Low Protein Intakes and Poor Diet Quality Associate with Functional Limitations in US Adults with Diabetes: A 2005–2016 NHANES Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Population
2.2. Glycemic Measures
2.3. Dietary Intakes and Diet Quality
2.4. Protein Intake Recommendations
2.5. Physical Functioning
2.6. Statistical Analyses
3. Results
3.1. Demographics
3.2. Dietary Intakes
3.3. Diet Quality
3.4. Physical Functioning Limitations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Centers for Disease Control and Prevention. National Diabetes Statistics Report. US. Department of Health and Human Services, Ed.; 2020. Available online: https://www.cdc.gov/diabetes/data/statistics/statistics-report.html (accessed on 26 July 2021).
- Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H. Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care 2004, 27, 1047–1053. [Google Scholar] [CrossRef] [Green Version]
- Zimmet, P.; Alberti, K.G.; Shaw, J. Global and societal of the diabetes epidemic. Nature 2001, 414, 782–787. [Google Scholar] [CrossRef]
- Chatterjee, S.; Khunti, K.; Davies, M.J. Type 2 diabetes. Lancet 2017, 389, 2239–2251. [Google Scholar] [CrossRef]
- Kim, T.N.; Park, M.S.; Yang, S.J.; Yoo, H.J.; Kang, H.J.; Song, W.; Seo, J.A.; Kim, S.G.; Kim, N.H.; Baik, S.H.; et al. Prevalence and determinant factors of sarcopenia in patients with type 2 diabetes: The Korean Sarcopenic Obesity Study (KSOS). Diabetes Care 2010, 33, 1497–1499. [Google Scholar] [CrossRef] [Green Version]
- Leenders, M.; Verdijk, L.B.; van der Hoeven, L.; Adam, J.J.; van Kranenburg, J.; Nilwik, R.; van Loon, L.J. Patients with type 2 diabetes show a greater decline in muscle mass, muscle strength, and functional capacity with aging. J. Am. Med. Dir. Assoc. 2013, 14, 585–592. [Google Scholar] [CrossRef]
- Umegaki, H. Sarcopenia and diabetes: Hyperglycemia is a risk factor for age-associated muscle mass and functional reduction. J. Diabetes Investig. 2015, 6, 623–624. [Google Scholar] [CrossRef]
- Jang, H.C. Sarcopenia, Frailty, and Diabetes in Older Adults. Diabetes Metab. J. 2016, 40, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Sarodnik, C.; Bours, S.P.G.; Schaper, N.C.; van den Bergh, J.P.; van Geel, T. The risks of sarcopenia, falls and fractures in patients with type 2 diabetes mellitus. Maturitas 2018, 109, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Umegaki, H. Sarcopenia and frailty in older patients with diabetes mellitus. Geriatr. Gerontol. Int. 2016, 16, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Akpinar, T.S.; Tayfur, M.; Tufan, F.; Sahinkaya, T.; Kose, M.; Ozsenel, E.B.; Bahat Ozturk, G.; Saka, B.; Erten, N.; Yildiz, S.; et al. Uncomplicated diabetes does not accelerate age-related sarcopenia. Aging Male 2014, 17, 205–210. [Google Scholar] [CrossRef]
- Mesinovic, J.; Zengin, A.; De Courten, B.; Ebeling, P.R.; Scott, D. Sarcopenia and type 2 diabetes mellitus: A bidirectional relationship. Diabetes Metab. Syndr. Obes. 2019, 12, 1057–1072. [Google Scholar] [CrossRef] [Green Version]
- Trierweiler, H.; Kisielewicz, G.; Hoffmann Jonasson, T.; Rasmussen Petterle, R.; Aguiar Moreira, C.; Zeghbi Cochenski Borba, V. Sarcopenia: A chronic complication of type 2 diabetes mellitus. Diabetol. Metab. Syndr. 2018, 10, 25. [Google Scholar] [CrossRef] [PubMed]
- Walston, J.D. Sarcopenia in older adults. Curr. Opin. Rheumatol. 2012, 24, 623–627. [Google Scholar] [CrossRef] [Green Version]
- Arai, H.; Wakabayashi, H.; Yoshimura, Y.; Yamada, M.; Kim, H.; Harada, A. Chapter 4 Treatment of sarcopenia. Geriatr. Gerontol. Int. 2018, 18 (Suppl. 1), 28–44. [Google Scholar] [CrossRef]
- Naseeb, M.A.; Volpe, S.L. Protein and exercise in the prevention of sarcopenia and aging. Nutr. Res. 2017, 40, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Paddon-Jones, D.; Short, K.R.; Campbell, W.W.; Volpi, E.; Wolfe, R.R. Role of dietary protein in the sarcopenia of aging. Am. J. Clin. Nutr. 2008, 87, 1562S–1566S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krok-Schoen, J.L.; Archdeacon Price, A.; Luo, M.; Kelly, O.J.; Taylor, C.A. Low Dietary Protein Intakes and Associated Dietary Patterns and Functional Limitations in an Aging Population: A NHANES analysis. J. Nutr. Health Aging 2019, 23, 338–347. [Google Scholar] [CrossRef] [Green Version]
- Campins, L.; Camps, M.; Riera, A.; Pleguezuelos, E.; Yebenes, J.C.; Serra-Prat, M. Oral Drugs Related with Muscle Wasting and Sarcopenia. A Review. Pharmacology 2017, 99, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Granic, A.; Sayer, A.A.; Robinson, S.M. Dietary Patterns, Skeletal Muscle Health, and Sarcopenia in Older Adults. Nutrients 2019, 11, 745. [Google Scholar] [CrossRef] [Green Version]
- Johnson, C.L.; Dohrmann, S.M.; Burt, V.L.; Mohadjer, L.K. National Health and Nutrition Examination Survey: Sample design, 2011–2014. Stat. Vital Health Stat. 2014, 2, 1–33. [Google Scholar]
- Centers for Disease Control and Prevention. National Health and Nutrition Examination Survey: NCHS Research Ethics Review Board (ERB) Approval. Available online: https://www.cdc.gov/nchs/nhanes/irba98.htm (accessed on 26 July 2021).
