Association between Emotional Eating and Frequency of Unhealthy Food Consumption among Taiwanese Adolescents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Frequent Unhealthy Food Consumption
2.3. Emotional Eating
2.4. Individual Factors, Other Eating Behaviors, Lifestyle, and Social Determinants
2.5. Statistical Analysis
3. Results
3.1. Characteristics of Participants and Unhealthy Food Consumption
3.2. Associations between Emotional Eating, Personal, Behavioral, and Socioeconomic Factors and Frequency of Unhealthy Food Consumption
3.2.1. Frequency of Fast Food Consumption
3.2.2. Frequency of High-Fat Snack Consumption
3.2.3. Frequency of Processed Meat Product Consumption
3.2.4. Frequency of Dessert Food Consumption
3.2.5. Frequency of Sugar-Sweetened Beverage (SSB) Consumption
3.3. Stratification Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. WHO Nutrient Profile Model for South-East Asia Region; World Health Organization: Geneva, Switzerland, 2017; Available online: http://apps.who.int/bookorders (accessed on 19 July 2021).
- Monteiro, C.A.; Cannon, G.; Levy, R.B.; Moubarac, J.-C.; Louzada, M.L.; Rauber, F.; Khandpur, N.; Cediel, G.; Neri, D.; Martinez-Steele, E.; et al. Ultra-processed foods: What they are and how to identify them. Public Health Nutr. 2019, 22, 936–941. [Google Scholar] [CrossRef]
- Bradshaw, P.T.; Sagiv, S.K.; Kabat, G.C.; Satia, J.A.; Britton, J.A.; Teitelbaum, S.L.; Neugut, A.I.; Gammon, M.D. Consumption of sweet foods and breast cancer risk: A case-control study of women on Long Island, New York. Cancer Causes Control 2009, 20, 1509–1515. [Google Scholar] [CrossRef] [Green Version]
- Della Torre, S.B.; Keller, A.; Depeyre, J.L.; Kruseman, M. Sugar-sweetened beverages and obesity risk in children and adolescents: A systematic analysis on how methodological quality may influence conclusions. J. Acad. Nutr. Diet. 2016, 116, 638–659. [Google Scholar] [CrossRef]
- Chazelas, E.; Srour, B.; Desmetz, E.; Kesse-Guyot, E.; Julia, C.; Deschamps, V.; Druesne-Pecollo, N.; Galan, P.; Hercberg, S.; Latino-Martel, P.; et al. Sugary drink consumption and risk of cancer: Results from NutriNet-Santé prospective cohort. BMJ 2019, 366. [Google Scholar] [CrossRef] [Green Version]
- Imamura, F.; O’Connor, L.; Ye, Z.; Mursu, J.; Hayashino, Y.; Bhupathiraju, S.N.; Forouhi, N.G. Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: Systematic review, meta-analysis, and estimation of population attributable fraction. BMJ 2015, 351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.; Je, Y. Prospective association of sugar-sweetened and artificially sweetened beverage intake with risk of hypertension. Arch. Cardiovasc. Dis. 2016, 109, 242–253. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Schwedhelm, C.; Hoffmann, G.; Knüppel, S.; Iqbal, K.; Andriolo, V.; Bechthold, A.; Schlesinger, S.; Boeing, H. Food groups and risk of hypertension: A systematic review and dose-response meta-analysis of prospective studies. Adv. Nutr. 2017, 8, 793–803. [Google Scholar] [CrossRef]
- Trumbo, P.R.; Rivers, C.R. Systematic review of the evidence for an association between sugar-sweetened beverage consumption and risk of obesity. Nutr. Rev. 2014, 72, 566–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Obesity and Overweight; World Health Organisation: Geneva, Switzerland, 2021; Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 20 July 2021).
- Institute for Health Metrics and Evaluation. GBD Compare, GBD Compare|IHME Viz Hub, Global Burden of Disease. 2021. Available online: https://vizhub.healthdata.org/gbd-compare/ (accessed on 20 July 2021).
- World Health Organization. Non-Communicable Diseases; World Health Organization: Geneva, Switzerland, 2021; Available online: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases (accessed on 20 July 2021).
