Associations between Fasting Duration, Timing of First and Last Meal, and Cardiometabolic Endpoints in the National Health and Nutrition Examination Survey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Outcome Assessment
2.3. Exposure Assessment
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahluwalia, N.; Andreeva, V.A.; Kesse-Guyot, E.; Hercberg, S. Dietary patterns, inflammation and the metabolic syndrome. Diabetes Metab. 2013, 39, 99–110. [Google Scholar] [CrossRef]
- Ruiz-Canela, M.; Bes-Rastrollo, M.; Martinez-Gonzalez, M.A. The Role of Dietary Inflammatory Index in Cardiovascular Disease, Metabolic Syndrome and Mortality. Int. J. Mol. Sci. 2016, 17, 1256. [Google Scholar] [CrossRef]
- Nettleton, J.A.; Hivert, M.F.; Lemaitre, R.N.; McKeown, N.M.; Mozaffarian, D.; Tanaka, T.; Wojczynski, M.K.; Hruby, A.; Djousse, L.; Ngwa, J.S.; et al. Meta-analysis investigating associations between healthy diet and fasting glucose and insulin levels and modification by loci associated with glucose homeostasis in data from 15 cohorts. Am. J. Epidemiol. 2013, 177, 103–115. [Google Scholar] [CrossRef] [Green Version]
- Mensah, G.A.; Brown, A.G.M.; Pratt, C.A. Nutrition Disparities and Cardiovascular Health. Curr. Atheroscler. Rep. 2020, 22, 15. [Google Scholar] [CrossRef] [PubMed]
- Wing, R.R.; Phelan, S. Long-term weight loss maintenance. Am. J. Clin. Nutr. 2005, 82, 222S–225S. [Google Scholar] [CrossRef]
- Wing, R.R.; Hill, J.O. Successful weight loss maintenance. Annu. Rev. Nutr. 2001, 21, 323–341. [Google Scholar] [CrossRef]
- Hales, C.M.; Fryar, C.D.; Carroll, M.D.; Freedman, D.S.; Ogden, C.L. Trends in Obesity and Severe Obesity Prevalence in US Youth and Adults by Sex and Age, 2007–2008 to 2015–2016. JAMA 2018, 319, 1723–1725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gruss, S.M.; Nhim, K.; Gregg, E.; Bell, M.; Luman, E.; Albright, A. Public Health Approaches to Type 2 Diabetes Prevention: The US National Diabetes Prevention Program and Beyond. Curr. Diabetes Rep. 2019, 19, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- USDA. HEI Scores for Americans. Available online: https://www.fns.usda.gov/hei-scores-americans (accessed on 17 May 2021).
- Bowen, D.J.; Beresford, S.A. Dietary interventions to prevent disease. Annu. Rev. Public Health 2002, 23, 255–286. [Google Scholar] [CrossRef] [PubMed]
- Artinian, N.T.; Fletcher, G.F.; Mozaffarian, D.; Kris-Etherton, P.; Van Horn, L.; Lichtenstein, A.H.; Kumanyika, S.; Kraus, W.E.; Fleg, J.L.; Redeker, N.S. Interventions to promote physical activity and dietary lifestyle changes for cardiovascular risk factor reduction in adults. A scientific statement from the American Heart Association. Circulation 2010, 122, 406–441. [Google Scholar] [CrossRef]
- Rolls, B.J.; Ello-Martin, J.A.; Tohill, B.C. What can intervention studies tell us about the relationship between fruit and vegetable consumption and weight management? Nutr. Rev. 2004, 62, 1–17. [Google Scholar] [CrossRef]
- Most, J.; Tosti, V.; Redman, L.M.; Fontana, L. Calorie restriction in humans: An update. Ageing Res. Rev. 2017, 39, 36–45. [Google Scholar] [CrossRef]
