablets in the last 12 months: dates and dosage Dietary supplements intake over the last 12 months Taking diuretics, oral contraceptives, menopausal hormone therapy, or other treatments |
Dietary intake | Intake of fish, eggs, and dairy products Intake of vitamin D supplemented foods |
Exposure to artificial ultraviolet radiation | Frequency over the last 12 months |
References
- Holick, M.F. The Vitamin D Deficiency Pandemic: Approaches for Diagnosis, Treatment and Prevention. Rev. Endocr. Metab. Disord. 2017, 18, 153–165. [Google Scholar] [CrossRef]
- Sattar, N.; Welsh, P.; Panarelli, M.; Forouhi, N.G. Increasing Requests for Vitamin D Measurement: Costly, Confusing, and without Credibility. Lancet Lond. Engl. 2012, 379, 95–96. [Google Scholar] [CrossRef]
- Bilinski, K.; Boyages, S. Evidence of Overtesting for Vitamin D in Australia: An Analysis of 4.5 Years of Medicare Benefits Schedule (MBS) Data. BMJ Open 2013, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caillet, P.; Goyer-Joos, A.; Viprey, M.; Schott, A.-M. Increase of Vitamin D Assays Prescriptions and Associated Factors: A Population-Based Cohort Study. Sci. Rep. 2017, 7, 10361. [Google Scholar] [CrossRef] [PubMed]
- Crowe, F.L.; Jolly, K.; MacArthur, C.; Manaseki-Holland, S.; Gittoes, N.; Hewison, M.; Scragg, R.; Nirantharakumar, K. Trends in the Incidence of Testing for Vitamin D Deficiency in Primary Care in the UK: A Retrospective Analysis of The Health Improvement Network (THIN), 2005–2015. BMJ Open 2019, 9, e028355. [Google Scholar] [CrossRef]
- Huber, C.A.; Nagler, M.; Rosemann, T.; Blozik, E.; Näpflin, M.; Markun, S. Trends in Micronutrient Laboratory Testing in Switzerland: A 7-Year Retrospective Analysis of Healthcare Claims Data. Int. J. Gen. Med. 2020, 13, 1341–1348. [Google Scholar] [CrossRef]
- Millen, A.E.; Wactawski-Wende, J.; Pettinger, M.; Melamed, M.L.; Tylavsky, F.A.; Liu, S.; Robbins, J.; LaCroix, A.Z.; LeBoff, M.S.; Jackson, R.D. Predictors of Serum 25-Hydroxyvitamin D Concentrations among Postmenopausal Women: The Women’s Health Initiative Calcium plus Vitamin D Clinical Trial. Am. J. Clin. Nutr. 2010, 91, 1324–1335. [Google Scholar] [CrossRef] [Green Version]
- Hacker-Thompson, A.; Schloetter, M.; Sellmeyer, D.E. Validation of a Dietary Vitamin D Questionnaire Using Multiple Diet Records and the Block 98 Health Habits and History Questionnaire in Healthy Postmenopausal Women in Northern California. J. Acad. Nutr. Diet. 2012, 112, 419–423. [Google Scholar] [CrossRef] [PubMed]
- Nabak, A.C.; Johnson, R.E.; Keuler, N.S.; Hansen, K.E. Can a Questionnaire Predict Vitamin D Status in Postmenopausal Women? Public Health Nutr. 2014, 17, 739–746. [Google Scholar] [CrossRef] [Green Version]
- Merlijn, T.; Swart, K.M.A.; Lips, P.; Heymans, M.W.; Sohl, E.; Van Schoor, N.M.; Netelenbos, C.J.; Elders, P.J.M. Prediction of Insufficient Serum Vitamin D Status in Older Women: A Validated Model. Osteoporos. Int. J. Establ. Result Coop. Eur. Found. Osteoporos. Natl. Osteoporos. Found. USA 2018, 29, 1539–1547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peiris, A.N.; Bailey, B.A.; Guha, B.N.; Copeland, R.; Manning, T. Can a Model Predictive of Vitamin D Status Be Developed from Common Laboratory Tests and Demographic Parameters? South. Med. J. 2011, 104, 636–639. [Google Scholar] [CrossRef] [PubMed]
- Sohl, E.; Heymans, M.W.; de Jongh, R.T.; den Heijer, M.; Visser, M.; Merlijn, T.; Lips, P.; van Schoor, N.M. Prediction of Vitamin D Deficiency by Simple Patient Characteristics. Am. J. Clin. Nutr. 2014, 99, 1089–1095. [Google Scholar] [CrossRef] [Green Version]