- Sandoval-Insausti, H.; Blanco-Rojo, R.; Graciani, A.; López-García, E.; Moreno-Franco, B.; Laclaustra, M.; Donat-Vargas, C.; Ordovás, J.M.; Rodríguez-Artalejo, F.; Guallar-Castillón, P. Ultra-processed food consumption and incident frailty: A prospective cohort study of older adults. J. Gerontol. Ser. A 2020, 75, 1126–1133. [Google Scholar] [CrossRef]
- Schnabel, L.; Buscail, C.; Sabate, J.-M.; Bouchoucha, M.; Kesse-Guyot, E.; Allès, B.; Touvier, M.; Monteiro, C.A.; Hercberg, S.; Benamouzig, R.; et al. Association between ultra-processed food consumption and functional gastrointestinal disorders: Results from the French NutriNet-Santé cohort. Am. J. Gastroenterol. 2018, 113, 1217–1228. [Google Scholar] [CrossRef] [PubMed]
- Adjibade, M.; Julia, C.; Allès, B.; Touvier, M.; Lemogne, C.; Srour, B.; Hercberg, S.; Galan, P.; Assmann, K.E.; Kesse-Guyot, E. Prospective association between ultra-processed food consumption and incident depressive symptoms in the French NutriNet-Santé cohort. BMC Med. 2019, 17, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Donoso, C.G.; Villegas, A.S.; Martínez-González, M.A.; Gea, A.; Mendonça, R.D.D.; Lahortiga-Ramos, F.; Bes-Rastrollo, M. Ultra-processed food consumption and the incidence of depression in a Mediterranean cohort: The SUN Project. Eur. J. Nutr. 2020, 59, 1093–1103. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, C.A.; Moubarac, J.-C.; Cannon, G.; Ng, S.W.; Popkin, B. Ultra-processed products are becoming dominant in the global food system. Obes. Rev. 2013, 14, 21–28. [Google Scholar] [CrossRef]
- Baker, P.; Machado, P.; Santos, T.; Sievert, K.; Backholer, K.; Hadjikakou, M.; Russell, C.; Huse, O.; Bell, C.; Scrinis, G.; et al. Ultra-processed foods and the nutrition transition: Global, regional and national trends, food systems transformations and political economy drivers. Obes. Rev. 2020, 21, e13126. [Google Scholar] [CrossRef] [PubMed]
- Luiten, C.M.; Steenhuis, I.; Eyles, H.; Ni Mhurchu, C.; Waterlander, W. Ultra-processed foods have the worst nutrient profile, yet they are the most available packaged products in a sample of New Zealand supermarkets. Public Health Nutr. 2016, 19, 530–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shim, J.-S.; Shim, S.-Y.; Cha, H.-J.; Kim, J.; Kim, H. Socioeconomic characteristics and trends in the consumption of ultra-processed foods in Korea from 2010 to 2018. Nutrients 2021, 13, 1120. [Google Scholar] [CrossRef]
- The Global Nutrition Report’s Independent Expert Group. 2020 Global Nutrition Report. 2020. Available online: https://globalnutritionreport.org/reports/2020-global-nutrition-report/ (accessed on 10 May 2021).