- Curioni, C.; Lourenco, P. Long-term weight loss after diet and exercise: A systematic review. Int. J. Obes. 2005, 29, 1168. [Google Scholar] [CrossRef] [Green Version]
- Wadden, T.A. Treatment of obesity by moderate and severe caloric restriction: Results of clinical research trials. Ann. Intern. Med. 1993, 119, 688–693. [Google Scholar] [CrossRef]
- Sumithran, P.; Prendergast, L.A.; Delbridge, E.; Purcell, K.; Shulkes, A.; Kriketos, A.; Proietto, J. Long-term persistence of hormonal adaptations to weight loss. N. Engl. J. Med. 2011, 365, 1597–1604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaput, J.P.; Drapeau, V.; Hetherington, M.; Lemieux, S.; Provencher, V.; Tremblay, A. Psychobiological effects observed in obese men experiencing body weight loss plateau. Depress. Anxiety 2007, 24, 518–521. [Google Scholar] [CrossRef] [PubMed]
- Doucet, E.; Imbeault, P.; St-Pierre, S.; Almeras, N.; Mauriege, P.; Richard, D.; Tremblay, A. Appetite after weight loss by energy restriction and a low-fat diet-exercise follow-up. Int. J. Obes. Relat. Metab. Disord. J. Int. Assoc. Study Obes. 2000, 24, 906–914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patterson, R.E.; Sears, D.D. Metabolic Effects of Intermittent Fasting. Annu. Rev. Nutr. 2017, 37, 371–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arble, D.M.; Bass, J.; Laposky, A.D.; Vitaterna, M.H.; Turek, F.W. Circadian timing of food intake contributes to weight gain. Obesity 2009, 17, 2100–2102. [Google Scholar] [CrossRef]
- Turek, F.W.; Joshu, C.; Kohsaka, A.; Lin, E.; Ivanova, G.; McDearmon, E.; Laposky, A.; Losee-Olson, S.; Easton, A.; Jensen, D.R. Obesity and metabolic syndrome in circadian Clock mutant mice. Science 2005, 308, 1043–1045. [Google Scholar] [CrossRef] [Green Version]
- Kohsaka, A.; Laposky, A.D.; Ramsey, K.M.; Estrada, C.; Joshu, C.; Kobayashi, Y.; Turek, F.W.; Bass, J. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab. 2007, 6, 414–421. [Google Scholar] [CrossRef] [Green Version]
- de Cabo, R.; Mattson, M.P. Effects of Intermittent Fasting on Health, Aging, and Disease. N. Engl. J. Med. 2019, 381, 2541–2551. [Google Scholar] [CrossRef]
- Crupi, A.N.; Haase, J.; Brandhorst, S.; Longo, V.D. Periodic and Intermittent Fasting in Diabetes and Cardiovascular Disease. Curr. Diabetes Rep. 2020, 20, 83. [Google Scholar] [CrossRef]
- Fanti, M.; Mishra, A.; Longo, V.D.; Brandhorst, S. Time-Restricted Eating, Intermittent Fasting, and Fasting-Mimicking Diets in Weight Loss. Curr. Obes. Rep. 2021, 10, 70–80. [Google Scholar] [CrossRef]
- Pellegrini, M.; Cioffi, I.; Evangelista, A.; Ponzo, V.; Goitre, I.; Ciccone, G.; Ghigo, E.; Bo, S. Effects of time-restricted feeding on body weight and metabolism. A systematic review and meta-analysis. Rev. Endocr. Metab. Disord. 2020, 21, 17–33. [Google Scholar] [CrossRef] [PubMed]
- Harder-Lauridsen, N.M.; Rosenberg, A.; Benatti, F.B.; Damm, J.A.; Thomsen, C.; Mortensen, E.L.; Pedersen, B.K.; Krogh-Madsen, R. Ramadan model of intermittent fasting for 28 d had no major effect on body composition, glucose metabolism, or cognitive functions in healthy lean men. Nutrition 2017, 37, 92–103. [Google Scholar] [CrossRef] [PubMed]