- American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2019. Diabetes Care 2019, 42, S13–S28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centers for Disease Control and Prevention. National Health and Nutrition Examination Survey (NHANES) MEC In-Person Dietary Interviewers Procedures Manual. National Health and Nutrition Examination Survey, Ed.; 2016. Available online: https://wwwn.cdc.gov/nchs/data/nhanes/2017-2018/manuals/2017_MEC_In-Person_Dietary_Interviewers_Manual.pdf (accessed on 27 July 2021).
- Moshfegh, A.J.; Rhodes, D.G.; Baer, D.J.; Murayi, T.; Clemens, J.C.; Rumpler, W.V.; Paul, D.R.; Sebastian, R.S.; Kuczynski, K.J.; Ingwersen, L.A.; et al. The US Department of Agriculture Automated Multiple-Pass Method reduces bias in the collection of energy intakes. Am. J. Clin. Nutr. 2008, 88, 324–332. [Google Scholar] [CrossRef]
- Rhodes, D.G.; Murayi, T.; Clemens, J.C.; Baer, D.J.; Sebastian, R.S.; Moshfegh, A.J. The USDA Automated Multiple-Pass Method accurately assesses population sodium intakes. Am. J. Clin. Nutr. 2013, 97, 958–964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krebs-Smith, S.M.; Pannucci, T.E.; Subar, A.F.; Kirkpatrick, S.I.; Lerman, J.L.; Tooze, J.A.; Wilson, M.M.; Reedy, J. Update of the Healthy Eating Index: HEI-2015. J. Acad. Nutr. Diet 2018, 118, 1591–1602. [Google Scholar] [CrossRef] [Green Version]
- Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids; The National Academies Press: Washington, DC, USA, 2005; 1358p. [Google Scholar] [CrossRef]
- Nelson, K.M.; Reiber, G.; Boyko, E.J.; NHANES, III. Diet and exercise among adults with type 2 diabetes: Findings from the third national health and nutrition examination survey (NHANES III). Diabetes Care 2002, 25, 1722–1728. [Google Scholar] [CrossRef] [Green Version]
- Hiza, H.A.; Casavale, K.O.; Guenther, P.M.; Davis, C.A. Diet quality of Americans differs by age, sex, race/ethnicity, income, and education level. J. Acad. Nutr. Diet 2013, 113, 297–306. [Google Scholar] [CrossRef]
- Rehm, C.D.; Penalvo, J.L.; Afshin, A.; Mozaffarian, D. Dietary Intake Among US Adults, 1999-2012. JAMA 2016, 315, 2542–2553. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.M.; Reedy, J.; Krebs-Smith, S.M. American Diet Quality: Where It Is, Where It Is Heading, and What It Could Be. J. Acad. Nutr. Diet. 2016, 116, 302–310. [Google Scholar] [CrossRef]
- Bowman, S.A.; Lino, M.; Gerrior, S.A.; Basiotis, P.P. The Healthy Eating Index: 1994-96; US Department of Agriculture, Center for Nutrition Policy and Promotion: Washington, DC, USA, 1998. [CrossRef]
- American Diabetes Association. 3. Prevention or Delay of Type 2 Diabetes: Standards of Medical Care in Diabetes-2019. Diabetes Care 2019, 42, S29–S33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Diabetes Association. 5. Lifestyle Management: Standards of Medical Care in Diabetes-2019. Diabetes Care 2019, 42, S46–S60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hallberg, S.J.; McKenzie, A.L.; Williams, P.T.; Bhanpuri, N.H.; Peters, A.L.; Campbell, W.W.; Hazbun, T.L.; Volk, B.M.; McCarter, J.P.; Phinney, S.D.; et al. Effectiveness and Safety of a Novel Care Model for the Management of Type 2 Diabetes at 1 Year: An Open-Label, Non-Randomized, Controlled Study. Diabetes Ther. 2018, 9, 583–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sainsbury, E.; Kizirian, N.V.; Partridge, S.R.; Gill, T.; Colagiuri, S.; Gibson, A.A. Effect of dietary carbohydrate restriction on glycemic control in adults with diabetes: A systematic review and meta-analysis. Diabetes Res. Clin. Pr. 2018, 139, 239–252. [Google Scholar] [CrossRef] [PubMed]