- Baraldi, L.G.; Steele, E.M.; Canella, D.; Monteiro, C.A. Consumption of ultra-processed foods and associated sociodemographic factors in the USA between 2007 and 2012: Evidence from a nationally representative cross-sectional study. BMJ Open 2018, 8, 20574. [Google Scholar] [CrossRef] [Green Version]
- Costa, C.S.; Del-Ponte, B.; Assunção, M.C.F.; Santos, C.C. Consumption of ultra-processed foods and body fat during childhood and adolescence: A systematic review. Public Health Nutr. 2018, 21, 148–159. [Google Scholar] [CrossRef] [Green Version]
- Moubarac, J.-C.; Batal, M.; Martins, A.P.B.; Claro, R.; Levy, R.B.; Cannon, G.; Monteiro, C. Processed and ultra-processed food products: Consumption trends in Canada from 1938 to 2011. Can. J. Diet. Pract. Res. 2014, 75, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Ozcariz, S.G.I.; Pudla, K.J.; Martins, A.P.B.; Peres, M.A.; González-Chica, D.A. Sociodemographic disparities in the consumption of ultra-processed food and drink products in Southern Brazil: A population-based study. J. Public Health 2019, 27, 649–658. [Google Scholar] [CrossRef]
- Barnhart, W.R.; Braden, A.L.; Jordan, A.K. Negative and positive emotional eating uniquely interact with ease of activation, intensity, and duration of emotional reactivity to predict increased binge eating. Appetite 2020, 151, 104688. [Google Scholar] [CrossRef]
- Barnhart, W.R.; Braden, A.L.; Price, E. Emotion regulation difficulties interact with negative, not positive, emotional eating to strengthen relationships with disordered eating: An exploratory study. Appetite 2021, 158, 105038. [Google Scholar] [CrossRef]
- Bongers, P.; Jansen, A.; Havermans, R.; Roefs, A.; Nederkoorn, C. Happy eating. The underestimated role of overeating in a positive mood. Appetite 2013, 67, 74–80. [Google Scholar] [CrossRef]
- Camilleri, G.M.; Méjean, C.; Kesse-Guyot, E.; Andreeva, V.; Bellisle, F.; Hercberg, S.; Péneau, S. The associations between emotional eating and consumption of energy-dense snack foods are modified by sex and depressive symptomatology. J. Nutr. 2014, 144, 1264–1273. [Google Scholar] [CrossRef] [PubMed]
- Konttinen, H.; Männistö, S.; Sarlio-Lähteenkorva, S.; Silventoinen, K.; Haukkala, A. Emotional eating, depressive symptoms and self-reported food consumption. A population-based study. Appetite 2010, 54, 473–479. [Google Scholar] [CrossRef]
- Turton, R.; Chami, R.; Treasure, J. Emotional eating, binge eating and animal models of binge-type eating disorders. Curr. Obes. Rep. 2017, 6, 217–228. [Google Scholar] [CrossRef] [PubMed]
- Arnow, J.B.; Kenardy, J.; Agras, W.S. The emotional eating scale: The development of a measure to assess coping with negative affect by eating. Int. J. Eat. Disord. 1995, 18, 79–90. [Google Scholar] [CrossRef]
- Masheb, R.M.; Grilo, C.M. Emotional overeating and its associations with eating disorder psychopathology among overweight patients with Binge eating disorder. Int. J. Eat. Disord. 2006, 39, 141–146. [Google Scholar] [CrossRef]
- Tanofsky-Kraff, M.; Ba, K.R.T.; Yanovski, J.; Bassett, A.M.; Burns, N.P.; Bs, L.M.R.; Ma, D.R.G.; Yanovski, J.A. Validation of the emotional eating scale adapted for use in children and adolescents (EES-C). Int. J. Eat. Disord. 2007, 16–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Strien, T.; Frijters, J.E.R.; Bergers, G.P.A.; Defares, P.B. The Dutch Eating Behavior Questionnaire (DEBQ) for assessment of restrained, emotional, and external eating behavior. Int. J. Eat. Disord. 1986, 5, 295–315. [Google Scholar] [CrossRef]
- Vannucci, A.; Tanofsky-Kraff, M.; Shomaker, L.B.; Ranzenhofer, L.M.; Matheson, E.B.; Cassidy, O.L.; Zocca, J.M.; Kozlosky, M.; Yanovski, S.Z.; Yanovski, J. Construct validity of the Emotional Eating Scale adapted for children and adolescents. Int. J. Obes. 2012, 36, 938–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devonport, T.J.; Nicholls, W.; Fullerton, C. A systematic review of the association between emotions and eating behaviour in normal and overweight adult populations. J. Health Psychol. 2019, 24, 3–24. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Huang, Y.-C.; Lo, Y.-T.C.; Wu, H.-J.; Wahlqvist, M.L.; Lee, M.-S. Secular trend towards ultra-processed food consumption and expenditure compromises dietary quality among Taiwanese adolescents. Food Nutr. Res. 2018, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shih, Y.H.; Chang, H.Y.; Wu, H.C.; Stanaway, F.F.; Pan, W.H. High sugar-sweetened beverage intake frequency is associated with smoking, irregular meal intake and higher serum uric acid in Taiwanese adolescents. J. Nutr. Sci. 2020, 9. [Google Scholar] [CrossRef] [Green Version]