- Aliasghari, F.; Izadi, A.; Gargari, B.P.; Ebrahimi, S. The Effects of Ramadan Fasting on Body Composition, Blood Pressure, Glucose Metabolism, and Markers of Inflammation in NAFLD Patients: An Observational Trial. J. Am. Coll. Nutr. 2017, 36, 640–645. [Google Scholar] [CrossRef] [PubMed]
- Morgan, L.M.; Aspostolakou, F.; Wright, J.; Gama, R. Diurnal variations in peripheral insulin resistance and plasma non-esterified fatty acid concentrations: A possible link? Ann. Clin. Biochem. 1999, 36, 447–450. [Google Scholar] [CrossRef]
- Saad, A.; Dalla Man, C.; Nandy, D.K.; Levine, J.A.; Bharucha, A.E.; Rizza, R.A.; Basu, R.; Carter, R.E.; Cobelli, C.; Kudva, Y.C.; et al. Diurnal pattern to insulin secretion and insulin action in healthy individuals. Diabetes 2012, 61, 2691–2700. [Google Scholar] [CrossRef] [Green Version]
- Marinac, C.R.; Nelson, S.H.; Breen, C.I.; Hartman, S.J.; Natarajan, L.; Pierce, J.P.; Flatt, S.W.; Sears, D.D.; Patterson, R.E. Prolonged Nightly Fasting and Breast Cancer Prognosis. JAMA Oncol. 2016, 2, 1049–1055. [Google Scholar] [CrossRef]
- Mindikoglu, A.L.; Abdulsada, M.M.; Jain, A.; Choi, J.M.; Jalal, P.K.; Devaraj, S.; Mezzari, M.P.; Petrosino, J.F.; Opekun, A.R.; Jung, S.Y. Intermittent fasting from dawn to sunset for 30 consecutive days is associated with anticancer proteomic signature and upregulates key regulatory proteins of glucose and lipid metabolism, circadian clock, DNA repair, cytoskeleton remodeling, immune system and cognitive function in healthy subjects. J. Proteom. 2020, 217, 103645. [Google Scholar] [CrossRef]
- McAllister, M.J.; Pigg, B.L.; Renteria, L.I.; Waldman, H.S. Time-restricted feeding improves markers of cardiometabolic health in physically active college-age men: A 4-week randomized pre-post pilot study. Nutr. Res. 2020, 75, 32–43. [Google Scholar] [CrossRef]
- Wilkinson, M.J.; Manoogian, E.N.C.; Zadourian, A.; Lo, H.; Fakhouri, S.; Shoghi, A.; Wang, X.; Fleischer, J.G.; Navlakha, S.; Panda, S.; et al. Ten-Hour Time-Restricted Eating Reduces Weight, Blood Pressure, and Atherogenic Lipids in Patients with Metabolic Syndrome. Cell Metab. 2020, 31, 92–104. [Google Scholar] [CrossRef] [PubMed]
- Stekovic, S.; Hofer, S.J.; Tripolt, N.; Aon, M.A.; Royer, P.; Pein, L.; Stadler, J.T.; Pendl, T.; Prietl, B.; Url, J.; et al. Alternate Day Fasting Improves Physiological and Molecular Markers of Aging in Healthy, Non-obese Humans. Cell Metab. 2020, 31, 878–881. [Google Scholar] [CrossRef] [PubMed]
- Welton, S.; Minty, R.; O’Driscoll, T.; Willms, H.; Poirier, D.; Madden, S.; Kelly, L. Intermittent fasting and weight loss: Systematic review. Can. Fam. Physician 2020, 66, 117–125. [Google Scholar]
- O’Connor, S.G.; Boyd, P.; Bailey, C.P.; Shams-White, M.M.; Agurs-Collins, T.; Hall, K.; Reedy, J.; Sauter, E.R.; Czajkowski, S.M. Perspective: Time-Restricted Eating Compared with Caloric Restriction: Potential Facilitators and Barriers of Long-Term Weight Loss Maintenance. Adv. Nutr. 2021. [Google Scholar] [CrossRef]