- Annweiler, C.; Riou, J.; Alessandri, A.; Gicquel, D.; Henni, S.; Féart, C.; Kabeshova, A. Clinical Identification of Geriatric Patients with Hypovitaminosis D: The “Vitamin D Status Predictor for Geriatrics” Study. Nutrients 2017, 9, 658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bjørn Jensen, C.; Thorne-Lyman, A.L.; Vadgård Hansen, L.; Strøm, M.; Odgaard Nielsen, N.; Cohen, A.; Olsen, S.F. Development and Validation of a Vitamin D Status Prediction Model in Danish Pregnant Women: A Study of the Danish National Birth Cohort. PLoS ONE 2013, 8, e53059. [Google Scholar] [CrossRef]
- Vignali, E.; Macchia, E.; Cetani, F.; Reggiardo, G.; Cianferotti, L.; Saponaro, F.; Marcocci, C. Development of an Algorithm to Predict Serum Vitamin D Levels Using a Simple Questionnaire Based on Sunlight Exposure. Endocrine 2017, 55, 85–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolek-Berquist, J.; Elliott, M.E.; Gangnon, R.E.; Gemar, D.; Engelke, J.; Lawrence, S.J.; Hansen, K.E. Use of a Questionnaire to Assess Vitamin D Status in Young Adults. Public Health Nutr. 2009, 12, 236–243. [Google Scholar] [CrossRef] [Green Version]
- Kuwabara, A.; Tsugawa, N.; Mizuno, K.; Ogasawara, H.; Watanabe, Y.; Tanaka, K. A Simple Questionnaire for the Prediction of Vitamin D Deficiency in Japanese Adults (Vitaimn D Deficiency Questionnaire for Japanese: VDDQ-J). J. Bone Miner. Metab. 2019, 37, 854–863. [Google Scholar] [CrossRef]
- Bertrand, K.A.; Giovannucci, E.; Liu, Y.; Malspeis, S.; Eliassen, A.H.; Wu, K.; Holmes, M.D.; Laden, F.; Feskanich, D. Determinants of Plasma 25-Hydroxyvitamin D and Development of Prediction Models in Three US Cohorts. Br. J. Nutr. 2012, 108, 1889–1896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deschasaux, M.; Souberbielle, J.-C.; Andreeva, V.A.; Sutton, A.; Charnaux, N.; Kesse-Guyot, E.; Latino-Martel, P.; Druesne-Pecollo, N.; Szabo de Edelenyi, F.; Galan, P.; et al. Quick and Easy Screening for Vitamin D Insufficiency in Adults: A Scoring System to Be Implemented in Daily Clinical Practice. Medicine 2016, 95, e2783. [Google Scholar] [CrossRef]
- Hanwell, H.E.C.; Vieth, R.; Cole, D.E.C.; Scillitani, A.; Modoni, S.; Frusciante, V.; Ritrovato, G.; Chiodini, I.; Minisola, S.; Carnevale, V. Sun Exposure Questionnaire Predicts Circulating 25-Hydroxyvitamin D Concentrations in Caucasian Hospital Workers in Southern Italy. J. Steroid Biochem. Mol. Biol. 2010, 121, 334–337. [Google Scholar] [CrossRef]
- Sham, L.; Yeh, E.A.; Magalhaes, S.; Parra, E.J.; Gozdzik, A.; Banwell, B.; Hanwell, H.E. Evaluation of Fall Sun Exposure Score in Predicting Vitamin D Status in Young Canadian Adults, and the Influence of Ancestry. J. Photochem. Photobiol. B 2015, 145, 25–29. [Google Scholar] [CrossRef]
- Collins, G.S.; Reitsma, J.B.; Altman, D.G.; Moons, K.G.M. Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD): The TRIPOD Statement. BMJ 2015, 350, g7594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malabanan, A.; Veronikis, I.E.; Holick, M.F. Redefining Vitamin D Insufficiency. Lancet Lond. Engl. 1998, 351, 805–806. [Google Scholar] [CrossRef]
- Ross, A.C.; Manson, J.E.; Abrams, S.A.; Aloia, J.F.; Brannon, P.M.; Clinton, S.K.; Durazo-Arvizu, R.A.; Gallagher, J.C.; Gallo, R.L.; Jones, G.; et al. The 2011 Report on Dietary Reference Intakes for Calcium and Vitamin D from the Institute of Medicine: What Clinicians Need to Know. J. Clin. Endocrinol. Metab. 2011, 96, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F. Vitamin D Deficiency. N. Engl. J. Med. 2007, 357, 266–281. [Google Scholar] [CrossRef] [PubMed]
- International Association of Oil & Gas Producers Coordinate Conversions Ans Transformations Including Formulas 2020. Available online: https://drive.tiny.cloud/1/4m326iu12oa8re9cjiadxonharclteqb4mumfxj71zsttwkx/62018e48-9da4-43e7-b598-1202cd96ec9f (accessed on 17 November 2020).