- Shih, Y.-H.; Wu, H.-C.; Pan, W.-H.; Chang, H.-Y. Increased coffee, tea, or other sugar-sweetened beverage consumption in adolescents is associated with less satisfactory dietary quality, body fatness and serum uric acid profiles over the past 18 years in Taiwan. Asia Pac. J. Clin. Nutr. 2019, 28, 371–382. [Google Scholar]
- Wu, W.-C.; Luh, D.-L.; Lin, C.-I.; Chiang, Y.-C.; Hung, C.-C.; Wang, S.; Wu, C.-C.; Hurng, B.-S.; Chang, Y.-H.; Yen, L.-L.; et al. Reciprocal relationship between unhealthy eating behaviours and depressive symptoms from childhood to adolescence: 10-year follow-up of the Child and Adolescent Behaviors in Long-Term Evolution study. Public Health Nutr. 2016, 19, 1654–1665. [Google Scholar] [CrossRef] [Green Version]
- Chien, Y.-N.; Chen, P.-L.; Chen, Y.-H.; Chang, H.-J.; Yang, S.-C.; Chen, Y.C.; Chiou, H.-Y. The Taiwan Adolescent to Adult Longitudinal Study (TAALS): Methodology and cohort description. Asia Pac. J. Public Health 2018, 30, 188–197. [Google Scholar] [CrossRef]
- Add Health. The National Longitudinal Study of Adolescent to Adult Health; Carolina Population Center, University of North Carolina: Chapel Hill, NC, USA, 2014; Available online: https://addhealth.cpc.unc.edu/ (accessed on 26 July 2021).
- Hamburger, M.E.; Basile, K.; Vivolo, A. Measuring Bullying and Bystander Experiences: A Compendium of Assessment Tools; Centers for Disease Control and Prevention, National Center for Injury Prevention and Control: Atlanta, GA, USA, 2011. Available online: https://www.cdc.gov/violenceprevention/pdf/bullycompendium-a.pdf (accessed on 25 July 2021).
- WHO. Global Youth Tobacco Survey; WHO: Geneva, Switzerland, 2017; Volume 8, pp. 1–58. Available online: https://gero.usc.edu/cbph/network/studies-with-biomarkers/national-longitudinal-study-of-adolescent-health-add-health/ (accessed on 25 July 2021).
- CDC. YRBSS, Youth Risk Behavior Surveillance System, Data, Adolescent and School Health, CDC, Youth Risk Behavior Survey (YRBS). 2018. Available online: https://www.cdc.gov/healthyyouth/data/yrbs/index.htm (accessed on 25 July 2021).
- Pereira, M.A.; Kartashov, A.I.; Ebbeling, C.B.; Van Horn, L.; Slattery, M.L.; Jacobs, D.; Ludwig, D. Fast-food habits, weight gain, and insulin resistance (the CARDIA study): 15-year prospective analysis. Lancet 2005, 365, 36–42. [Google Scholar] [CrossRef]
- French, S.A.; Story, M.; Neumark-Sztainer, D.; Fulkerson, J.A.; Hannan, P. Fast food restaurant use among adolescents: Associations with nutrient intake, food choices and behavioral and psychosocial variables. Int. J. Obes. Relat. Metab. Disord. 2001, 25, 1823–1833. [Google Scholar] [CrossRef] [Green Version]
- Larson, N.I.; Neumark-Sztainer, D.; Story, M.T.; Wall, M.M.; Harnack, L.J.; Eisenberg, M.E. Fast food intake: Longitudinal trends during the transition to young adulthood and correlates of intake. J. Adolesc. Health 2008, 43, 79–86. [Google Scholar] [CrossRef] [PubMed]
- WHO Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 2004, 363, 157–163. [Google Scholar] [CrossRef]
- Chang, H.-C.; Yang, H.-C.; Chang, H.-Y.; Yeh, C.-J.; Chen, H.-H.; Huang, K.-C.; Pan, W.-H. Morbid obesity in Taiwan: Prevalence, trends, associated social demographics, and lifestyle factors. PLoS ONE 2017, 12, e0169577. [Google Scholar] [CrossRef] [PubMed]
- Chung, T.; Creswell, K.G.; Bachrach, R.; Clark, D.B.; Martin, C.S. Adolescent binge drinking: Developmental context and opportunities for prevention. Alcohol Res. 2018, 39, 5. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6104966/ (accessed on 17 July 2021).