- Gill, S.; Panda, S. A Smartphone App Reveals Erratic Diurnal Eating Patterns in Humans that Can Be Modulated for Health Benefits. Cell Metab. 2015, 22, 789–798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rynders, C.A.; Thomas, E.A.; Zaman, A.; Pan, Z.; Catenacci, V.A.; Melanson, E.L. Effectiveness of Intermittent Fasting and Time-Restricted Feeding Compared to Continuous Energy Restriction for Weight Loss. Nutrients 2019, 11, 2442. [Google Scholar] [CrossRef] [Green Version]
- Templeman, I.; Smith, H.A.; Chowdhury, E.; Chen, Y.C.; Carroll, H.; Johnson-Bonson, D.; Hengist, A.; Smith, R.; Creighton, J.; Clayton, D.; et al. A randomized controlled trial to isolate the effects of fasting and energy restriction on weight loss and metabolic health in lean adults. Sci. Transl. Med. 2021, 13. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. National Health and Nutrition Examinations Survey Data; National Center for Health Statistics: Hyattsville, MD, USA, 2018. [Google Scholar]
- Moon, J.H.; Koo, B.K.; Moon, M.K. Optimal high-density lipoprotein cholesterol cutoff for predicting cardiovascular disease: Comparison of the Korean and US National Health and Nutrition Examination Surveys. J. Clin. Lipidol. 2015, 9, 334–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nantsupawat, N.; Booncharoen, A.; Wisetborisut, A.; Jiraporncharoen, W.; Pinyopornpanish, K.; Chutarattanakul, L.; Angkurawaranon, C. Appropriate Total cholesterol cut-offs for detection of abnormal LDL cholesterol and non-HDL cholesterol among low cardiovascular risk population. Lipids Health Dis. 2019, 18, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salazar, J.; Martinez, M.S.; Chavez, M.; Toledo, A.; Anez, R.; Torres, Y.; Apruzzese, V.; Silva, C.; Rojas, J.; Bermudez, V. C-reactive protein: Clinical and epidemiological perspectives. Cardiol. Res. Pract. 2014, 2014, 605810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Expert, C. International Expert Committee report on the role of the A1C assay in the diagnosis of diabetes. Diabetes Care 2009, 32, 1327–1334. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Choi, S.; Kim, H.J.; Chung, Y.S.; Lee, K.W.; Lee, H.C.; Huh, K.B.; Kim, D.J. Cutoff values of surrogate measures of insulin resistance for metabolic syndrome in Korean non-diabetic adults. J. Korean Med. Sci. 2006, 21, 695–700. [Google Scholar] [CrossRef]
- Moebus, S.; Gores, L.; Losch, C.; Jockel, K.H. Impact of time since last caloric intake on blood glucose levels. Eur. J. Epidemiol. 2011, 26, 719–728. [Google Scholar] [CrossRef] [Green Version]
- Hebert, J.R.; Shivappa, N.; Wirth, M.D.; Hussey, J.R.; Hurley, T.G. Perspective: The Dietary Inflammatory Index (DII)-Lessons Learned, Improvements Made, and Future Directions. Adv. Nutr. 2019, 10, 185–195. [Google Scholar] [CrossRef]
- Kant, A.K. Eating patterns of US adults: Meals, snacks, and time of eating. Physiol. Behav. 2018, 193, 270–278. [Google Scholar] [CrossRef]
