Osteopontin Levels in Human Milk Are Related to Maternal Nutrition and Infant Health and Growth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Study Protocol
2.3. Statistical Analysis
3. Results
3.1. Study Population
3.2. Maternal Energy and Macronutrient Intake
3.3. Osteopontin Levels in Relation to Maternal Factors
3.4. Osteopontin Levels in Relation to Maternal Energy and Macronutrient Intake
3.5. Osteopontin Levels in Relation to Anthropometric Measurements at 0–3 Months and Number of Hospital Admissions Related to Febrile Illness of the Infant
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walker, A. Breast Milk as the Gold Standard for Protective Nutrients. J. Pediatr. 2010, 156, S3–S7. [Google Scholar] [CrossRef]
- Tudehope, D.I. Human Milk and the Nutritional Needs of Preterm Infants. J. Pediatr. 2013, 162, S17–S25. [Google Scholar] [CrossRef]
- Bravi, F.; Wiens, F.; DeCarli, A.; Pont, A.D.; Agostoni, C.; Ferraroni, M. Impact of maternal nutrition on breast-milk composition: A systematic review. Am. J. Clin. Nutr. 2016, 104, 646–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujita, M.; Roth, E.; Lo, Y.-J.; Hurst, C.; Vollner, J.; Kendell, A. In poor families, mothers’ milk is richer for daughters than sons: A test of Trivers-Willard hypothesis in agropastoral settlements in Northern Kenya. Am. J. Phys. Anthropol. 2012, 149, 52–59. [Google Scholar] [CrossRef]
- Ballard, O.; Morrow, A.L. Human Milk Composition. Pediatr. Clin. N. Am. 2013, 60, 49–74. [Google Scholar] [CrossRef] [Green Version]
- Hanson, L.; Korotkova, M. The role of breastfeeding in prevention of neonatal infection. Semin. Neonatol. 2002, 7, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Bezirtzoglou, E.; Tsiotsias, A.; Welling, G.W. Microbiota profile in feces of breast- and formula-fed newborns by using fluorescence in situ hybridization (FISH). Anaerobe 2011, 17, 478–482. [Google Scholar] [CrossRef]
- Fasano, A. Another reason to favor exclusive breastfeeding: Microbiome resilience. J. Pediatr. 2018, 94, 224–225. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, J.; Reilly, J.J. Breastfeeding and lowering the risk of childhood obesity. Lancet 2002, 359, 2003–2004. [Google Scholar] [CrossRef]
- Stiemsma, L.T.; Michels, K.B. The Role of the Microbiome in the Developmental Origins of Health and Disease. Pediatrics 2018, 141, e20172437. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Park, H.; Ha, E.; Hong, Y.-C.; Ha, M.; Park, H.; Kim, B.-N.; Lee, B.; Lee, S.-J.; Lee, K.Y.; et al. Effect of Breastfeeding Duration on Cognitive Development in Infants: 3-Year Follow-up Study. J. Korean Med. Sci. 2016, 31, 579–584. [Google Scholar] [CrossRef] [Green Version]
- Lönnerdal, B. Infant formula and infant nutrition: Bioactive proteins of human milk and implications for composition of infant formulas. Am. J. Clin. Nutr. 2014, 99, 712S–717S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schack, L.; Lange, A.; Kelsen, J.; Agnholt, J.; Christensen, B.; Petersen, T.; Sørensen, E. Considerable variation in the concentration of osteopontin in human milk, bovine milk, and infant formulas. J. Dairy Sci. 2009, 92, 5378–5385. [Google Scholar] [CrossRef]
- Lönnerdal, B. Bioactive Proteins in Human Milk—Potential Benefits for Preterm Infants. Clin. Perinatol. 2017, 44, 179–191. [Google Scholar] [CrossRef]
