The Associations of Dietary Iron Intake and the Transferrin Receptor (TFRC) rs9846149 Polymorphism with the Risk of Gastric Cancer: A Case–Control Study Conducted in Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Dietary Measurement
2.3. Genotype Measurement
2.4. Statistical Analyses
3. Results
3.1. General Information of Participants
3.2. The Associations of the TFRC rs9846149 Polymorphism with Gastric Cancer Risk
3.3. The Interaction of the TFRC rs9846149 Polymorphism and Iron Intake with Gastric Cancer Risk
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Hong, S.; Won, Y.J.; Lee, J.J.; Jung, K.W.; Kong, H.J.; Im, J.S. Cancer statistics in Korea: Incidence, mortality, survival, and prevalence in 2018. Cancers Res. Treat. 2021, 53, 301–315. [Google Scholar] [CrossRef]
- World Cancer Research Fund International. Diet, Nutrition, Physical Activity and Stomach Cancer; World Cancer Research Fund International: London, UK, 2018. [Google Scholar]
- Vahid, F.; Davoodi, S.H. Nutritional factors involved in the etiology of gastric cancer: A systematic review. Nutr. Cancer 2020, 73, 1–15. [Google Scholar] [CrossRef]
- Yusefi, A.R.; Lankarani, K.B.; Bastani, P.; Radinmanesh, M.; Kavosi, Z. Risk factors for gastric cancer: A systematic review. Asian Pac. J. Cancer Prev. 2018, 19, 591–603. [Google Scholar]
- Abbaspour, N.; Hurrell, R.; Kelishadi, R. Review on iron and its importance for human health. J. Res. Med. Sci. 2014, 19, 164–174. [Google Scholar] [PubMed]
- Toyokuni, S. Role of iron in carcinogenesis: Cancer as a ferrotoxic disease. Cancer Sci. 2009, 100, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Chang, V.C.; Cotterchio, M.; Khoo, E. Iron intake, body iron status, and risk of breast cancer: A systematic review and meta-analysis. BMC Cancer 2019, 19, 543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakszyn, P.; Agudo, A.; Lujan-Barroso, L.; Bueno-de-Mesquita, H.B.; Jenab, M.; Navarro, C.; Palli, D.; Boeing, H.; Manjer, J.; Numas, M.E.; et al. Dietary intake of heme iron and risk of gastric cancer in the European prospective investigation into cancer and nutrition study. Int. J. Cancer 2012, 130, 2654–2663. [Google Scholar] [CrossRef] [PubMed]
- Rychtarcikova, Z.; Lettlova, S.; Tomkova, V.; Korenkova, V.; Langerova, L.; Simonova, E.; Zjablovskaja, P.; Alberich-Jorda, M.; Neuzil, J.; Truska, J. Tumor-initiating cells of breast and prostate origin show alterations in the expression of genes related to iron metabolism. Oncotarget 2017, 8, 6376–6398. [Google Scholar] [CrossRef] [Green Version]
- Horniblow, R.D.; Bedford, M.; Hollingworth, R.; Evans, S.; Sutton, E.; Lal, N.; Beggs, A.; Igbal, T.H.; Tselepis, C. BRAF mutations are associated with increased iron regulatory protein-2 expression in colorectal tumorigenesis. Cancer Sci. 2017, 108, 1135–1143. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, J.; Song, F.; Tian, M.; Shi, B.; Jiang, H.; Xu, W.; Wang, H.; Zhou, M.; Pan, X.; et al. EGFR regulates iron homeostasis to promote cancer growth through redistribution of transferrin receptor 1. Cancer Lett. 2016, 381, 331–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kindrat, I.; Tryndyak, V.; de Conti, A.; Shpyleva, S.; Mudalige, T.K.; Kobets, T.; Erstenyuk, A.M.; Beland, F.A.; Pogribny, I.P. MicroRNA-152-mediated dysregulation of hepatic transferrin receptor 1 in liver carcinogenesis. Oncotarget 2016, 7, 1276–1287. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.; Fan, K.; Wang, L.; Ying, X.; Sanders, A.J.; Guo, T.; Xing, X.; Zhou, M.; Du, H.; Hu, Y. TfR1 binding with H-ferritin nanocarrier achieves prognostic diagnosis and enhances the therapeutic efficacy in clinical gastric cancer. Cell Death. Dis. 2020, 11, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asl, D.H.; Farivar, T.N.; Rahmani, B.; Hajmanoochehri, F.; Razavi, A.N.E.; Jahanbin, B.; Dodaran, M.S.; Peymani, A. The role of transferrin receptor in the Helicobacter pylori pathogenesis; L-ferritin as a novel marker for intestinal metaplasia. Microb. Pathog. 2019, 126, 157–164. [Google Scholar]
- Dunne, C.; Dolan, B.; Clyne, M. Factors that mediate colonization of the human stomach by Helicobacter pylori. World J. Gastroenterol. 2014, 20, 5610–5624. [Google Scholar] [CrossRef]
- Tian, J.; Liu, G.; Zuo, C.; Liu, C.; He, W.; Chen, H. Genetic polymorphisms and gastric cancer risk: A comprehensive review synopsis from meta-analysis and genome-wide association studies. Cancer Biol. Med. 2019, 16, 361–389. [Google Scholar]
- Chiurillo, M.A. Role of gene polymorphisms in gastric cancer and its precursor lesions: Current knowledge and perspectives in Latin American countries. World J. Gastroenterol. 2014, 20, 4503–4515. [Google Scholar] [CrossRef] [PubMed]
- Ward, M.H.; Cross, A.J.; Abnet, C.C.; Sinha, R.; Markin, R.S.; Weisenburger, D.D. Heme iron from meat and risk of adenocarcinoma of the esophagus and stomach. Eur. J. Cancer Prev. 2012, 21, 134–138. [Google Scholar] [CrossRef] [Green Version]
- Burns, M.; Amaya, A.; Bodi, C.; Ge, Z.; Bakthavatchalu, V.; Ennis, K.; Wang, T.C.; Georgieff, M.; Fox, J.G. Helicobacter pylori infection and low dietary iron alter behavior, induce iron deficiency anemia, and modulate hippocampal gene expression in female C57BL/6 mice. PLoS ONE 2017, 12, e0173108. [Google Scholar] [CrossRef]
- Pelucchi, C.; Tramacere, I.; Bertuccio, P.; Tavani, A.; Negri, E.; La Vecchia, C. Dietary intake of selected micronutrients and gastric cancer risk: An Italian case-control study. Ann. Oncol. 2009, 20, 160–165. [Google Scholar] [CrossRef]
- Lee, D.H.; Anderson, K.E.; Folsom, A.R.; Jacobs, D.R., Jr. Heme iron, zinc and upper digestive tract cancer: The Iowa Women’s Health Study. Int. J. Cancer 2005, 117, 643–647. [Google Scholar] [CrossRef]
- Cross, A.J.; Freedman, N.D.; Ren, J.; Ward, M.H.; Hollenbeck, A.R.; Schatzkin, A.; Sinha, R.; Abnet, C.C. Meat consumption and risk of esophageal and gastric cancer in a large prospective study. Am. J. Gastroenterol. 2011, 106, 432–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cross, A.J.; Leitzmann, M.F.; Gail, M.H.; Hollenbeck, A.R.; Schatzkin, A.; Sinha, R. A prospective study of red and processed meat intake in relation to cancer risk. PLoS Med. 2007, 4, e325. [Google Scholar] [CrossRef] [PubMed]