- Marinac, C.R.; Sears, D.D.; Natarajan, L.; Gallo, L.C.; Breen, C.I.; Patterson, R.E. Frequency and Circadian Timing of Eating May Influence Biomarkers of Inflammation and Insulin Resistance Associated with Breast Cancer Risk. PLoS ONE 2015, 10, e0136240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faris, M.A.; Kacimi, S.; Al-Kurd, R.A.; Fararjeh, M.A.; Bustanji, Y.K.; Mohammad, M.K.; Salem, M.L. Intermittent fasting during Ramadan attenuates proinflammatory cytokines and immune cells in healthy subjects. Nutr. Res. 2012, 32, 947–955. [Google Scholar] [CrossRef] [PubMed]
- Jamshed, H.; Beyl, R.A.; Della Manna, D.L.; Yang, E.S.; Ravussin, E.; Peterson, C.M. Early Time-Restricted Feeding Improves 24-Hour Glucose Levels and Affects Markers of the Circadian Clock, Aging, and Autophagy in Humans. Nutrients 2019, 11, 1234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Titan, S.M.; Bingham, S.; Welch, A.; Luben, R.; Oakes, S.; Day, N.; Khaw, K.T. Frequency of eating and concentrations of serum cholesterol in the Norfolk population of the European prospective investigation into cancer (EPIC-Norfolk): Cross sectional study. BMJ 2001, 323, 1286–1288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guinter, M.A.; Campbell, P.T.; Patel, A.V.; McCullough, M.L. Irregularity in breakfast consumption and daily meal timing patterns in association with body weight status and inflammation. Br. J. Nutr. 2019, 122, 1192–1200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, S.; Cui, L.; Zhang, X.; Shu, R.; VanEvery, H.; Tucker, K.L.; Wu, S.; Gao, X. Habitually skipping breakfast was associated with chronic inflammation: A cross-sectional study. Public Health Nutr. 2020, 1–8. [Google Scholar] [CrossRef]
- Maki, K.C.; Phillips-Eakley, A.K.; Smith, K.N. The Effects of Breakfast Consumption and Composition on Metabolic Wellness with a Focus on Carbohydrate Metabolism. Adv. Nutr. 2016, 7, 613S–621S. [Google Scholar] [CrossRef]
- Sutton, E.F.; Beyl, R.; Early, K.S.; Cefalu, W.T.; Ravussin, E.; Peterson, C.M. Early Time-Restricted Feeding Improves Insulin Sensitivity, Blood Pressure, and Oxidative Stress Even without Weight Loss in Men with Prediabetes. Cell Metab. 2018, 27, 1212–1221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonnier, T.; Rood, J.; Gimble, J.M.; Peterson, C.M. Glycemic control is impaired in the evening in prediabetes through multiple diurnal rhythms. J. Diabetes Complicat. 2014, 28, 836–843. [Google Scholar] [CrossRef] [PubMed]
- Stafeev, I.S.; Vorotnikov, A.V.; Ratner, E.I.; Menshikov, M.Y.; Parfyonova, Y.V. Latent Inflammation and Insulin Resistance in Adipose Tissue. Int. J. Endocrinol. 2017, 2017, 5076732. [Google Scholar] [CrossRef]
Characteristics | Quartiles of Fasting Duration | |||
---|---|---|---|---|
Quartile 1 | Quartile 2 | Quartile 3 | Quartile 4 | |
Median of fasting duration (h) | 9.75 | 11.5 | 12.88 | 15 |
Range of fasting duration (h) | <10.75 | 10.75–12.16 | 12.17–13.75 | ≥13.75 |
Smoking status (%) | ||||
Never | 48 | 55 | 60 | 58 |
Former | 27 | 26 | 24 | 20 |
Current | 25 | 19 | 16 | 22 |
Marital status (%) | ||||
Married/living with partner | 67 | 68 | 65 | 55 |
Widow, divorced, separated | 19 | 18 | 17 | 19 |
Single | 14 | 15 | 18 | 26 |
Race (%) | ||||
Mexican American | 6 | 8 | 9 | 11 |
Non-Hispanic white | 74 | 72 | 67 | 57 |
Non-Hispanic black | 9 | 9 | 11 | 17 |