- Saslow, L.R.; Daubenmier, J.J.; Moskowitz, J.T.; Kim, S.; Murphy, E.J.; Phinney, S.D.; Ploutz-Snyder, R.; Goldman, V.; Cox, R.M.; Mason, A.E.; et al. Twelve-month outcomes of a randomized trial of a moderate-carbohydrate versus very low-carbohydrate diet in overweight adults with type 2 diabetes mellitus or prediabetes. Nutr. Diabetes 2017, 7, 304. [Google Scholar] [CrossRef] [PubMed]
- Estruch, R.; Ros, E.; Salas-Salvado, J.; Covas, M.I.; Corella, D.; Aros, F.; Gomez-Gracia, E.; Ruiz-Gutierrez, V.; Fiol, M.; Lapetra, J.; et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet. Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef]
- Wang, D.D.; Li, Y.; Chiuve, S.E.; Stampfer, M.J.; Manson, J.E.; Rimm, E.B.; Willett, W.C.; Hu, F.B. Association of Specific Dietary Fats With Total and Cause-Specific Mortality. JAMA Intern. Med. 2016, 176, 1134–1145. [Google Scholar] [CrossRef] [PubMed]
- Rietman, A.; Schwarz, J.; Tome, D.; Kok, F.J.; Mensink, M. High dietary protein intake, reducing or eliciting insulin resistance? Eur. J. Clin. Nutr. 2014, 68, 973–979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, J.; Stevens, J.E.; Cukier, K.; Maddox, A.F.; Wishart, J.M.; Jones, K.L.; Clifton, P.M.; Horowitz, M.; Rayner, C.K. Effects of a protein preload on gastric emptying, glycemia, and gut hormones after a carbohydrate meal in diet-controlled type 2 diabetes. Diabetes Care 2009, 32, 1600–1602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veldhorst, M.; Smeets, A.; Soenen, S.; Hochstenbach-Waelen, A.; Hursel, R.; Diepvens, K.; Lejeune, M.; Luscombe-Marsh, N.; Westerterp-Plantenga, M. Protein-induced satiety: Effects and mechanisms of different proteins. Physiol. Behav. 2008, 94, 300–307. [Google Scholar] [CrossRef]
- O’Keefe, J.H.; Bell, D.S. Postprandial hyperglycemia/hyperlipidemia (postprandial dysmetabolism) is a cardiovascular risk factor. Am. J. Cardiol. 2007, 100, 899–904. [Google Scholar] [CrossRef]
- Ward, R.E.; Orkaby, A.R.; Chen, J.; Hshieh, T.T.; Driver, J.A.; Gaziano, J.M.; Djousse, L. Association between Diet Quality and Frailty Prevalence in the Physicians’ Health Study. J. Am. Geriatr. Soc. 2020, 68, 770–776. [Google Scholar] [CrossRef]
- Bray, G.A.; Smith, S.R.; de Jonge, L.; Xie, H.; Rood, J.; Martin, C.K.; Most, M.; Brock, C.; Mancuso, S.; Redman, L.M. Effect of dietary protein content on weight gain, energy expenditure, and body composition during overeating: A randomized controlled trial. JAMA 2012, 307, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Hirano, H.; Edahiro, A.; Ohara, Y.; Watanabe, Y.; Kojima, N.; Kim, M.; Hosoi, E.; Yoshida, Y.; Yoshida, H.; et al. Sarcopenia: Prevalence and associated factors based on different suggested definitions in community-dwelling older adults. Geriatr. Gerontol. Int. 2016, 16 (Suppl. 1), 110–122. [Google Scholar] [CrossRef] [Green Version]
- Hida, T.; Shimokata, H.; Sakai, Y.; Ito, S.; Matsui, Y.; Takemura, M.; Kasai, T.; Ishiguro, N.; Harada, A. Sarcopenia and sarcopenic leg as potential risk factors for acute osteoporotic vertebral fracture among older women. Eur. Spine. J. 2016, 25, 3424–3431. [Google Scholar] [CrossRef]
- Sanada, K.; Miyachi, M.; Tanimoto, M.; Yamamoto, K.; Murakami, H.; Okumura, S.; Gando, Y.; Suzuki, K.; Tabata, I.; Higuchi, M. A cross-sectional study of sarcopenia in Japanese men and women: Reference values and association with cardiovascular risk factors. Eur. J. Appl. Physiol. 2010, 110, 57–65. [Google Scholar] [CrossRef]
- Lee, C.G.; Boyko, E.J.; Strotmeyer, E.S.; Lewis, C.E.; Cawthon, P.M.; Hoffman, A.R.; Everson-Rose, S.A.; Barrett-Connor, E.; Orwoll, E.S.; Osteoporotic Fractures in Men Study Research Group. Association between insulin resistance and lean mass loss and fat mass gain in older men without diabetes mellitus. J. Am. Geriatr. Soc. 2011, 59, 1217–1224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costantini, S.; Conte, C. Bone health in diabetes and prediabetes. World J. Diabetes 2019, 10, 421–445. [Google Scholar] [CrossRef] [PubMed]