- Fitzpatrick, T.B. The Validity and Practicality of Sun-Reactive Skin Types I through VI. Arch. Dermatol. 1988, 124, 869–871. [Google Scholar] [CrossRef]
- Mitchell, J.H.; Haskell, W.; Snell, P.; Van Camp, S.P. Task Force 8: Classification of Sports. J. Am. Coll. Cardiol. 2005, 45, 1364–1367. [Google Scholar] [CrossRef] [Green Version]
- Chan, J.; Jaceldo-Siegl, K.; Fraser, G.E. Determinants of Serum 25 Hydroxyvitamin D Levels in a Nationwide Cohort of Blacks and Non-Hispanic Whites. Cancer Causes Control CCC 2010, 21, 501–511. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Lucas, R.M.; Ponsonby, A.-L. Ausimmune Investigator Group A Novel Approach for Prediction of Vitamin d Status Using Support Vector Regression. PLoS ONE 2013, 8, e79970. [Google Scholar] [CrossRef] [PubMed]
- Brooks, G.P.; Barcikowski, R.S. The PEAR Method for Sample Sizes in Multiple Linear Regression. Mult. Linear Regres. Viewp. 2012, 38, 1–16. [Google Scholar]
- Algina, J.; Keselman, H. Cross-Validation Sample Sizes. Appl. Psychol. Meas. 2000, 24, 173–179. [Google Scholar] [CrossRef]
- Steyeberg, E. Clinical Prediction Models. A Practical Approach to Development, Validation and Updating. Edition Springer, New York, 2009; Springer: New York, NY, USA, 2009. [Google Scholar]
- Équipe de surveillance et d’épidémiologie nutritionnelle (Esen). Chapitre Dosages Biologiques: Vitamines et Minéraux. In Etude de Sante sur L’environnement, la Biosurveillance, L’activité Physique et la Nutrition (Esteban), 2014–2016. Volet Nutrition.; Santé publique France: Saint-Maurice, France, 2019; p. 61. [Google Scholar]
- Holick, M.F.; Chen, T.C. Vitamin D Deficiency: A Worldwide Problem with Health Consequences. Am. J. Clin. Nutr. 2008, 87, 1080S–1086S. [Google Scholar] [CrossRef] [Green Version]
- Tran, B.; Armstrong, B.K.; McGeechan, K.; Ebeling, P.R.; English, D.R.; Kimlin, M.G.; Lucas, R.; van der Pols, J.C.; Venn, A.; Gebski, V.; et al. Predicting Vitamin D Deficiency in Older Australian Adults. Clin. Endocrinol. (Oxf.) 2013, 79, 631–640. [Google Scholar] [CrossRef]
- Clemens, T.L.; Adams, J.S.; Henderson, S.L.; Holick, M.F. Increased Skin Pigment Reduces the Capacity of Skin to Synthesise Vitamin D3. Lancet Lond. Engl. 1982, 1, 74–76. [Google Scholar] [CrossRef]
- Naureen, G.; Sanders, K.M.; Busija, L.; Scott, D.; Lim, K.; Talevski, J.; Connaughton, C.; Brennan-Olsen, S.L. Prediction Models and Questionnaires Developed to Predict Vitamin D Status in Adults: A Systematic Review. Osteoporos. Int. J. Establ. Result Coop. Eur. Found. Osteoporos. Natl. Osteoporos. Found. USA 2020, 31, 2287–2302. [Google Scholar] [CrossRef] [PubMed]
- Annweiler, C.; Kabeshova, A.; Legeay, M.; Fantino, B.; Beauchet, O. Derivation and Validation of a Clinical Diagnostic Tool for the Identification of Older Community-Dwellers with Hypovitaminosis D. J. Am. Med. Dir. Assoc. 2015, 16, 536.e8–536.e19. [Google Scholar] [CrossRef]