Other | 11 | 12 | 13 | 14 |
Alcohol drinker (Yes, %) | 32 | 30 | 26 | 23 |
Cholesterol medication (Yes, %) | 17 | 17 | 18 | 14 |
Gender (Female, %) | 44 | 52 | 57 | 55 |
Age (years), mean (SE) | 48.3 (0.30) | 47.7 (0.28) | 47.8 (0.39) | 43.9 (0.38) |
BMI (kg/m2), mean (SE) | 28.5 (0.12) | 28.8 (0.12) | 28.9 (0.11) | 29.4 (0.13) |
Sleep duration (h), mean (SE) | 6.8 (0.02) | 7.1 (0.02) | 7.2 (0.02) | 7.2 (0.02) |
Energy intake (kcal), mean (SE) | 2433 (19) | 2243 (14) | 2062 (13) | 1897 (17) |
DII, mean (SE) | 0.41 (0.04) | 0.28 (0.04) | 0.34 (0.04) | 0.73 (0.03) |
Biomarker | Quartiles of Fasting Duration | Per 1 h β ± SE | Cont. p-Value | |||
---|---|---|---|---|---|---|
Quartile 1 | Quartile 2 | Quartile 3 | Quartile 4 | |||
CRP, mg/dL | 2.69 (0.08) | 2.89 (0.09) * | 2.94 (0.09) * | 3.01 (0.07) * | 0.030 (0.013) | 0.02 |
Hb1Ac, % | 5.85 (0.02) | 5.86 (0.02) | 5.89 (0.02) | 5.85 (0.02) | −0.003 (0.003) | 0.28 |
Insulin, uU/mL | 12.2 (0.50) | 13.0 (0.39) * | 13.5 (0.42) * | 14.2 (0.38) * | 0.287 (0.057) | <0.01 |
Glucose, mg/dL | 111.0 (0.90) | 110.9 (0.73) | 111.9 (0.75) | 112.6 (0.91) | 0.191 (0.147) | 0.20 |
HDL, mg/dL | 54.3 (0.28) | 53.8 (0.31) | 53.7 (0.29) * | 53.6 (0.31) * | −0.103 (0.046) | 0.03 |
LDL, mg/dL | 106.1 (1.06) | 106.0 (1.01) | 107.1 (1.19) | 106.8 (1.06) | 0.287 (0.158) | 0.07 |
Cholesterol, mg/dL | 186.9 (0.77) | 187.2 (0.87) | 188.9 (0.80) | 188.2 (0.74) | 0.243 (0.130) | 0.06 |
Biomarkers | Quartiles of Fasting Duration | ||||
---|---|---|---|---|---|
Quartile 1 | Quartile 2 | Quartile 3 | Quartile 4 | Per 1 h | |
CRP ≥ 3 mg/dL | 1.00 (Ref) | 1.17 (1.00, 1.36) | 1.20 (1.03, 1.40) | 1.21 (1.05, 1.40) | 1.01 (0.99, 1.04) |
Hb1Ac ≥ 6.5% | 1.00 (Ref) | 1.06 (0.88, 1.26) | 1.09 (0.93, 1.28) | 1.01 (0.85, 1.21) | 0.99 (0.97, 1.02) |
Insulin ≥ 10.57 uU/mL | 1.00 (Ref) | 1.51 (1.31, 1.73) | 1.62 (1.39, 1.89) | 1.65 (1.37, 1.99) | 1.07 (1.05, 1.10) |
Glucose ≥ 126 mg/dL | 1.00 (Ref) | 1.00 (0.75, 1.34) | 1.09 (0.87, 1.36) | 1.13 (0.88, 1.44) | 1.00 (0.97, 1.04) |
HDL ≤ 50 mg/dL | 1.00 (Ref) | 1.05 (0.95, 1.16) | 1.03 (0.94, 1.12) | 1.10 (1.00, 1.20) | 1.01 (1.00, 1.03) |
LDL ≥ 130 mg/dL | 1.00 (Ref) | 1.03 (0.91, 1.17) | 1.11 (0.97, 1.28) | 1.10 (0.95, 1.28) | 1.03 (1.00, 1.05) |
Cholesterol ≥ 210 mg/dL | 1.00 (Ref) | 0.97 (0.89, 1.07) | 1.07 (0.96, 1.19) | 1.05 (0.92, 1.18) | 1.01 (1.00, 1.03) |
Last Mealtime | ||||||
---|---|---|---|---|---|---|
Biomarker | Quartiles of Time of Last Meal | Per 1 h β ± SE | Cont. p-Value | |||
Quartile 1 | Quartile 2 | Quartile 3 | Quartile 4 | |||
CRP, mg/dL | 2.84 (0.08) | 2.86 (0.10) | 2.87 (0.08) | 2.89 (0.09) | −0.002 (0.022) | 0.94 |
Hb1Ac, % | 5.83 (0.02) | 5.85 (0.02) | 5.87 (0.02) | 5.87 (0.02) * | 0.009 (0.005) | 0.05 |
Insulin, uU/mL | 12.5 (0.46) | 13.3 (0.52) * | 13.7 (0.36) * | 13.4 (0.39) * | 0.040 (0.082) | 0.63 |
Glucose, mg/dL | 110.9 (0.85) | 110.8 (0.81) | 112.2 (0.81) | 112.1(0.88) | 0.371 (0.223) | 0.10 |
HDL, mg/dL | 53.9 (0.35) | 54.3 (0.33) | 53.9 (0.32) | 53.7 (0.31) | −0.104 (0.070) | 0.14 |
LDL, mg/dL | 108.2 (1.48) | 107.0 (1.45) | 107.2 (1.01) | 104.1 (1.12) * | −0.873 (0.306) | 0.01 |