- Berryman, C.E.; Lieberman, H.R.; Fulgoni, V.L., 3rd; Pasiakos, S.M. Protein intake trends and conformity with the Dietary Reference Intakes in the United States: Analysis of the National Health and Nutrition Examination Survey, 2001-2014. Am. J. Clin. Nutr. 2018, 108, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Bauer, J.; Morley, J.E.; Schols, A.; Ferrucci, L.; Cruz-Jentoft, A.J.; Dent, E.; Baracos, V.E.; Crawford, J.A.; Doehner, W.; Heymsfield, S.B.; et al. Sarcopenia: A Time for Action. An. SCWD Position Paper. J. Cachexia Sarcopenia Muscle 2019, 10, 956–961. [Google Scholar] [CrossRef] [PubMed]
- Bauer, J.; Biolo, G.; Cederholm, T.; Cesari, M.; Cruz-Jentoft, A.J.; Morley, J.E.; Phillips, S.; Sieber, C.; Stehle, P.; Teta, D.; et al. Evidence-based recommendations for optimal dietary protein intake in older people: A position paper from the PROT-AGE Study Group. J. Am. Med. Dir. Assoc. 2013, 14, 542–559. [Google Scholar] [CrossRef]
- Rizzoli, R.; Stevenson, J.C.; Bauer, J.M.; van Loon, L.J.; Walrand, S.; Kanis, J.A.; Cooper, C.; Brandi, M.L.; Diez-Perez, A.; Re-ginster, J.Y.; et al. The role of dietary protein and vitamin D in maintaining musculoskeletal health in postmenopausal wom-en: A consensus statement from the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO). Maturitas 2014, 79, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Deutz, N.E.; Bauer, J.M.; Barazzoni, R.; Biolo, G.; Boirie, Y.; Bosy-Westphal, A.; Cederholm, T.; Cruz-Jentoft, A.; Krznaric, Z.; Nair, K.S.; et al. Protein intake and exercise for optimal muscle function with aging: Recommendations from the ESPEN Expert Group. Clin. Nutr. 2014, 33, 929–936. [Google Scholar] [CrossRef] [Green Version]
- Beasley, J.M.; Rillamas-Sun, E.; Tinker, L.F.; Wylie-Rosett, J.; Mossavar-Rahmani, Y.; Datta, M.; Caan, B.J.; LaCroix, A.Z. Die-tary Intakes of Women’s Health Initiative Long Life Study Participants Falls Short of the Dietary Reference Intakes. J. Acad. Nutr. Diet 2020, 120, 1530–1537. [Google Scholar] [CrossRef] [PubMed]
- Shan, Z.; Rehm, C.D.; Rogers, G.; Ruan, M.; Wang, D.D.; Hu, F.B.; Mozaffarian, D.; Zhang, F.F.; Bhupathiraju, S.N. Trends in Dietary Carbohydrate, Protein, and Fat Intake and Diet Quality Among US Adults, 1999-2016. JAMA 2019, 322, 1178–1187. [Google Scholar] [CrossRef] [Green Version]
- Azami, Y.; Funakoshi, M.; Matsumoto, H.; Ikota, A.; Ito, K.; Okimoto, H.; Shimizu, N.; Tsujimura, F.; Fukuda, H.; Miyagi, C.; et al. Long working hours and skipping breakfast concomitant with late evening meals are associated with suboptimal gly-cemic control among young male Japanese patients with type 2 diabetes. J. Diabetes Investig. 2019, 10, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Matia Martin, P.; Robles Agudo, F.; Lopez Medina, J.A.; Sanz Paris, A.; Tarazona Santabalbina, F.; Domenech Pascual, J.R.; Lopez Penabad, L.; Sanz Barriuso, R.; GluceNut Study, G. Effectiveness of an oral diabetes-specific supplement on nutritional status, metabolic control, quality or life, and functional status in elderly patients. A multicentre study. Clin. Nutr. 2019, 38, 1253–1261. [Google Scholar] [CrossRef] [PubMed]
Non-Diabetes | Pre-Diabetes | Diabetes | |||||
---|---|---|---|---|---|---|---|
Protein Intake a | Protein Intake a | Protein Intake a | |||||
Characteristic | Category | <0.8 g/kg/day (n = 5283) | ≥0.8 g/kg/day (n = 9447) | <0.8 g/kg/day (n = 2749) | ≥0.8 g/kg/day (n = 3120) | <0.8 g/kg/day (n = 1482) | ≥0.8 g/kg/day (n = 1406) |
n (%) | |||||||