- Field, C.J. The Immunological Components of Human Milk and Their Effect on Immune Development in Infants. J. Nutr. 2005, 135, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Blewett, H.; Cicalo, M.C.; Holland, C.D.; Field, C. The Immunological Components of Human Milk. Adv. Food Nutr. Res. 2008, 54, 45–80. [Google Scholar] [CrossRef]
- Demmelmair, H.; Prell, C.; Timby, N.; Lönnerdal, B. Benefits of Lactoferrin, Osteopontin and Milk Fat Globule Membranes for Infants. Nutrients 2017, 9, 817. [Google Scholar] [CrossRef] [Green Version]
- Kadkol, S.S.; Lin, A.Y.; Barak, V.; Kalickman, I.; Leach, L.; Valyi-Nagy, K.; Majumdar, D.; Setty, S.; Maniotis, A.J.; Folberg, R.; et al. Osteopontin Expression and Serum Levels in Metastatic Uveal Melanoma: A Pilot Study. Investig. Ophthalmology Vis. Sci. 2006, 47, 802–806. [Google Scholar] [CrossRef]
- Scatena, M.; Liaw, L.; Giachelli, C.M. Osteopontin. Arter. Thromb. Vasc. Biol. 2007, 27, 2302–2309. [Google Scholar] [CrossRef] [Green Version]
- Reza, S.; Shaukat, A.; Arain, T.M.; Riaz, Q.S.; Mahmud, M. Expression of Osteopontin in Patients with Thyroid Dysfunction. PLoS ONE 2013, 8, e56533. [Google Scholar] [CrossRef] [Green Version]
- Chatterton, D.; Rasmussen, J.; Heegaard, C.; Sørensen, E.S.; Petersen, T. In vitro digestion of novel milk protein ingredients for use in infant formulas: Research on biological functions. Trends Food Sci. Technol. 2004, 15, 373–383. [Google Scholar] [CrossRef]
- Donovan, S.M.; Monaco, M.H.; Drnevich, J.; Kvistgaard, A.S.; Hernell, O.; Lönnerdal, B. Bovine Osteopontin Modifies the Intestinal Transcriptome of Formula-Fed Infant Rhesus Monkeys to Be More Similar to Those That Were Breastfed. J. Nutr. 2014, 144, 1910–1919. [Google Scholar] [CrossRef] [Green Version]
- Goonatilleke, E.; Huang, J.; Xu, G.; Wu, L.; Smilowitz, J.T.; German, J.B.; Lebrilla, C.B. Human Milk Proteins and Their Glycosylation Exhibit Quantitative Dynamic Variations during Lactation. J. Nutr. 2019, 149, 1317–1325. [Google Scholar] [CrossRef] [PubMed]
- Lönnerdal, B.; Kvistgaard, A.S.; Peerson, J.M.; Donovan, S.M.; Peng, Y.-M. Growth, Nutrition, and Cytokine Response of Breast-fed Infants and Infants Fed Formula with Added Bovine Osteopontin. J. Pediatr. Gastroenterol. Nutr. 2016, 62, 650–657. [Google Scholar] [CrossRef]
- Kainonen, E.; Rautava, S.; Isolauri, E. Immunological programming by breast milk creates an anti-inflammatory cytokine milieu in breast-fed infants compared to formula-fed infants. Br. J. Nutr. 2012, 109, 1962–1970. [Google Scholar] [CrossRef] [Green Version]
- Jiang, R.; Lonnerdal, B. Biological roles of milk osteopontin. Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Eveleth, P.B. Physical Status: The Use and Interpretation of Anthropometry. Report of a WHO Expert Committee. Am. J. Hum. Biol. 1996, 8, 786–787. [Google Scholar] [CrossRef]
- Institute of Medicine (US) and National Research Council (US) Committee to Reexamine IOM Pregnancy Weight Guidelines. Weight Gain During Pregnancy: Reexamining the Guidelines; Rasmussen, K.M., Yaktine, A.L., Eds.; National Academies Press (US): Washington, DC, USA, 2009. [Google Scholar] [PubMed]
- Gunes, F.E.; Imeryuz, N.; Akalin, A.; Bekiroglu, N.; Alphan, E.; Oguz, A.; Dehghan, M. Development and validation of a semi-quantitative food frequency questionnaire to assess dietary intake in Turkish adults. J. Pak. Med. Assoc. 2015, 65, 756–763. [Google Scholar]