- Ahn, Y.; Kwon, E.; Shim, J.E.; Park, M.K.; Joo, Y.; Kimm, K.; Park, C.; Kim, D.H. Validation and reproducibility of food frequency questionnaire for Korean genome epidemiologic study. Eur. J. Clin. Nutr. 2007, 61, 1435–1441. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, J.; Choi, I.J.; Kim, Y.I.; Sung, J.; Kim, J. TNF genetic polymorphism (rs1799964) may modify the effect of the dietary inflammatory index on gastric cancer in a case-control study. Sci. Rep. 2020, 10, 14590. [Google Scholar] [CrossRef] [PubMed]
- Park, B.; Yang, S.; Lee, J.; Woo, H.D.; Choi, I.J.; Kim, Y.W.; Ryu, K.W.; Kim, Y.-I.; Kim, J. Genome-Wide association of genetic variation in the PSCA gene with gastric cancer susceptibility in a Korean population. Cancer Res. Treat. 2019, 51, 748–757. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Park, Y.; Lee, J.; Choi, I.J.; Kim, Y.W.; Ryu, K.W.; Sung, J.; Kim, J. Effects of soy product intake and interleukin genetic polymorphisms on early gastric cancer risk in Korea: A case-control study. Cancer Res. Treat. 2017, 49, 1044–1056. [Google Scholar] [CrossRef] [Green Version]
- Hoang, B.V.; Lee, J.; Choi, I.J.; Kim, Y.W.; Ryu, K.W.; Kim, J. Effect of dietary vitamin C on gastric cancer risk in the Korean population. World J. Gastroenterol. 2016, 22, 6257–6267. [Google Scholar] [CrossRef]
- Larsson, S.C.; Bergkvist, L.; Wolk, A. Processed meat consumption, dietary nitrosamines and stomach cancer risk in a cohort of Swedish women. Int. J. Cancer 2006, 119, 915–919. [Google Scholar] [CrossRef] [PubMed]
- Cornée, J.; Pobel, D.; Riboli, E.; Guyader, M.; Hémon, B. A case-control study of gastric cancer and nutritional factors in Marseille, France. Eur. J. Epidemiol. 1995, 11, 55–65. [Google Scholar] [CrossRef]
- Pakseresht, M.; Forman, D.; Malekzadeh, R.; Yazdanbod, A.; West, R.M.; Greenwood, D.C.; Crabtree, J.E.; Cade, J.E. Dietary habits and gastric cancer risk in north-west Iran. Cancer Causes Control 2011, 22, 725–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fonseca-Nunes, A.; Agudo, A.; Aranda, N.; Arija, V.; Cross, A.J.; Molina, E.; Sanchez, M.J.; Bueno-de-Mesquita, H.B.; Siersema, P.; Weierpass, E.; et al. Body iron status and gastric cancer risk in the EURGAST study. Int. J. Cancer 2015, 137, 2904–2914. [Google Scholar] [CrossRef]
- Hooda, J.; Shah, A.; Zhang, L. Heme, an essential nutrient from dietary proteins, critically impacts diverse physiological and pathological processes. Nutrients 2014, 6, 1080–1102. [Google Scholar] [CrossRef] [Green Version]