Total | 5283(34.2%) | 9447 (65.8%) | 2749 (45.4%) | 3120 (54.6%) | 1482 (51.2%) | 1406 (48.8%) | |
Gender | Male | 2077 (27.2%) | 5033 (72.8%) | 1158 (38.4%) | 1693 (61.6%) | 679 (42.9%) | 845 (57.1%) |
Female | 3206 (40.4%) | 4414 (59.6%) | 1591 (51.5%) | 1427 (48.5%) | 803 (60.7%) | 561 (39.3%) | |
Race/Ethnicity | Mexican American | 668 (30.4%) | 1456 (69.6%) | 346 (38.2%) | 537 (61.8%) | 273 (42.5%) | 343 (57.5%) |
Other Hispanic | 472 (32.6%) | 884 (67.4%) | 266 (43.6%) | 324 (56.4%) | 138 (40.1%) | 176 (59.9%) | |
Non-Hispanic White | 2707 (34.0%) | 4829 (66.0%) | 1088 (45.4%) | 1217 (54.6%) | 499 (51.3%) | 443 (48.7%) | |
Non-Hispanic Black | 1111 (46.5%) | 1320 (53.5%) | 862 (54.1%) | 718 (45.9%) | 471 (62.7%) | 297 (37.3%) | |
Other or Multiracial | 325 (25.7%) | 958 (74.3%) | 187 (37.1%) | 324 (62.9%) | 101 (48.7%) | 147 (51.3%) | |
Marital Status | Single/Divorced/Widowed | 2043 (39.2%) | 3002 (60.8%) | 1167 (47.8%) | 1159 (52.2%) | 604 (54.0%) | 519 (46.0%) |
Married/Living as Married | 3239 (31.9%) | 6442 (68.1%) | 1581 (44.1%) | 1961 (55.9%) | 877 (49.8%) | 885 (50.2%) | |
Highest Education Completion | <9th grade | 540 (37.8%) | 867 (62.2%) | 434 (49.3%) | 436 (50.7%) | 295 (50.6%) | 284 (49.4%) |
9–11th grade | 763 (38.0%) | 1195 (62.0%) | 452 (47.3%) | 471 (52.7%) | 273 (53.6%) | 234 (46.4%) | |
HS/GED | 1247 (38.4%) | 1965 (61.6%) | 694 (47.5%) | 756 (52.5%) | 336 (51.9%) | 319 (48.1%) | |
Some college/Associate’s degree | 1600 (38.2%) | 2526 (61.8%) | 702 (45.9%) | 827 (54.1%) | 405 (53.8%) | 343 (46.2%) | |
College grad | 1129 (26.4%) | 2890 (73.6%) | 464 (40.1%) | 626 (59.9%) | 172 (44.2%) | 223 (55.8%) | |
Meal consumed (%) | Breakfast | 4357 (32.5%) | 8451 (67.5%) | 2343 (43.8%) | 2866 (56.2%) | 1284 (50.3%) | 1284 (49.7%) |
Lunch | 3619 (30.8%) | 7526 (69.2%) | 1854 (42.4%) | 2443 (57.6%) | 999 (49.1%) | 1084 (50.9%) | |
Dinner | 4576 (32.8%) | 8781 (67.2%) | 2421 (44.7%) | 2854 (55.3%) | 1295 (50.6%) | 1295 (49.4%) | |
Snack | 4950 (33.9%) | 8992 (66.1%) | 2540 (45.2%) | 2917 (54.8%) | 1360 (50.7%) | 1324 (49.3%) | |
Number of meals reported | 1 meal | 533 (58.3%) | 357 (41.7%) | 251 (69.9%) | 93 (30.1%) | 115 (76.3%) | 30 (23.7%) |
2 meals | 2117 (44.7%) | 2827 (55.3%) | 1085 (52.9%) | 1005 (47.1%) | 605 (53.8%) | 495 (46.2%) | |
3 meals | 2595 (27.9%) | 6249 (72.1%) | 1399 (40.2%) | 2020 (59.8%) | 751 (48.0%) | 881 (52.0%) | |
Mean (95% CI) | |||||||
Age (years) | 51.9 (51.3, 52.5) | 49.8 (49.2, 50.3) | 60.1 (59.3, 61.0) | 59.1 (58.4, 59.8) | 59.8 (59, 60.6) | 59 (57.9, 60.2) | |
Poverty-Income Ratio b | 3.0 (2.9, 3.1) | 3.4 (3.3, 3.5) | 2.7 (2.5, 2.8) | 3.0 (2.9, 3.1) | 2.6 (2.4, 2.7) | 2.8 (2.6, 2.9) | |
Body Mass Index (kg/m2) | 30.5 (30.3, 30.8) | 27.0 (26.9, 27.2) | 33.3 (32.9, 33.8) | 29.0 (28.7, 29.3) | 36.0 (35.4, 36.6) | 30.9 (30.5, 31.3) | |
Weight (kg) | 86.4 (85.6, 87.2) | 77.9 (77.4, 78.5) | 92.7 (91.4, 94) | 81.4 (80.4, 82.3) | 100.6 (98.3, 102.9) | 88.0 (86.6, 89.5) |
Non-Diabetes | Pre-Diabetes | Diabetes | |||||||
---|---|---|---|---|---|---|---|---|---|
Protein Intake a,c | Protein Intake a,c | Protein Intake a,c | |||||||
Nutrients b | <0.8 g/kg/day (n = 5283) | ≥0.8 g/kg/day (n = 9447) | p | <0.8 g/kg/day (n = 2749) | ≥0.8 g/kg/day (n = 3120) | p | <0.8 g/kg/day (n = 1482) | ≥0.8 g/kg/day (n = 1406) | p |
Energy (kcal) | 1609 (12) | 2444 (15) | <0.001 | 1640 (19) | 2318 (21) | <0.001 | 1551 (25) | 2391 (39) | <0.001 |
Protein, total (g) | 52.1 (0.5) | 100.2 (0.6) | <0.001 | 54.4 (0.7) | 98.2 (0.8) | <0.001 | 56.2 (0.9) | 104 (1.8) | <0.001 |
Energy-adjusted intakes | |||||||||
Protein (g) | 33.7 (0.2) | 42.8 (0.2) | <0.001 | 34.7 (0.3) | 44.3 (0.3) | <0.001 | 38.1 (0.5) | 45.6 (0.5) | <0.001 |