- Gordon, R.A. Applied Statistics for the Social and Health Sciences; Routledge: New York, NY, USA, 2012. [Google Scholar]
- Campbell, M.J.; Machin, D.; Walters, S.J. Medical Statistics: A textbook for the Health Sciences; John Wiley & Sons: Winchester, UK, 2010. [Google Scholar]
- Senger, D.R.; Perruzzi, C.A.; Papadopoulos, A.; Tenen, D. Purification of a human milk protein closely similar to tumor-secreted phosphoproteins and osteopontin. Biochim. Biophys. Acta Protein Struct. Mol. Enzym. 1989, 996, 43–48. [Google Scholar] [CrossRef]
- Sørensen, E.S.; Petersen, T.E. Purification and characterization of three proteins isolated from the proteose peptone fraction of bovine milk. J. Dairy Res. 1993, 60, 189–197. [Google Scholar] [CrossRef]
- Bruun, S.; Jacobsen, L.N.; Ze, X.; Husby, S.; Ueno, H.; Nojiri, K.; Kobayashi, S.; Kwon, J.; Liu, X.; Yan, S.; et al. Osteopontin Levels in Human Milk Vary Across Countries and Within Lactation Period: Data from a Multicenter Study. J. Pediatr. Gastroenterol. Nutr. 2018, 67, 250–256. [Google Scholar] [CrossRef]
- Ge, B.; Liu, H.; Liang, Q.; Shang, L.; Wang, T.; Ge, S. Oxytocin facilitates the proliferation, migration and osteogenic differentiation of human periodontal stem cells in vitro. Arch. Oral Biol. 2019, 99, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Nissen, E.; Uvnäs-Moberg, K.; Svensson, K.; Stock, S.; Widström, A.-M.; Winberg, J. Different patterns of oxytocin, prolactin but not cortisol release during breastfeeding in women delivered by Caesarean section or by the vaginal route. Early Hum. Dev. 1996, 45, 103–118. [Google Scholar] [CrossRef]
- Dizdar, E.A.; Sari, F.N.; Degirmencioglu, H.; Canpolat, F.E.; Oguz, S.S.; Uras, N.; Dilmen, U. Effect of mode of delivery on macronutrient content of breast milk. J. Matern. Neonatal Med. 2013, 27, 1099–1102. [Google Scholar] [CrossRef]
- Hahn, W.-H.; Song, J.-H.; Song, S.; Kang, N.M. Do gender and birth height of infant affect calorie of human milk? An association study between human milk macronutrient and various birth factors. J. Matern. Neonatal Med. 2016, 30, 1608–1612. [Google Scholar] [CrossRef] [PubMed]
- Ortega, R.M.; López-Sobaler, A.M.; Quintas, M.E.; Martínez, R.M.; Andrés, P. The influence of smoking on vitamin C status during the third trimester of pregnancy and on vitamin C levels in maternal milk. J. Am. Coll. Nutr. 1998, 17, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Agostoni, C.; Marangoni, F.; Grandi, F.; Lammardo, A.M.; Giovannini, M.; Riva, E.; Galli, C. Earlier smoking habits are associated with higher serum lipids and lower milk fat and polyunsaturated fatty acid content in the first 6 months of lactation. Eur. J. Clin. Nutr. 2003, 57, 1466–1472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milnerowicz, H.; Chmarek, M. Influence of smoking on metallothionein level and other proteins binding essential metals in human milk. Acta Paediatr. 2007, 94, 402–406. [Google Scholar] [CrossRef]
- Bachour, P.; Yafawi, R.; Jaber, F.; Choueiri, E.; Abdel-Razzak, Z. Effects of Smoking, Mother’s Age, Body Mass Index, and Parity Number on Lipid, Protein, and Secretory Immunoglobulin A Concentrations of Human Milk. Breastfeed. Med. 2012, 7, 179–188. [Google Scholar] [CrossRef]