- Gunathilake, M.; Lee, J.; Choi, I.J.; Kim, Y.-I.; Kim, J. Identification of dietary pattern networks associated with gastric cancer using gaussian graphical models: A case-control study. Cancer 2020, 12, 1044. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Lee, J.; Choi, I.J.; Kim, Y.I.; Kim, J. Dietary patterns and gastric cancer risk in a Korean population: A case–control study. Eur. J. Nutr. 2021, 60, 389–397. [Google Scholar] [CrossRef] [PubMed]
- World Cancer Research Fund. Continuous Update Project Expert Report 2018. Recommendations and Public Health and Policy Implication. Available online: http://dietandcancerreport.org (accessed on 15 October 2020).
- Cross, A.J.; Pollock, J.R.; Bingham, S.A. Haem, not protein or inorganic iron, is responsible for endogenous intestinal N-nitrosation arising from red meat. Cancer Res. 2003, 63, 2358–2360. [Google Scholar]
- Pich, O.Q.; Merrell, D.S. The ferric uptake regulator of Helicobacter pylori: A critical player in the battle for iron and colonization of the stomach. Future Microbiol. 2013, 8, 725–738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qu, X.-H.; Huang, X.-L.; Xiong, P.; Zhu, C.-Y.; Huang, Y.-L.; Lu, L.-G.; Sun, X.; Rong, L.; Zhong, L.; Sun, D.-Y.; et al. Does Helicobacter pylori infection play a role in iron deficiency anemia? a meta-analysis. World J. Gastroenterol. 2010, 16, 886–896. [Google Scholar]
- Wang, P.L.; Xiao, F.T.; Gong, B.C.; Liu, F.N. Alcohol drinking and gastric cancer risk: A meta-analysis of observational studies. Oncotarget 2017, 8, 99013–99023. [Google Scholar] [CrossRef] [Green Version]
- Mena, S.; Ortega, A.; Estrela, J.M. Oxidative stress in environmental-induced carcinogenesis. Mutat. Res. 2009, 674, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Chan, R.; Lu, L.; Shen, J.; Zhang, L.; Wu, W.K.K.; Wang, L.; Hu, T.; Li, M.X.; Cho, C.H. Cigarette smoking and gastrointestinal diseases: The causal relationship and underlying molecular mechanisms. Int. J. Mol. Med. 2014, 34, 372–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steevens, J.; Schouten, L.J.; Goldbohm, R.A.; van den Brandt, P.A. Vegetables and fruits consumption and risk of esophageal and gastric cancer subtypes in the Netherlands cohort study. Int. J. Cancer 2011, 129, 2681–2693. [Google Scholar] [CrossRef]
- Larsson, S.C.; Bergkvist, L.; Wolk, A. Fruit and vegetable consumption and incidence of gastric cancer: A prospective study. Cancer Epidemiol. Biomark. Prev. 2006, 15, 1998–2001. [Google Scholar] [CrossRef] [Green Version]
- Ferro, A.; Costa, A.R.; Morais, S.; Bertuccio, P.; Rota, M.; Pelucchi, C.; Hu, J.; Johnson, K.C.; Zhang, Z.F.; Palli, D.; et al. Fruits and vegetables intake and gastric cancer risk: A pooled analysis within the Stomach cancer Pooling Project. Int. J. Cancer 2020, 147, 3090–3101. [Google Scholar] [CrossRef] [PubMed]
- Agudo, A.; Bonet, C.; Sala, N.; Muñoz, X.; Aranda, N.; Fonseca-Nunes, A.; Clavel-Chapelon, F.; Boutron-Ruault, M.C.; Vineis, P.; Panico, S.; et al. Hemochromatosis (HFE) gene mutations and risk of gastric cancer in the European prospective investigation into Cancer and Nutrition (EPIC) study. Carcinogenesis 2013, 34, 1244–1250. [Google Scholar] [CrossRef]