Carbohydrate (g) | 129 (0.8) | 116 (0.5) | <0.001 | 130 (0.9) | 117 (0.8) | <0.001 | 126 (0.9) | 112 (0.9) | <0.001 |
Added sugars (g) | 37.4 (0.6) | 28.9 (0.4) | <0.001 | 36.3 (0.8) | 28.2 (0.7) | <0.001 | 30.5 (1) | 22.0 (0.7) | <0.001 |
Dietary fiber (g) | 8.5 (0.1) | 8.4 (0.1) | 0.526 | 8.6 (0.1) | 8.7 (0.1) | 0.569 | 8.9 (0.2) | 9.0 (0.3) | 0.732 |
Total fat (g) | 35.8 (0.2) | 37.9 (0.2) | <0.001 | 36.7 (0.3) | 39 (0.3) | <0.001 | 37.9 (0.4) | 41.2 (0.4) | <0.001 |
Saturated fat (g) | 11.4 (0.1) | 12.2 (0.1) | <0.001 | 11.8 (0.1) | 12.7 (0.1) | <0.001 | 12.2 (0.2) | 13.3 (0.2) | <0.001 |
Monounsaturated fat (g) | 12.8 (0.1) | 13.7 (0.1) | <0.001 | 13 (0.1) | 14.1 (0.1) | <0.001 | 13.5 (0.2) | 14.9 (0.2) | <0.001 |
Polyunsaturated fat (g) | 8.5 (0.1) | 8.6 (0.1) | 0.160 | 8.6 (0.1) | 8.7 (0.1) | 0.489 | 8.7 (0.1) | 9.3 (0.1) | 0.002 |
Vitamin A, RAE (µg) | 313 (9.0) | 323 (5.0) | 0.274 | 297 (8.0) | 363 (20.0) | 0.002 | 345 (14.0) | 358 (15.0) | 0.484 |
Folate (µg DFE) | 263 (4.0) | 255 (2.0) | 0.046 | 262 (5.0) | 261 (4.0) | 0.766 | 279 (8.0) | 270 (7.0) | 0.285 |
Choline (mg) | 147 (2.0) | 171 (1.0) | <0.001 | 150 (2.0) | 181 (2.0) | <0.001 | 163 (3.0) | 187 (3.0) | <0.001 |
Vitamin B12 (µg) | 2.3 (0.1) | 2.6 (0.0) | <0.001 | 2.2 (0.1) | 2.8 (0.2) | <0.001 | 2.5 (0.1) | 3.0 (0.1) | 0.007 |
Vitamin C (mg) | 48.5 (1.4) | 42.2 (0.7) | <0.001 | 45.2 (1.2) | 43.0 (1.2) | 0.180 | 48.0 (2.0) | 38.8 (1.3) | <0.001 |
Vitamin D (µg) | 2.0 (0.1) | 2.5 (0.1) | <0.001 | 1.9 (0.1) | 2.6 (0.1) | <0.001 | 2.4 (0.2) | 2.7 (0.1) | 0.134 |
Vitamin K (µg) | 62.8 (2.4) | 61.8 (2.0) | 0.730 | 56.8 (2.7) | 64.5 (2.5) | 0.028 | 62.2 (4.3) | 65 (4.2) | 0.588 |
Calcium (mg) | 440 (5.0) | 463 (4.0) | <0.001 | 433 (5.0) | 462 (6.0) | <0.001 | 496 (14.0) | 490 (7.0) | 0.697 |
Phosphorus (mg) | 599 (4.0) | 683 (3.0) | <0.001 | 598 (4.0) | 696 (5.0) | <0.001 | 655 (8.0) | 734 (8.0) | <0.001 |
Magnesium (mg) | 151 (1.0) | 154 (1.0) | 0.037 | 146 (2.0) | 151 (1.0) | 0.003 | 150 (3.0) | 154 (2.0) | 0.205 |
Iron (mg) | 7.2 (0.1) | 7.2 (0.1) | 0.736 | 7.3 (0.1) | 7.6 (0.1) | 0.168 | 7.9 (0.2) | 7.9 (0.2) | 0.954 |
Zinc (mg) | 4.9 (0.1) | 5.8 (0.01) | <0.001 | 5.1 (0.1) | 6 (0.1) | <0.001 | 5.5 (0.1) | 6.7 (0.3) | <0.001 |
Copper (mg) | 0.65 (0.01) | 0.66 (0.01) | 0.057 | 0.64 (0.01) | 0.68 (0.03) | 0.205 | 0.66 (0.01) | 0.7 (0.02) | 0.061 |
Sodium (mg) | 1617 (12.0) | 1691 (10.0) | <0.001 | 1665 (17.0) | 1770 (14.0) | <0.001 | 1764 (23.0) | 1868 (28.0) | 0.002 |
Potassium (mg) | 1330 (12.0) | 1348 (8.0) | 0.211 | 1327 (15.0) | 1384 (11.0) | 0.002 | 1399 (30.0) | 1407 (18.0) | 0.795 |
Selenium (µg) | 47.7 (0.4) | 57.9 (0.3) | <0.001 | 49.7 (0.6) | 60.1 (0.5) | <0.001 | 54.2 (0.8) | 62.5 (0.8) | <0.001 |
Non-Diabetes | Pre-Diabetes | Diabetes | ||||
---|---|---|---|---|---|---|
Protein Intake b | Protein Intake b | Protein Intake b | ||||
Nutrient a | <0.8 g/kg/day (n = 5283) | ≥0.8 g/kg/day (n = 9447) | <0.8 g/kg/day (n = 2749) | ≥0.8 g/kg/day (n = 3120) | <0.8 g/kg/day (n = 1482) | ≥0.8 g/kg/day (n = 1406) |
Carbohydrate | 589 (11.1%) | 208 (2.6%) | 285 (9.6%) | 74 (2.1%) | 217 (13.4%) | 36 (2.7%) |
Fiber | 5006 (94.2%) | 7720 (81.3%) | 2579 (93.4%) | 2489 (79.2%) | 1378 (93.1%) | 1122 (82.1%) |
Thiamin | 2299 (41.4%) | 921 (9.1%) | 1123 (36.2%) | 315 (9.7%) | 569 (33.5%) | 118 (7.1%) |
Riboflavin | 1487 (23.1%) | 336 (2.6%) | 757 (21.8%) | 121 (2.2%) | 383 (20.2%) | 50 (3.1%) |
Niacin | 1564 (26.1%) | 193 (1.9%) | 775 (24.3%) | 70 (2.1%) | 397 (21.2%) | 23 (1.8%) |
Vitamin B6 | 2847 (51.1%) | 1075 (10.4%) | 1549 (52.5%) | 486 (14.6%) | 869 (54.2%) | 187 (12.3%) |
Folate | 2614 (47.0%) | 1727 (18.1%) | 1322 (45.8%) | 600 (18.0%) | 721 (46.0%) | 248 (17.1%) |