- Rucker, D.; Allan, J.A.; Fick, G.H.; Hanley, D.A. Vitamin D Insufficiency in a Population of Healthy Western Canadians. CMAJ Can. Med. Assoc. J. J. Assoc. Med Can. 2002, 166, 1517–1524. [Google Scholar]
- Engelman, C.D.; Fingerlin, T.E.; Langefeld, C.D.; Hicks, P.J.; Rich, S.S.; Wagenknecht, L.E.; Bowden, D.W.; Norris, J.M. Genetic and Environmental Determinants of 25-Hydroxyvitamin D and 1,25-Dihydroxyvitamin D Levels in Hispanic and African Americans. J. Clin. Endocrinol. Metab. 2008, 93, 3381–3388. [Google Scholar] [CrossRef]
- Shea, M.K.; Benjamin, E.J.; Dupuis, J.; Massaro, J.M.; Jacques, P.F.; D’Agostino, R.B.; Ordovas, J.M.; O’Donnell, C.J.; Dawson-Hughes, B.; Vasan, R.S.; et al. Genetic and Non-Genetic Correlates of Vitamins K and D. Eur. J. Clin. Nutr. 2009, 63, 458–464. [Google Scholar] [CrossRef] [Green Version]
- Touvier, M.; Deschasaux, M.; Montourcy, M.; Sutton, A.; Charnaux, N.; Kesse-Guyot, E.; Assmann, K.E.; Fezeu, L.; Latino-Martel, P.; Druesne-Pecollo, N.; et al. Determinants of Vitamin D Status in Caucasian Adults: Influence of Sun Exposure, Dietary Intake, Sociodemographic, Lifestyle, Anthropometric, and Genetic Factors. J. Investig. Dermatol. 2015, 135, 378–388. [Google Scholar] [CrossRef] [Green Version]
- Lee, A.; Samy, W.; Chiu, C.H.; Chan, S.K.C.; Gin, T.; Chui, P.T. Determinants of Serum 25-Hydroxyvitamin D Concentrations and a Screening Test for Moderate-to-Severe Hypovitaminosis D in Chinese Patients Undergoing Total Joint Arthroplasty. J. Arthroplasty 2016, 31, 1921–1926. [Google Scholar] [CrossRef] [PubMed]
- Altieri, B.; Cavalier, E.; Bhattoa, H.P.; Pérez-López, F.R.; López-Baena, M.T.; Pérez-Roncero, G.R.; Chedraui, P.; Annweiler, C.; Della Casa, S.; Zelzer, S.; et al. Vitamin D Testing: Advantages and Limits of the Current Assays. Eur. J. Clin. Nutr. 2020, 74, 231–247. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Study Population N (%) |
---|---|
Season of blood sampling (n = 2488) | |
Summer | 468 (18.8%) |
Fall | 820 (33.0%) |
Winter | 669 (26.9%) |
Spring | 531 (21.3%) |
Serum 25(OH)D concentration (nmol/L) (n = 2488) | |
<25 | 195 (7.8%) |
[25;50[ | 885 (35.6%) |
[50;75[ | 971 (39.0%) |
≥75 | 437 (17.6%) |
Age (years) (n = 2488) | |
[18;30] | 551 (22.1%) |
]30;40] | 428 (17.2%) |
]40;50] | 565 (22.7%) |
]50;60] | 594 (23.9%) |
]60;70] | 350 (14.1%) |
Sex (n = 2488) | |
Male | 975 (39.2%) |
Female | 1513 (60.8%) |
Body mass index (kg/m2) (n = 2473) | |
Underweight, <18.5 | 97 (3.9%) |
Normal weight, [18.5;25[ | 1284 (51.9%) |
Overweight, [25;30[ | 674 (27.3%) |
Obese, ≥30 | 418 (16.9%) |
Skin phototype (n = 2475) | |
Light colored skin (type I to III) | 1631 (65.9%) |
Tanned skin (type IV) | 698 (28.2%) |
Dark skin (type V and VI) | 146 (5.9%) |