- Shen, Y.; Li, X.; Dong, D.; Zhang, B.; Xue, Y.; Shang, P. Transferrin receptor 1 in cancer: A new sight for cancer therapy. Am. J. Cancer Res. 2018, 8, 916–931. [Google Scholar] [PubMed]
- Forciniti, S.; Greco, L.; Grizzi, F.; Malesci, A.; Laghi, L. Iron metabolism in cancer progression. Int. J. Mol. Sci. 2020, 21, 2257. [Google Scholar] [CrossRef] [Green Version]
- Chmiela, M.; Kupcinskas, J. Review: Pathogenesis of Helicobacter pylori infection. Helicobacter 2019, 24, e12638. [Google Scholar] [CrossRef] [Green Version]
Total (n = 1128) | Males (n = 740) | Females (n = 388) | |||||||
---|---|---|---|---|---|---|---|---|---|
Controls (n = 754) | Cases (n = 374) | p a | Controls (n = 496) | Cases (n = 244) | pa | Controls (n = 258) | Cases (n = 130) | p a | |
Age (year) b | 53.8 ± 8.9 | 53.8 ± 9.3 | 0.967 | 54.9 ± 8.4 | 55.0 ± 8.6 | 0.846 | 51.9 ± 9.6 | 51.6 ± 10.2 | 0.802 |
Sex | |||||||||
Male | 496 (65.8) | 244 (65.2) | 0.857 | ||||||
Female | 258 (34.2) | 130 (34.8) | |||||||
BMI (kg/m2) | 24.02 ± 2.9 | 23.8 ± 3.1 | 0.375 | 24.5 ± 2.7 | 24.2 ± 3.0 | 0.293 | 23.1 ± 3.2 | 23.1 ± 3.0 | 0.977 |
<23 | 275 (36.5) | 147 (39.3) | 0.631 | 140 (28.2) | 84 (34.4) | 0.184 | 135 (52.3) | 63 (48.5) | 0.771 |
23–25 | 230 (30.5) | 106 (28.3) | 160 (32.3) | 67 (27.5) | 70 (27.1) | 39 (30.0) | |||
≥25 | 248 (32.9) | 120 (32.1) | 196 (39.5) | 93 (38.1) | 52 (20.2) | 27 (20.7) | |||
Missing | 1 (0.1) | 1 (0.3) | 0 (0) | 0 (0) | 1 (0.4) | 1 (0.8) | |||
H. pylori infection, n (%) | |||||||||
Positive | 464 (61.5) | 346 (92.5) | <0.001 | 322 (64.9) | 228 (93.4) | <0.001 | 142 (55.0) | 118 (90.8) | <0.001 |
Negative | 290 (38.5) | 28 (7.5) | 174 (35.1) | 16 (6.6) | 116 (45.0) | 12 (9.2) | |||
Missing | 0 (0) | 0 (0) | 0 (0) | (0) | (0) | (0) | |||
First-degree family history of GC, n (%) | |||||||||
Yes | 95 (12.6) | 77 (20.6) | <0.001 | 71 (14.3) | 55 (22.5) | 0.005 | 24 (9.3) | 22 (16.9) | 0.028 |
No | 657 (87.1) | 296 (79.2) | 423 (85.3) | 188 (77.1) | 234 (90.7) | 108 (83.1) | |||
Missing | 2 (0.3) | 1 (0.2) | 2 (0.4) | 1 (0.4) | 0 (0) | 0 (0) | |||
Smoking status, n (%) | |||||||||
Current-smoker | 153 (20.3) | 116 (31.0) | <0.001 | 149 (30.0) | 109 (44.7) | <0.001 | 4 (1.6) | 7 (5.4) | 0.037 |
Ex-smoker | 258 (34.2) | 109 (29.1) | 251 (50.6) | 102 (41.8) | 7 (2.7) | 7 (5.4) | |||
Non-smoker | 343 (45.5) | 149 (39.9) | 96 (19.4) | 33 (13.5) | 247 (95.7) | 116 (89.2) | |||
Missing | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |||
Alcohol intake, n (%) | |||||||||
Current-drinker | 484 (64.2) | 226 (60.4) | 0.373 | 369 (74.4) | 172 (70.5) | 0.393 | 115 (44.6) | 54 (41.5) | 0.844 |
Ex-drinker | 58 (7.7) | 36 (9.6) | 46 (9.3) | 30 (12.3) | 12 (4.7) | 6 (4.6) | |||
Non-drinker | 212 (28.1) | 112 (30.0) | 81 (16.3) | 42 (17.2) | 131 (50.7) | 70 (53.9) | |||
Missing | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |||
Regular exercise, n (%) | |||||||||
Yes | 424 (56.2) | 135 (36.1) | <0.001 | 279 (56.3) | 99 (40.6) | <0.001 | 145 (56.2) | 36 (27.7) | <0.001 |