Vitamin B12 | 2291 (40.9%) | 1044 (10.0%) | 1139 (37.8%) | 357 (11.0%) | 577 (35.6%) | 172 (9.4%) |
Vitamin C | 3411 (65.4%) | 4807 (50.1%) | 1722 (64.6%) | 1580 (50.7%) | 986 (65.7%) | 739 (53.3%) |
Choline | 5144 (97.5%) | 7034 (75.1%) | 2655 (95.8%) | 2358 (76.6%) | 1431 (96.0%) | 1009 (71.7%) |
Vitamin A | 3863 (70.8%) | 4600 (44.8%) | 1958 (68.9%) | 1523 (43.2%) | 1098 (68.7%) | 725 (46.3%) |
Vitamin D | 4324 (96.8%) | 6776 (85.7%) | 2398 (97.4%) | 2397 (84.2%) | 1278 (95.1%) | 1072 (85.8%) |
Vitamin E | 4920 (92.0%) | 7211 (73.5%) | 2576 (92.9%) | 2499 (77.6%) | 1393 (91.5%) | 1126 (75.3%) |
Vitamin K | 4284 (78.1%) | 6137 (61.6%) | 2197 (78.7%) | 2030 (61.9%) | 1205 (79.0%) | 928 (62.8%) |
Calcium | 4108 (74.5%) | 3818 (36.7%) | 2179 (77.5%) | 1501 (45.5%) | 1163 (75.9%) | 657 (40.6%) |
Phosphorus | 1116 (18.4%) | 32 (0.3%) | 550 (17.0%) | 10 (0.2%) | 275 (14.2%) | 3 (0.1%) |
Magnesium | 4459 (82.6%) | 4091 (40.1%) | 2336 (82.2%) | 1496 (46.3%) | 1285 (84.7%) | 681 (46.3%) |
Iron | 1313 (23.8%) | 300 (3.1%) | 487 (14.7%) | 68 (1.9%) | 255 (15.3%) | 21 (1.2%) |
Zinc | 3530 (62.8%) | 1453 (13.0%) | 1732 (58.2%) | 566 (15.8%) | 942 (57.7%) | 209 (12.3%) |
Copper | 1944 (33.1%) | 561 (4.9%) | 926 (31.5%) | 236 (6.5%) | 505 (30.4%) | 85 (4.4%) |
Selenium | 1259 (22.7%) | 66 (0.7%) | 558 (17.2%) | 11 (0.4%) | 277 (15.4%) | 2 (0.6%) |
Non-Diabetes | Pre-Diabetes | Diabetes | |||||||
---|---|---|---|---|---|---|---|---|---|
Protein Intake a,b | Protein Intake a,b | Protein Intake a,b | |||||||
HEI-2015 Score (Score Range) | <0.8 g/kg/day (n = 5283) | ≥0.8 g/kg/day (n = 9447) | p | <0.8 g/kg/day (n = 2749) | ≥0.8 g/kg/day (n = 3120) | p | <0.8 g/kg/day (n = 1482) | ≥0.8 g/kg/day (n = 1406) | p |
Total Fruit (0–5) | 2.1 (0.05) | 2.2 (0.03) | 0.174 | 2.3 (0.07) | 2.3 (0.06) | 0.664 | 2.2 (0.09) | 2.1 (0.08) | 0.565 |
Whole Fruit (0–5) | 2.0 (0.1) | 2.2 (0.01) | <0.001 | 2.2 (0.1) | 2.4 (0.1) | 0.033 | 2.2 (0.1) | 2.3 (0.1) | 0.661 |
Total Vegetables (0–5) | 3.0 (0.01) | 3.2 (0.01) | <0.001 | 3.1 (0.01) | 3.2 (0.01) | 0.009 | 3.1 (0.1) | 3.4 (0.1) | <0.001 |
Greens & Beans (0–5) | 1.4 (0.01) | 1.8 (0.01) | <0.001 | 1.3 (0.1) | 1.8 (0.1) | <0.001 | 1.2 (0.1) | 1.7 (0.1) | <0.001 |
Whole Grains (0–10) | 2.5 (0.1) | 2.6 (0.1) | 0.533 | 2.7 (0.1) | 2.7 (0.1) | 0.995 | 2.7 (0.1) | 2.9 (0.2) | 0.471 |
Dairy (0–10) | 4.2 (0.1) | 5.2 (0.1) | <0.001 | 4.3 (0.1) | 5.1 (0.1) | <0.001 | 4.6 (0.1) | 5.5 (0.1) | <0.001 |
Protein Foods (0–5) | 3.8 (0.01) | 4.5 (0.01) | <0.001 | 3.9 (0.01) | 4.6 (0.01) | <0.001 | 4.1 (0.1) | 4.6 (0.01) | <0.001 |
Seafood & Plant Proteins (0–5) | 2.1 (0.1) | 2.7 (0.01) | <0.001 | 2.1 (0.1) | 2.6 (0.1) | <0.001 | 1.9 (0.1) | 2.6 (0.1) | <0.001 |
Fatty Acids (0–10) | 5.4 (0.1) | 5.1 (0.1) | 0.001 | 5.2 (0.1) | 5.0 (0.1) | 0.339 | 5.3 (0.1) | 5.0 (0.1) | 0.299 |
Refined Grains (0–10) c | 6.2 (0.1) | 6.5 (0.1) | 0.014 | 5.9 (0.1) | 6.4 (0.1) | 0.002 | 5.6 (0.1) | 6.0 (0.2) | 0.123 |
Sodium (0–10) c | 5.0 (0.1) | 4.4 (0.1) | <0.001 | 4.6 (0.1) | 3.8 (0.1) | <0.001 | 4.0 (0.1) | 3.2 (0.1) | <0.001 |
Added Sugars (0–10) c | 5.9 (0.1) | 7.1 (0.1) | <0.001 | 6.1 (0.1) | 7.2 (0.1) | <0.001 | 6.9 (0.1) | 8.1 (0.1) | <0.001 |
Saturated Fat (0–10) c | 6.6 (0.1) | 6.0 (0.1) | <0.001 | 6.3 (0.1) | 5.7 (0.1) | <0.001 | 6.0 (0.1) | 5.2 (0.1) | <0.001 |
Total HEI Score (0–100) | 50.4 (0.3) | 53.5 (0.2) | < 0.001 | 49.9 (0.4) | 52.8 (0.4) | <0.001 | 49.9 (0.5) | 52.6 (0.5) | <0.001 |
Non-Diabetes | Pre-Diabetes | Diabetes | ||||
---|---|---|---|---|---|---|
Protein Intake a | Protein Intake a | Protein Intake a | ||||
Limitations Experienced b | <0.8 g/kg/day (n = 5283) | ≥0.8 g/kg/day (n = 9447) | <0.8 g/kg/day (n = 2749) | ≥0.8 g/kg/day (n = 3120) | <0.8 g/kg/day (n = 1482) | ≥0.8 g/kg/day (n = 1406) |