Education level (n = 2479) | |
No diploma | 171 (6.9%) |
Technical school certificate | 710 (28.6%) |
High school diploma | 788 (31.8%) |
Postgraduate degree | 810 (32.7%) |
Employment status 1 (n = 2488) | |
Unemployed | 663 (26.6%) |
Employed | 1825 (73.4%) |
Latitude of place of residence (n = 2473) | |
North | 228 (9.2%) |
Center | 1916 (77.5%) |
South/Corsica | 329 (13.3%) |
Smoking status 2 (n = 2474) | |
Yes | 461 (18.6%) |
No | 2013 (81.4%) |
Vitamin D supplementation in the last 12 months (n = 2488) | |
Yes | 321 (12.9%) |
No | 2167 (87.1%) |
Intake of at least one vitamin D supplemented product in the last 12 months 3 (n = 2488) | |
Yes | 525 (21.1%) |
No | 1963 (78.9%) |
Significant sun exposure during holidays over the last 12 months (n = 2488) | |
Yes | 958 (38.5%) |
No | 1520 (61.1%) |
No holiday | 10 (0.4%) |
Sun exposure during the past week (n = 2449) | |
0 h/day | 109 (4.5%) |
]0–0.5] h/day | 468 (19.1%) |
]0.5–1] h/day | 534 (21.8%) |
]1–2] h/day | 588 (24.0%) |
]2–3] h/day | 277 (11.3%) |
>3 h/day | 473 (19.3%) |
Practice of a sporting activity (n = 2488) | |
Yes | 1266 (50.9%) |
No | 1222 (49.1%) |
Sporting activity duration (n = 2488) | |
0 h/week | 1222 (49.1%) |
]0;2] h/week | 365 (14.7%) |
]2;4] h/week | 331 (13.3%) |
]4;6] h/week | 225 (9.0%) |
>6 h/week | 345 (13.9%) |
Intensity of sporting activity (n = 2483) | |
No sporting activity | 1222 (49.2%) |
Only low-intensity sport | 62 (2.5%) |
At least one medium-intensity sport | 528 (21.3%) |
At least one high-intensity sport | 671 (27.0%) |
Characteristics | Corrected R2 † | 95% CI for R2 † | Final Model ‡ |
---|---|---|---|
Age (years) | 0.169 | [0.129; 0.207] | * |
Sex | 0.166 | [0.125; 0.204] | * |
Body mass index (kg/m2) | 0.193 | [0.150; 0.233] | * |
Skin phototype | 0.187 | [0.148; 0.222] | * |
Education level | 0.169 | [0.127; 0.204] | |
Employment status | 0.167 | [0.126; 0.204] | * |
Latitude of place of residence | 0.163 | [0.120; 0.201] | * |
Smoking | 0.164 | [0.122; 0.201] | * |
Vitamin D supplementation in the last 12 months | 0.176 | [0.136; 0.212] | * |
Intake of at least one vitamin D supplemented product †† | 0.162 | [0.122; 0.197] | |
Significant sun exposure during holidays ‡‡ | 0.203 | [0.163; 0.243] | * |
Sun exposure last week | 0.163 | [0.122; 0.199] | * |
Practice of a sporting activity | 0.184 | [0.138; 0.221] | * |
Sporting activity duration | 0.185 | [0.142; 0.221] | |
Intensity of sporting activity | 0.189 | [0.144; 0.227] |
Characteristics | Intercept/(nmol/L) 1 | 95% CI 3 | p-Value |
Month of blood sampling | <0.001 | ||
January | 54.88 | [50.29; 59.48] | |
February | 52.82 | [48.63; 57.01] | |
March | 52.33 | [48.00; 56.67] | |
April | 54.81 | [50.50; 59.11] | |
May | 60.31 | [55.81; 64.80] | |
June | 68.17 | [63.73; 72.61] | |
July | 75.83 | [71.35; 80.30] | |
August | 79.32 | [74.80; 83.85] | |