Cholesterol, mg/dL | 188.5 (0.96) | 188.0 (0.86) | 188.2 (0.74) | 186.4 (0.75) * | −0.378 (0.224) | 0.10 |
First Mealtime | ||||||
Biomarker | Quartiles of Time of First Meal | Per 1 h β ± SE | Cont. p-Value | |||
Quartile 1 | Quartile 2 | Quartile 3 | Quartile 4 | |||
CRP, mg/dL | 2.72 (0.09) | 2.86 (0.10) | 2.95 (0.08) * | 2.96 (0.09) * | 0.044 (0.017) | 0.01 |
Hb1Ac, % | 5.84 (0.02) | 5.82 (0.02) | 5.87 (0.02) * | 5.90 (0.02) * | 0.007 (0.004) | 0.06 |
Insulin, uU/mL | 11.9 (0.51) | 12.7 (0.46) * | 13.2 (0.43) * | 14.8 (0.35) * | 0.429 (0.105) | <0.01 |
Glucose, mg/dL | 109.7 (0.84) | 109.7 (0.82) | 111.9 (0.71) * | 114.5 (1.16) * | 0.662 (0.185) | <0.01 |
HDL, mg/dL | 54.7 (0.30) | 54.4 (0.38) | 53.1 (0.29) * | 53.1 (0.34) * | −0.377 (0.073) | <0.01 |
LDL, mg/dL | 106.3 (0.91) | 106.7 (1.12) | 107.3 (1.26) | 104.6 (1.18) | −0.361 (0.209) | 0.09 |
Cholesterol, mg/dL | 187.0 (0.67) | 188.9 (0.82) * | 187.3 (0.87) | 185.9 (0.80) | −0.302 (0.154) | 0.05 |
Quartiles of First Mealtime | Quartiles of Fasting Duration | Interaction p-Value | |
---|---|---|---|
Quartile 1 | Quartile 4 | ||
CRP, mg/dL | 0.10 | ||
Quartile 1 | 2.60 (0.10) | 3.43 (0.35) | |
Quartile 4 | 2.65 (0.21) | 3.08 (0.09) | |
Hb1Ac, % | 0.04 | ||
Quartile 1 | 5.86 (0.02) | 5.80 (0.08) | |
Quartile 4 | 5.87 (0.05) | 5.89 (0.02) | |
Insulin, uU/mL | 0.72 | ||
Quartile 1 | 11.9 (0.64) | 10.4 (0.74) | |
Quartile 4 | 14.0 (1.19) | 14.7 (0.4) * | |
Glucose, mg/dL | 0.92 | ||
Quartile 1 | 110.3 (1.11) | 108.57 (2.6) | |
Quartile 4 | 113.6 (2.86) | 114.1 (1.41) * | |
HDL, mg/dL | 0.19 | ||
Quartile 1 | 54.9 (0.34) | 52.5 (1.21) | |
Quartile 4 | 52.3 (1.03) * | 53.2 (0.04) | |
LDL, mg/dL | 0.66 | ||
Quartile 1 | 106.3 (1.10) | 110.7 (4.50) | |
Quartile 4 | 102.4 (3.65) | 105.3 (1.26) | |
Cholesterol, mg/dL | 0.48 | ||
Quartile 1 | 186.9 (0.78) | 188.8 (3.36) | |
Quartile 4 | 181.9 (2.25) * | 186.0 (0.93) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wirth, M.D.; Zhao, L.; Turner-McGrievy, G.M.; Ortaglia, A. Associations between Fasting Duration, Timing of First and Last Meal, and Cardiometabolic Endpoints in the National Health and Nutrition Examination Survey. Nutrients 2021, 13, 2686. https://doi.org/10.3390/nu13082686
Wirth MD, Zhao L, Turner-McGrievy GM, Ortaglia A. Associations between Fasting Duration, Timing of First and Last Meal, and Cardiometabolic Endpoints in the National Health and Nutrition Examination Survey. Nutrients. 2021; 13(8):2686. https://doi.org/10.3390/nu13082686
Chicago/Turabian StyleWirth, Michael D., Longgang Zhao, Gabrielle M. Turner-McGrievy, and Andrew Ortaglia. 2021. "Associations between Fasting Duration, Timing of First and Last Meal, and Cardiometabolic Endpoints in the National Health and Nutrition Examination Survey" Nutrients 13, no. 8: 2686. https://doi.org/10.3390/nu13082686
APA StyleWirth, M. D., Zhao, L., Turner-McGrievy, G. M., & Ortaglia, A. (2021). Associations between Fasting Duration, Timing of First and Last Meal, and Cardiometabolic Endpoints in the National Health and Nutrition Examination Survey. Nutrients, 13(8), 2686. https://doi.org/10.3390/nu13082686