n (%) | ||||||
Stooping, crouching, kneeling | 1520 (29.0%) | 1603 (17.0%) | 1104 (40.8%) | 930 (30.1%) | 760 (52.0%) | 488 (35.3%) |
Standing for long periods | 1346 (25.8%) | 1440 (15.4%) | 968 (35.9%) | 817 (26.5%) | 676 (46.9%) | 422 (30.6%) |
Push or pull large objects | 1120 (21.7%) | 1216 (13.0%) | 784 (29.7%) | 695 (22.8%) | 570 (40.5%) | 343 (25.2%) |
Lifting or carrying | 793 (15.1%) | 815 (8.7%) | 587 (21.7%) | 484 (15.7%) | 447 (30.6%) | 267 (19.3%) |
Standing up from armless chair | 763 (14.5%) | 750 (7.9%) | 581 (21.2%) | 436 (14.0%) | 468 (31.6%) | 267 (19.0%) |
House chores | 750 (14.4%) | 782 (8.4%) | 556 (20.9%) | 416 (13.7%) | 451 (32.0%) | 230 (16.9%) |
Sitting for long periods | 739 (14.0%) | 893 (9.5%) | 536 (19.5%) | 418 (13.4%) | 412 (28.0%) | 241 (17.2%) |
Going out to movies, events | 637 (12.3%) | 677 (7.2%) | 468 (17.6%) | 318 (10.4%) | 396 (27.8%) | 206 (15.1%) |
Walking for a quarter mile | 576 (12.3%) | 584 (6.6%) | 461 (20.5%) | 336 (12.2%) | 274 (25.7%) | 187 (15.8%) |
Reaching up over head | 628 (11.9%) | 644 (6.8%) | 448 (16.3%) | 354 (11.4%) | 358 (24.3%) | 238 (17.0%) |
Getting in and out of bed | 601 (11.4%) | 609 (6.4%) | 419 (15.3%) | 318 (10.2%) | 385 (26.1%) | 203 (14.5%) |
Attending social event | 500 (9.8%) | 549 (5.9%) | 361 (13.8%) | 253 (8.4%) | 290 (20.9%) | 154 (11.5%) |
Grasp/holding small objects | 500 (9.5%) | 647 (6.9%) | 366 (13.3%) | 319 (10.2%) | 296 (20.0%) | 181 (12.9%) |
Walking up ten steps | 422 (9.0%) | 393 (4.4%) | 312 (13.8%) | 235 (8.5%) | 204 (19.0%) | 133 (11.2%) |
Dressing yourself | 424 (8.0%) | 442 (4.7%) | 326 (11.9%) | 245 (7.9%) | 304 (20.6%) | 179 (12.7%) |
Walking between rooms (same floor) | 314 (5.9%) | 307 (3.3%) | 270 (9.8%) | 174 (5.6%) | 240 (16.2%) | 120 (8.6%) |
Preparing meals | 296 (5.7%) | 324 (3.5%) | 230 (8.7%) | 159 (5.3%) | 201 (14.4%) | 99 (7.3%) |
Leisure activity at home | 243 (4.6%) | 261 (2.8%) | 164 (6.0%) | 119 (3.8%) | 150 (10.2%) | 98 (7.0%) |
Using fork, knife, drinking from cup | 165 (3.1%) | 221 (2.3%) | 135 (4.9%) | 94 (3.0%) | 109 (7.4%) | 70 (5.0%) |
Mean (SE) | ||||||
Number of Limitations (unadjusted) | 2.0 (0.1) | 1.2 (0.05) | 3.1 (0.1) | 2.1 (0.1) | 4.5 (0.2) | 2.7 (0.2) |
Number of Limitations (adjusted) | 1.7 (0.05) | 1.3 (0.05) * | 2.8 (0.1) | 2.3 (0.1) * | 4.3 (0.2) | 2.9 (0.2) * |
Combined Grip Strength (kg, unadjusted) | 70.3 (0.9) | 74.1 (0.5) * | 67.8 (1.5) | 69.6 (1.0) | 66.0 (1.8) | 70.0 (1.5) |
Combined Grip Strength (kg, adjusted) | 73.8 (0.5) | 72.6 (0.4) * | 70.9 (0.9) | 68.0 (0.5) | 68.0 (0.9) | 64.6 (0.8) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fanelli, S.M.; Kelly, O.J.; Krok-Schoen, J.L.; Taylor, C.A. Low Protein Intakes and Poor Diet Quality Associate with Functional Limitations in US Adults with Diabetes: A 2005–2016 NHANES Analysis. Nutrients 2021, 13, 2582. https://doi.org/10.3390/nu13082582
Fanelli SM, Kelly OJ, Krok-Schoen JL, Taylor CA. Low Protein Intakes and Poor Diet Quality Associate with Functional Limitations in US Adults with Diabetes: A 2005–2016 NHANES Analysis. Nutrients. 2021; 13(8):2582. https://doi.org/10.3390/nu13082582
Chicago/Turabian StyleFanelli, Stephanie M., Owen J. Kelly, Jessica L. Krok-Schoen, and Christopher A. Taylor. 2021. "Low Protein Intakes and Poor Diet Quality Associate with Functional Limitations in US Adults with Diabetes: A 2005–2016 NHANES Analysis" Nutrients 13, no. 8: 2582. https://doi.org/10.3390/nu13082582
APA StyleFanelli, S. M., Kelly, O. J., Krok-Schoen, J. L., & Taylor, C. A. (2021). Low Protein Intakes and Poor Diet Quality Associate with Functional Limitations in US Adults with Diabetes: A 2005–2016 NHANES Analysis. Nutrients, 13(8), 2582. https://doi.org/10.3390/nu13082582