No | 327 (43.4) | 239 (63.9) | 214 (43.1) | 145 (59.4) | 113 (43.8) | 94 (72.3) | |||
Missing | 3 (0.4) | 0 (0) | 3 (0.6) | 0 (0) | 0 (0) | 0 (0) | |||
Education, n (%) | |||||||||
Lower high school | 109 (14.5) | 126 (33.7) | <0.001 | 64 (12.9) | 81 (33.2) | <0.001 | 45 (17.4) | 45 (34.6) | <0.001 |
High school | 225 (29.8) | 160 (42.8) | 124 (25.0) | 104 (42.6) | 101 (39.1) | 56 (43.1) | |||
Upper high school | 390 (51.7) | 87 (23.3) | 280 (56.5) | 58 (23.8) | 110 (42.0) | 29 (22.3) | |||
Missing | 30 (4.0) | 1 (0.2) | 28 (5.6) | 1 (0.4) | 2 (0.5) | 0 (0) | |||
Occupation, n (%) | |||||||||
Professional administrative | 144 (19.1) | 65 (17.4) | <0.001 | 108 (21.8) | 54 (22.1) | 0.007 | 36 (14.0) | 11 (8.5) | 0.008 |
Office, Sales, service | 239 (31.7) | 107 (28.6) | 185 (37.3) | 72 (29.5) | 54 (20.9) | 35 (26.9) | |||
Laborer, agricultural | 117 (15.5) | 96 (25.7) | 100 (20.2) | 76 (31.1) | 17 (6.6) | 20 (15.4) | |||
Others, unemployed | 251 (33.3) | 105 (28.1) | 100 (20.1) | 41 (16.8) | 151 (58.5) | 64 (49.2) | |||
Missing | 3 (0.4) | 1 (0.2) | 3 (0.6) | 1 (0.5) | 0 (0) | 0 (0) | |||
Marital status, n (%) | |||||||||
Married | 650 (86.2) | 325 (86.9) | 0.707 | 440 (88.7) | 219 (89.8) | 0.610 | 210 (81.4) | 106 (81.5) | 0.973 |
Others | 103 (13.7) | 48 (12.8) | 55 (11.1) | 24 (9.8) | 48 (18.6) | 24 (18.5) | |||
Missing | 1 (0.1) | 1 (0.3) | 1 (0.2) | 1 (0.4) | 0 (0) | 0 (0) | |||
Monthly income, n (%) (10,000 Korean won/mo) | |||||||||
<200 | 132 (17.5) | 119 (31.8) | <0.001 | 74 (14.9) | 77 (31.6) | <0.001 | 58 (22.5) | 42 (32.3) | 0.046 |
200–400 | 311 (41.2) | 132 (35.3) | 216 (43.5) | 94 (38.5) | 95 (36.8) | 38 (29.2) | |||
≥400 | 247 (32.8) | 86 (23.0) | 153 (30.8) | 49 (20.1) | 94 (36.4) | 37 (28.5) | |||
Missing | 64 (8.5) | 37 (9.9) | 53 (10.8) | 24 (9.8) | 11 (4.3) | 13 (1.0) | |||
Histological subtype of gastric cancer, n (%) | |||||||||
Intestinal | - | 145 (38.8) | - | 119 (48.8) | - | 26 (20.0) | |||
Diffuse | - | 147 (39.3) | - | 69 (28.3) | - | 78 (60.0) | |||
Mixed | - | 50 (13.4) | - | 36 (14.8) | - | 14 (10.8) | |||
Indeterminate | - | 4 (1.1) | - | 3 (1.1) | - | 1 (0.8) | |||
Missing | 28 (7.4) | 17 (7.0) | 11 (8.4) |
Total (n = 1128) | Males (n = 740) | Female (n = 388) | |||||||
---|---|---|---|---|---|---|---|---|---|
Controls (n = 754) | Cases (n = 374) | p b | Controls (n = 496) | Cases (n = 244) | p b | Controls (n = 258) | Cases (n = 130) | p b | |
Total energy intake (Kcal/day) | 1718.1 ± 546.8 | 1925.2 ± 613.4 | <0.001 | 1765.1 ± 542.8 | 2032.9 ± 638.1 | <0.001 | 1627.7 ± 544.1 | 1723.2 ± 507.8 | 0.096 |
Total iron a (mg/day) | 13.97 ± 3.8 | 13.32 ± 3.6 | 0.005 | 13.48 ± 3.3 | 13.03 ± 3.2 | 0.080 | 14.92 ± 4.3 | 13.86 ± 4.1 | 0.021 |
Nonheme iron a (mg/day) | 10.56 ± 3.0 | 10.06 ± 3.0 | 0.008 | 10.13 ± 2.6 | 9.76 ± 2.6 | 0.065 | 11.38 ± 3.6 | 10.62 ± 3.5 | 0.047 |
Heme iron a (mg/day) | 3.44 ± 1.7 | 3.26 ± 1.5 | 0.073 | 3.37 ± 1.6 | 3.27 ± 1.6 | 0.373 | 3.58 ± 1.8 | 3.26 ± 1.4 | 0.053 |