- Saha, K.; Garg, M.; Rao, K.N.; Thirupuram, S.; Gupta, M.M. Lymphocyte Subsets in Human Colostrum with Special Reference to that of Undernourished Mothers. J. Trop. Pediatr. 1987, 33, 329–332. [Google Scholar] [CrossRef]
- Yang, Z.; Jiang, R.; Chen, Q.; Wang, J.; Duan, Y.; Pang, X.; Jiang, S.; Bi, Y.; Zhang, H.; Lönnerdal, B.; et al. Concentration of Lactoferrin in Human Milk and Its Variation during Lactation in Different Chinese Populations. Nutrients 2018, 10, 1235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nayak, U.; Kanungo, S.; Zhang, D.; Colgate, E.R.; Carmolli, M.P.; Dey, A.; Alam, M.; Manna, B.; Nandy, R.K.; Kim, D.R.; et al. Influence of maternal and socioeconomic factors on breast milk fatty acid composition in urban, low-income families. Matern. Child Nutr. 2016, 13, e12423. [Google Scholar] [CrossRef]
- Kugananthan, S.; Gridneva, Z.; Lai, C.T.; Hepworth, A.R.; Mark, P.J.; Kakulas, F.; Geddes, D.T. Associations between Maternal Body Composition and Appetite Hormones and Macronutrients in Human Milk. Nutrients 2017, 9, 252. [Google Scholar] [CrossRef] [PubMed]
- Whitaker, K.M.; Marino, R.C.; Haapala, J.L.; Foster, L.; Smith, K.D.; Teague, A.M.; Jacobs, D.R.; Fontaine, P.L.; McGovern, P.M.; Schoenfuss, T.C.; et al. Associations of Maternal Weight Status Before, During, and After Pregnancy with Inflammatory Markers in Breast Milk. Obesity 2017, 25, 2092–2099. [Google Scholar] [CrossRef] [PubMed]
- Dewey, K.G.; Heinig, M.J.; Nommsen, L.A.; Lonnerdal, B. Maternal versus infant factors related to breast milk intake and residual milk volume: The DARLING study. Pediatrics 1991, 87, 829–837. [Google Scholar]
- Butte, N.F.; Garza, C.; Stuff, J.E.; Smith, E.O.; Nichols, B.L. Effect of maternal diet and body composition on lactational performance. Am. J. Clin. Nutr. 1984, 39, 296–306. [Google Scholar] [CrossRef] [PubMed]
- Michaelsen, K.F. Nutrition and Growth During Infancy the Copenhagen Cohort Study. Acta Paediatr. 1997, 86, 1–36. [Google Scholar] [CrossRef]
- Chang, S.J. Antimicrobial proteins of maternal and cord sera and human milk in relation to maternal nutritional status. Am. J. Clin. Nutr. 1990, 51, 183–187. [Google Scholar] [CrossRef]
- Miranda, R.; Saravia, N.G.; Ackerman, R.; Murphy, N.; Berman, S.; McMurray, D.N. Effect of maternal nutritional status on immunological substances in human colostrum and milk. Am. J. Clin. Nutr. 1983, 37, 632–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joung, S.; Fil, J.E.; Heckmann, A.B.; Kvistgaard, A.S.; Dilger, R.N. Early-Life Supplementation of Bovine Milk Osteopontin Supports Neurodevelopment and Influences Exploratory Behavior. Nutrients 2020, 12, 2206. [Google Scholar] [CrossRef]
- Jiang, R.; Prell, C.; Lönnerdal, B. Milk osteopontin promotes brain development by up-regulating osteopontin in the brain in early life. FASEB J. 2018, 33, 1681–1694. [Google Scholar] [CrossRef] [PubMed]
- Nagatomo, T.; Ohga, S.; Takada, H.; Nomura, A.; Hikino, S.; Imura, M.; Ohshima, K.; Hara, T. Microarray analysis of human milk cells: Persistent high expression of osteopontin during the lactation period. Clin. Exp. Immunol. 2004, 138, 47–53. [Google Scholar] [CrossRef] [PubMed]