- Beccaria, F.; White, H.R. Underage Drinking in Europe and North America; University Press of Louvain: Louvain-la-Neuve, Belgium, 2012; Available online: https://books.openedition.org/pucl/3274 (accessed on 26 July 2021).
- Johnston, L.D.; O’Malley, P.M.; Bachman, J.G.; Schulenberg, J.E. Teen Drug Use Down but Progress Halts among Youngest Teens; University of Michigan News and Information Services: Ann Arbor, MI, USA, 2015; Available online: http://www.monitoringthefuture.org/data/05data.html#2005data-drugs (accessed on 26 July 2021).
- Wang, X.; Li, Y.; Fan, H. The associations between screen time-based sedentary behavior and depression: A systematic review and meta-analysis. BMC Public Health 2019, 19, 1–9. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Recommendations on Physical Activity for Health; World Health Organization: Geneva, Switzerland, 2010; Available online: https://www.who.int/publications/i/item/9789241599979 (accessed on 17 July 2021).
- Allen, N.B.; Sheeber, L.B. Adolescent Emotional Development and the Emergence of Depressive Disorders; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Ling, J.; Zahry, N.R. Relationships among perceived stress, emotional eating, and dietary intake in college students: Eating self-regulation as a mediator. Appetite 2021, 163, 105215. [Google Scholar] [CrossRef] [PubMed]
- Al-Musharaf, S. Prevalence and predictors of emotional eating among healthy young Saudi women during the COVID-19 pandemic. Nutrients 2020, 12, 2923. [Google Scholar] [CrossRef]
- Evers, C.; Stok, F.M.; de Ridder, D.T.D. Feeding your feelings: Emotion regulation strategies and emotional eating. Pers. Soc. Psychol. Bull. 2010, 36, 792–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shriver, L.H.; Dollar, J.M.; Lawless, M.; Calkins, S.D.; Keane, S.P.; Shanahan, L.; Wideman, L. Longitudinal associations between emotion regulation and adiposity in late adolescence: Indirect effects through eating behaviors. Nutrients 2019, 11, 517. [Google Scholar] [CrossRef] [Green Version]
- Avena, N.M.; Rada, P.; Hoebel, B.G. Evidence for sugar addiction: Behavioral and neurochemical effects of intermittent, excessive sugar intake. Neurosci. Biobehav. Rev. 2008, 32, 20–39. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Yang, J.; Pan, F.; Ho, R.C.; Huang, J.H. Editorial: Neurotransmitters and emotions. Front. Psychol. 2020, 11, 21. [Google Scholar] [CrossRef] [Green Version]
- Fleming, C.; De Oliveira, J.D.; Sharma, D.; Schmied, V.; La la, G.; Koniz-Booher, P.; Pérez-Escamilla, R.; Third, A. Drivers of food choice, barriers to healthy eating and a call to action from adolescents to improve nutritional intake across 18 countries. Curr. Dev. Nutr. 2021, 5, 643. [Google Scholar] [CrossRef]
- Beresford, S.A.A.; Locke, E.; Bishop, S.; West, B.; McGregor, B.A.; Bruemmer, B.; Duncan, G.E.; Thompson, B. Worksite study promoting activity and changes in eating (PACE): Design and baseline results. Obesity 2007, 15, 4S–15S. [Google Scholar] [CrossRef]
- Liebman, M.; Pelican, S.; Moore, S.; Holmes, B.; Wardlaw, M.K.; Melcher, L.M.; Liddil, A.C.; Paul, L.C.; Dunnagan, T.; Haynes, G.W. Dietary intake, eating behavior, and physical activity-related determinants of high body mass index in rural communities in Wyoming, Montana, and Idaho. Int. J. Obes. 2003, 27, 684–692. [Google Scholar] [CrossRef] [Green Version]