Iron (mg/Day) | No. of Controls (%) | No. of Cases (%) | Model I [OR (95% CI)] | Model II [OR (95% CI)] | Model III [OR (95% CI)] |
---|---|---|---|---|---|
Total iron a | |||||
All | |||||
T1 (<12.04) | 251 (33.3) | 147 (39.3) | 1 | 1 | 1 |
T2 (12.04–14.76) | 250 (33.2) | 138 (36.9) | 0.94 (0.71–1.26) | 1.05 (0.76–1.45) | 1.19 (0.84–1.67) |
T3 (≥14.76) | 253 (33.5) | 89 (23.8) | 0.60 (0.44–0.82) | 0.64 (0.44–0.92) | 0.65 (0.45–0.94) |
p for trend | 0.001 | 0.006 | 0.018 | ||
Males | |||||
T1 (<11.67) | 166 (33.5) | 85 (34.8) | 1 | 1 | 1 |
T2 (11.67–14.30) | 164 (33.1) | 100 (41.0) | 1.19 (0.83–1.71) | 1.63 (1.06–2.51) | 1.71 (1.09–2.69) |
T3 (≥14.30) | 166 (33.4) | 59 (24.2) | 0.69 (0.47–1.03) | 0.74 (0.47–1.19) | 0.81 (0.39–1.31) |
p for trend | 0.053 | 0.134 | 0.261 | ||
Females | |||||
T1 (<12.68) | 85 (33.0) | 63 (48.5) | 1 | 1 | 1 |
T2 (12.68–15.80) | 87 (33.7) | 35 (26.9) | 0.54 (0.33–0.90) | 0.66 (0.38–1.17) | 0.84 (0.46–1.55) |
T3 (≥15.80) | 86 (33.3) | 32 (24.6) | 0.50 (0.30–0.85) | 0.60 (0.34–1.08) | 0.61 (0.33–1.13) |
p for trend | 0.01 | 0.089 | 0.116 | ||
Nonheme iron a | |||||
All | |||||
T1 (<9.10) | 251 (33.3) | 162 (43.3) | 1 | 1 | 1 |
T2 (9.10–11.02) | 250 (33.2) | 115 (30.8) | 0.71 (0.53–0.96) | 0.70 (0.50–0.97) | 0.73 (0.52–1.04) |
T3 (≥11.02) | 253 (33.5) | 97 (25.9) | 0.59 (0.44–0.81) | 0.58 (0.41–0.82) | 0.64 (0.44–0.92) |
p for trend | 0.001 | 0.003 | 0.018 | ||
Males | |||||
T1 (<8.86) | 166 (33.5) | 99 (40.6) | 1 | 1 | 1 |
T2 (8.86–10.73) | 165 (33.3) | 79 (32.4) | 0.80 (0.56–1.16) | 0.79 (0.51–1.21) | 0.78 (0.49–1.22) |
T3 (≥10.73) | 165 (33.2) | 66 (27.0) | 0.67 (0.46–0.98) | 0.63 (0.40–1.00) | 0.69 (0.43–1.11) |
p for trend | 0.040 | 0.052 | 0.129 | ||
Females | |||||
T1 (<9.73) | 85 (33.0) | 66 (50.8) | 1 | 1 | 1 |
T2 (9.73–11.69) | 86 (33.3) | 24 (18.5) | 0.36 (0.21–0.63) | 0.35 (0.19–0.66) | 0.45 (0.23–0.87) |
T3 (≥11.69) | 87 (33.7) | 40 (30.7) | 0.59 (0.36–0.97) | 0.69 (0.39–1.23) | 0.74 (0.40–1.36) |
p for trend | 0.067 | 0.299 | 0.408 | ||
Heme iron a | |||||
All | |||||
T1 (<2.60) | 251 (33.3) | 143 (38.2) | 1 | 1 | 1 |
T2 (2.60–3.88) | 253 (33.6) | 133 (35.6) | 0.92 (0.69–1.24) | 1.02 (0.73–1.42) | 1.06 (0.75–1.51) |
T3 (≥3.88) | 250 (33.1) | 98 (26.2) | 0.69 (0.50–0.94) | 0.83 (0.58–1.18) | 0.81 (0.56–1.17) |
p for trend | 0.017 | 0.294 | 0.245 | ||
Males | |||||
T1 (<2.54) | 165 (33.3) | 90 (36.9) | 1 | 1 | 1 |
T2 (2.54–3.80) | 167 (33.7) | 87 (35.7) | 0.96 (0.66–1.38) | 1.11 (0.72–1.69) | 1.11 (0.71–1.75) |
T3 (≥3.80) | 164 (33.0) | 67 (27.4) | 0.75 (0.51–1.10) | 0.90 (0.57–1.40) | 0.90 (0.56–1.44) |
p for trend | 0.132 | 0.599 | 0.613 | ||
Females | |||||
T1 (<2.72) | 86 (33.3) | 54 (41.5) | 1 | 1 | 1 |
T2 (2.72–3.99) | 87 (33.7) | 40 (30.8) | 0.73 (0.44–1.21) | 0.77 (0.44–1.36) | 0.92 (0.50–1.71) |
T3 (≥3.99) | 85 (33.0) | 36 (27.7) | 0.68 (0.40–1.13) | 0.82 (0.46–1.47) | 0.78 (0.42–1.44) |
p for trend | 0.138 | 0.519 | 0.417 |
rs9846149 | CC/GC | GG | p Interaction | ||||
Total | Low (<12.04) | Moderate (12.04–14.76) | High (≥14.76) | Low (12.04) | Moderate (12.04–14.76) | High (≥14.76) | |