- West, C.E.; Kvistgaard, A.S.; Peerson, J.M.; Donovan, S.M.; Peng, Y.-M.; Lönnerdal, B. Effects of osteopontin-enriched formula on lymphocyte subsets in the first 6 months of life: A randomized controlled trial. Pediatr. Res. 2017, 82, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Rittling, S.R.; Zetterberg, C.; Yagiz, K.; Skinner, S.; Suzuki, N.; Fujimura, A.; Sasaki, H. Protective role of osteopontin in endodontic infection. Immunology 2009, 129, 105–114. [Google Scholar] [CrossRef]
- Ashkar, S.; Weber, G.F.; Panoutsakopoulou, V.; Sanchirico, M.E.; Jansson, M.; Zawaideh, S.; Rittling, S.R.; Denhardt, D.T.; Glimcher, M.J.; Cantor, H. Eta-1 (Osteopontin): An Early Component of Type-1 (Cell-Mediated) Immunity. Science 2000, 287, 860–864. [Google Scholar] [CrossRef]
- Maeno, Y.; Nakazawa, S.; Yamamoto, N.; Shinzato, M.; Nagashima, S.; Tanaka, K.; Sasaki, J.; Rittling, S.R.; Denhardt, D.T.; Uede, T.; et al. Osteopontin Participates in Th1-Mediated Host Resistance against Nonlethal Malaria Parasite Plasmodium chabaudi chabaudi Infection in Mice. Infect. Immun. 2006, 74, 2423–2427. [Google Scholar] [CrossRef] [Green Version]
- Nau, G.J.; Liaw, L.; Chupp, G.L.; Berman, J.S.; Hogan, B.L.M.; Young, R.A. Attenuated Host Resistance against Mycobacterium bovis BCG Infection in Mice Lacking Osteopontin. Infect. Immun. 1999, 67, 4223–4230. [Google Scholar] [CrossRef] [Green Version]
- Toyonaga, T.; Nakase, H.; Ueno, S.; Matsuura, M.; Yoshino, T.; Honzawa, Y.; Itou, A.; Namba, K.; Minami, N.; Yamada, S.; et al. Osteopontin Deficiency Accelerates Spontaneous Colitis in Mice with Disrupted Gut Microbiota and Macrophage Phagocytic Activity. PLoS ONE 2015, 10, e0135552. [Google Scholar] [CrossRef]
BMI before Pregnancy, kg/m (WHO Classification) | Recommended Weight Gain (kg) | |
---|---|---|
Underweight | <18.5 | 13–18 |
Optimal | 18.5–24.9 | 11–16 |
Overweight | 25.0–29.9 | 7–11 |
Obese | ≥30.0 | 5–9 |
General Characteristics | n (%) | OPN, mg/L (Mean ± SD) | p1 | p2 |
---|---|---|---|---|
n | 85 (100.0) | 137.1 ± 56.8 | ||
Age groups | ||||
19–24 years | 20 (23.5) | 137.8 ± 65.8 | - | 0.334 |
25–29 years | 22 (25.9) | 141.4 ± 53.8 | ||
30–34 years | 17 (20.0) | 153.6 ± 49.3 | ||
35–39 years | 26 (30.6) | 121.9 ± 55.9 | ||
Age, mean± sd | 30.2 ± 6.0 | |||
Birth method | ||||
Cervical vaginal route | 52 (61.2) | 160.6 ± 48.8 | <0.001 ** | - |
Cesarean section | 33 (38.8) | 99.9 ± 48.5 | ||
BMI (kg/m2) classification | ||||
Pre-pregnancy | ||||
<18.5 (underweight) | 5 (5.9) | 140.6 ± 37.9 | - | 0.108 |
18.5–24.9 (optimal) | 51 (60.0) | 143.6 ± 53.6 | ||
25.0–29.9 (overweight) | 21 (24.7) | 111.9 ± 56.8 | ||
≥30 (obese) | 8 (9.4) | 159.1 ± 73.5 | ||
BMI, mean± sd | 23.6 ± 3.3 | |||
Postpartum/Lactation (3rd month) | ||||
<18.5 (underweight) | - | - | - | <0.001 ** |
18.5–24.9 (optimal) | 39 (45.9) | 156.4 ± 46.2 a | ||
25.0–29.9 (overweight) | 31 (36.5) | 140.8 ± 61.2 a | ||
≥30 (obese) | 15 (17.6) | 78.9 ± 28.8 b | ||
BMI, mean± sd | 25.8 ± 3.8 | |||
Weight gain during pregnancy | ||||
Insufficient | 20 (23.5) | 158.2 ± 40.3 a | - | 0.020 * |
Adequate | 24 (28.) | 149.0 ± 60.4 a | ||
Excessive | 41 (48.2) | 119.8 ± 57.4 b | ||
Smoking status | ||||
Pre-pregnancy | ||||
Yes | 34 (40.0) | 102.0 ± 41.4 | <0.001 ** | - |
No | 51 (60.0) | 160.4 ± 53.8 | ||
Pregnancy | ||||
Yes | 14 (16.5) | 103.1 ± 50.6 | 0.013 * | - |
No | 71 (83.5) | 143.8 ± 55.9 | ||
Postpartum/Lactation | ||||
Yes | 13 (15.3) | 98.3 ± 49.2 | 0.007 * | - |
No | 72 (84.7) | 144.1 ± 55.5 |
Energy and Macronutrients | OPN (mg/L) | |||
---|---|---|---|---|