September | 77.50 | [73.24; 81.76] | |
October | 72.90 | [68.58; 77.21] | |
November | 67.58 | [63.26; 71.91] | |
December | 62.02 | [57.17; 66.87] | |
Characteristics | Regression Coefficients (nmol/L) 2 | 95% CI 2 | p-Value |
Female | 1.73 | [0.04; 3.43] | 0.045 |
Age (per 5 years) 4 | 0.48 | [0.02; 0.94] | 0.043 |
Body mass index (per kg/m2) 5 | −0.80 | [−1.09; 0.50] | <0.001 |
Skin phototype 6 Tanned skin (type IV) Dark skin (type V and VI) | −1.95 −15.37 | [−3.71; −0.19] [−18.80; −11.95] | 0.030 <0.001 |
Unemployed | −2.02 | [−4.18; 0.15] | 0.068 |
Latitude 7 Center South/Corsica | 0.927.55 | [−2.01; 3.85] [4.12; 10.98] | 0.537 <0.001 |
Smoker | −3.75 | [−5.79; −1.70] | 0.001 |
No vitamin D supplementation in the last 12 months | −8.73 | [−11.15; −6.30] | <0.001 |
No significant exposure during holidays over the last 12 months | −8.01 | [−9.65; −6.38] | <0.001 |
Sun exposure last week (per one hour/week) | 0.10 | [0.04; 0.16] | 0.002 |
Practice of a sporting activity | 3.89 | [2.23; 5.56] | <0.001 |
Vitamin D Deficiency | Parameter | Bootstrap Estimate 1 | 95% CI 1 |
---|---|---|---|
Severe vitamin D deficiency | Sensitivity | 77.9 | [69.1; 85.7] |
Specificity | 68.3 | [64.8; 71.9] | |
Vitamin D deficiency | Sensitivity | 56.7 | [52.0; 61.8] |
Specificity | 81.0 | [77.2; 84.8] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viprey, M.; Merle, B.; Riche, B.; Freyssenge, J.; Rippert, P.; Chakir, M.-A.; Thomas, T.; Malochet-Guinamand, S.; Cortet, B.; Breuil, V.; et al. Development and Validation of a Predictive Model of Hypovitaminosis D in General Adult Population: SCOPYD Study. Nutrients 2021, 13, 2526. https://doi.org/10.3390/nu13082526
Viprey M, Merle B, Riche B, Freyssenge J, Rippert P, Chakir M-A, Thomas T, Malochet-Guinamand S, Cortet B, Breuil V, et al. Development and Validation of a Predictive Model of Hypovitaminosis D in General Adult Population: SCOPYD Study. Nutrients. 2021; 13(8):2526. https://doi.org/10.3390/nu13082526
Chicago/Turabian StyleViprey, Marie, Blandine Merle, Benjamin Riche, Julie Freyssenge, Pascal Rippert, Mohammed-Amine Chakir, Thierry Thomas, Sandrine Malochet-Guinamand, Bernard Cortet, Véronique Breuil, and et al. 2021. "Development and Validation of a Predictive Model of Hypovitaminosis D in General Adult Population: SCOPYD Study" Nutrients 13, no. 8: 2526. https://doi.org/10.3390/nu13082526
APA StyleViprey, M., Merle, B., Riche, B., Freyssenge, J., Rippert, P., Chakir, M.-A., Thomas, T., Malochet-Guinamand, S., Cortet, B., Breuil, V., Chapurlat, R., Lafage Proust, M.-H., Carlier, M.-C., Fassier, J.-B., Haesebaert, J., Caillet, P., Rabilloud, M., & Schott, A.-M. (2021). Development and Validation of a Predictive Model of Hypovitaminosis D in General Adult Population: SCOPYD Study. Nutrients, 13(8), 2526. https://doi.org/10.3390/nu13082526