No. of controls/cases | 240/144 | 233/131 | 243/83 | 11/3 | 17/7 | 10/6 | |
Model I [OR (95% CI)] | 1 | 0.94 (0.70–1.26 | 0.57 (0.41–0.79) | 0.46 (0.13–1.66) | 0.69 (0.28–1.70) | 1.00 (0.36–2.81) | 0.108 |
Model II [OR (95% CI)] | 1 | 1.04 (0.75–1.45) | 0.58 (0.40–0.83) | 0.35 (0.08–1.50) | 0.75 (0.28–2.00) | 1.33 (0.44–3.99) | 0.044 |
Model III [OR (95% CI)] | 1 | 1.15 (0.81–1.62) | 0.60 (0.41–0.88) | 0.27 (0.06–1.17) | 1.07 (0.37–3.07) | 1.31 (0.41–4.20) | 0.035 * |
Males | Low (<11.67) | Moderate (11.67–14.30) | High (≥14.30) | Low (<11.67) | Moderate (11.67–14.30) | High (≥14.30) | |
No. of controls/cases | 157/83 | 153/95 | 161/57 | 9/2 | 11/5 | 5/2 | |
Model I [OR (95% CI)] | 1 | 1.18 (0.81–1.70) | 0.67 (0.45–1.00) | 0.42 (0.09–1.99) | 0.86 (0.29–2.56) | 0.76 (0.14–3.98) | 0.368 |
Model II [OR (95% CI)] | 1 | 1.60 (1.05–2.44) | 0.74 (0.47–1.17) | 0.29 (0.05–1.62) | 1.11 (0.33–3.78) | 1.49 (0.26–8.49) | 0.128 |
Model III [OR (95% CI)] | 1 | 1.69 (1.08–2.64) | 0.79 (0.49–1.29) | 0.21 (0.04–1.25) | 1.34 (0.36–5.04) | 1.77 (0.28–11.34) | 0.072 |
Females | Low (<12.68) | Moderate (12.68–15.80) | High (≥15.80) | Low (<12.68) | Moderate (12.68–15.80) | High (≥15.80) | |
No. of controls/cases | 81/60 | 81/34 | 83/29 | 4/3 | 6/1 | 3/3 | |
Model I [OR (95% CI)] | 1 | 0.57 (0.34–0.95) | 0.47 (0.28–0.81) | 1.01 (0.22–4.69) | 0.23 (0.03–1.92) | 1.35 (0.26–6.92) | 0.396 |
Model II [OR (95% CI)] | 1 | 0.64 (0.37–1.13) | 0.49 (0.27–0.89) | 1.20 (0.23–6.19) | 0.26 (0.03–2.53) | 2.26 (0.35–14.44) | 0.328 |
Model III [OR (95% CI)] | 1 | 0.82 (0.44–1.52) | 0.51 (0.27–1.00) | 1.03 (0.18–5.73) | 0.31 (0.03–3.24) | 3.95 (0.56–28.02) | 0.158 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, T.T.; Gunathilake, M.; Lee, J.; Choi, I.J.; Kim, Y.-I.; Kim, J. The Associations of Dietary Iron Intake and the Transferrin Receptor (TFRC) rs9846149 Polymorphism with the Risk of Gastric Cancer: A Case–Control Study Conducted in Korea. Nutrients 2021, 13, 2600. https://doi.org/10.3390/nu13082600
Tran TT, Gunathilake M, Lee J, Choi IJ, Kim Y-I, Kim J. The Associations of Dietary Iron Intake and the Transferrin Receptor (TFRC) rs9846149 Polymorphism with the Risk of Gastric Cancer: A Case–Control Study Conducted in Korea. Nutrients. 2021; 13(8):2600. https://doi.org/10.3390/nu13082600
Chicago/Turabian StyleTran, Tao Thi, Madhawa Gunathilake, Jeonghee Lee, Il Ju Choi, Young-Il Kim, and Jeongseon Kim. 2021. "The Associations of Dietary Iron Intake and the Transferrin Receptor (TFRC) rs9846149 Polymorphism with the Risk of Gastric Cancer: A Case–Control Study Conducted in Korea" Nutrients 13, no. 8: 2600. https://doi.org/10.3390/nu13082600
APA StyleTran, T. T., Gunathilake, M., Lee, J., Choi, I. J., Kim, Y. -I., & Kim, J. (2021). The Associations of Dietary Iron Intake and the Transferrin Receptor (TFRC) rs9846149 Polymorphism with the Risk of Gastric Cancer: A Case–Control Study Conducted in Korea. Nutrients, 13(8), 2600. https://doi.org/10.3390/nu13082600