Mean ± SD | r | p1 | p 2 | |
Energy (kcal) | 2951.0 ± 541.4 | −0.406 | <0.001 ** | - |
Protein (g) | 98.1 ± 20.4 | −0.154 | 0.159 | - |
Protein (% of total energy) | 13.7 ± 2.2 | 0.204 | - | 0.062 |
Vegetable/plant protein (g) | 45.4 ± 10.0 | −0.272 | 0.012 * | - |
Fat (g) | 123.1 ± 28.6 | −0.255 | 0.019 * | - |
Fat (% of total energy) | 37.2 ± 5.2 | 0.013 | - | 0.907 |
Saturated fat (g) | 41.3 ± 12.2 | −0.158 | 0.148 | - |
Saturated fat (% of total energy) | 12.5 ± 2.6 | 0.111 | - | 0.314 |
MUFAs (g) | 49.4 ± 13.8 | −0.140 | 0.201 | - |
MUFAs (% of total energy) | 15.2 ± 3.6 | 0.123 | - | 0.262 |
PUFAs (g) | 23.4 ± 9.3 | −0.268 | 0.013 * | - |
PUFAs (% of total energy) | 7.1 ± 2.4 | −0.155 | - | 0.156 |
Omega−3 fatty acids (g) | 2.3 ± 1.2 | −0.143 | - | 0.191 |
Omega-6 fatty acids (g) | 20.8 ± 8.2 | −0.301 | - | <0.001 ** |
Cholesterol (mg) | 426.1 ± 167.3 | −0.011 | - | 0.923 |
Carbohydrates (g) | 354.2 ± 81.8 | −0.338 | <0.001 ** | - |
Carbohydrates (% of total energy) | 49.1 ± 5.9 | −0.101 | 0.356 * | - |
Fiber (g) | 32.2 ± 8.1 | −0.262 | 0.015 | - |
Soluble fiber (g) | 10.3 ± 3.0 | −0.187 | 0.087 | - |
Insoluble fiber (g) | 21.4 ± 5.7 | −0.292 | <0.001 ** | - |
Maternal Characteristic | n | Osteopontin Level (mg/L) | p 1 | ||||
---|---|---|---|---|---|---|---|
Mean | Sd | Min | Max | ||||
Age (Years) | Birth Method (Last Pregnancy) | ||||||
19–24 | Cervical vaginal route | 13 | 163.7 | 55.0 | 83.0 | 266.7 | <0.001 ** |
Caesarean section | 7 | 76.6 | 30.4 | 39.2 | 114.8 | ||
25–29 | Cervical vaginal route | 14 | 147.3 | 45.5 | 83.8 | 215.9 | 0.044 * |
Caesarean section | 8 | 121.1 | 68.2 | 36.2 | 258.0 | ||
30–34 | Cervical vaginal route | 11 | 172.5 | 49.7 | 72.3 | 239.3 | 0.010 * |
Caesarean section | 6 | 119.0 | 24.7 | 90.5 | 148.2 | ||
35–39 | Cervical vaginal route | 14 | 155.1 | 46.0 | 74.6 | 222.3 | <0.001 ** |
Caesarean section | 12 | 83.1 | 39.3 | 40.8 | 149.0 |
Characteristics of the Infants | OPN (mg/L) | |||
---|---|---|---|---|
Mean ± SD | r | p 1 | p 2 | |
Body weight (g) | ||||
At birth | 3266.2 ± 351.1 | −0.70 | - | 0.523 |
1st month | 4452.9 ± 450.0 | 0.442 | <0.001 ** | - |
3rd month | 6297.9 ± 499.5 | 0.501 | <0.001 ** | - |
Length (cm) | ||||
At birth | 49.7 ± 1.9 | 0.185 | - | 0.090 |
1st month | 54.5 ±1.5 | 0.284 | <0.001 ** | - |
3rd month | 62.8 ± 2.9 | 0.450 | <0.001 ** | - |
Head circumference (cm) | ||||
At birth | 34.4 ± 0.9 | 0.148 | - | 0.177 |
1st month | 37.1 ± 1.1 | 0.392 | <0.001 ** | - |
3rd month | 41.0 ± 1.1 | 0.498 | <0.001 ** | - |
Hospital admissions due to fever (n), 0–3 months | 1.0 ± 1.7 | −0.599 | <0.001 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aksan, A.; Erdal, I.; Yalcin, S.S.; Stein, J.; Samur, G. Osteopontin Levels in Human Milk Are Related to Maternal Nutrition and Infant Health and Growth. Nutrients 2021, 13, 2670. https://doi.org/10.3390/nu13082670
Aksan A, Erdal I, Yalcin SS, Stein J, Samur G. Osteopontin Levels in Human Milk Are Related to Maternal Nutrition and Infant Health and Growth. Nutrients. 2021; 13(8):2670. https://doi.org/10.3390/nu13082670
Chicago/Turabian StyleAksan, Aysegül, Izzet Erdal, Siddika Songül Yalcin, Jürgen Stein, and Gülhan Samur. 2021. "Osteopontin Levels in Human Milk Are Related to Maternal Nutrition and Infant Health and Growth" Nutrients 13, no. 8: 2670. https://doi.org/10.3390/nu13082670