- Jochem, C.; Wallmann-Sperlich, B.; Leitzmann, M.F. The influence of sedentary behavior on cancer risk: Epidemiologic evidence and potential molecular mechanisms. Curr. Nutr. Rep. 2019, 8, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Patterson, R.; McNamara, E.; Tainio, M.; De Sá, T.H.; Smith, A.D.; Sharp, S.J.; Edwards, P.; Woodcock, J.; Brage, S.; Wijndaele, K. Sedentary behaviour and risk of all-cause, cardiovascular and cancer mortality, and incident type 2 diabetes: A systematic review and dose response meta-analysis. Eur. J. Epidemiol. 2018, 33, 811–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weaver, C.M.; Dwyer, J.; Fulgoni, V.L.; King, J.C.; Leveille, G.; Macdonald, R.S.; Ordovas, J.; Schnakenberg, D. Processed foods: Contributions to nutrition. Am. J. Clin. Nutr. 2014, 99, 1525–1542. [Google Scholar] [CrossRef] [PubMed]
- Kreuter, M.W.; Brennan, L.K.; Scharff, D.P.; Lukwago, S.N. Do nutrition label readers eat healthier diets? Behavioral correlates of adults’ use of food labels. Am. J. Prev. Med. 1997, 13, 277–283. [Google Scholar] [CrossRef]
- Nieto, C.; Tolentino-Mayo, L.; Monterrubio-Flores, E.; Medina, C.; Patino, S.R.G.; Aguirre-Hernández, R.; Barquera, S. Nutrition label use is related to chronic conditions among Mexicans: Data from the Mexican National Health and Nutrition Survey 2016. J. Acad. Nutr. Diet. 2020, 120, 804–814. [Google Scholar] [CrossRef]
- Shriver, L.H.; Dollar, J.M.; Calkins, S.D.; Keane, S.P.; Shanahan, L.; Wideman, L. Emotional eating in adolescence: Effects of emotion regulation, weight status and negative body image. Nutrients 2021, 13, 79. [Google Scholar] [CrossRef]
- Wansink, B.; Cheney, M.M.; Chan, N. Exploring comfort food preferences across age and gender1. Physiol. Behav. 2003, 79, 739–747. [Google Scholar] [CrossRef]
- Michels, N.; Sioen, I.; Braet, C.; Eiben, G.; Hebestreit, A.; Huybrechts, I.; Vanaelst, B.; Vyncke, K.; De Henauw, S. Stress, emotional eating behaviour and dietary patterns in children. Appetite 2012, 59, 762–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailen, N.H.; Green, L.M.; Thompson, R.J. Understanding emotion in adolescents: A review of emotional frequency, intensity, instability, and clarity. Emot. Rev. 2019, 11, 63–73. [Google Scholar] [CrossRef]
- Weinstein, S.M.; Mermelstein, R.J. Dynamic associations of negative mood and smoking across the development of smoking in adolescence. J. Clin. Child Adolesc. Psychol. 2013, 42, 629–642. [Google Scholar] [CrossRef] [Green Version]
- Sanchis-Sanchis, A.; Grau, M.D.; Moliner, A.-R.; Morales-Murillo, C.P. Effects of age and gender in emotion regulation of children and adolescents. Front. Psychol. 2020, 11, 946. [Google Scholar] [CrossRef]
- Grzymisławska, M.; Puch, E.A.; Zawada, A.; Grzymisławski, M. Do nutritional behaviors depend on biological sex and cultural gender? Adv. Clin. Exp. Med. 2020, 29, 165–172. [Google Scholar] [CrossRef] [Green Version]
- Maciejewski, D.F.; Van Lier, P.A.C.; Branje, S.J.T.; Meeus, W.H.J.; Koot, H.M. A 5-year longitudinal study on mood variability across adolescence using daily diaries. Child Dev. 2015, 86, 1908–1921. [Google Scholar] [CrossRef]
- Frost, A.; Hoyt, L.T.; Chung, A.L.; Adam, E.K. Daily life with depressive symptoms: Gender differences in adolescents’ everyday emotional experiences. J. Adolesc. 2015, 43, 132–141. [Google Scholar] [CrossRef]
- Bere, E.; Glomnes, E.S.; Velde, S.J.T.; Klepp, K.-I. Determinants of adolescents’ soft drink consumption. Public Health Nutr. 2008, 11, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, P.R.M.; Luiz, R.R.; Monteiro, L.S.; Ferreira, M.G.; Gonçalves-Silva, R.M.V.; Pereira, R.A. Adolescents’ unhealthy eating habits are associated with meal skipping. Nutrients 2017, 42, 114–120.e1. [Google Scholar] [CrossRef] [PubMed]
- Ratnayake, N.; Ekanayake, L. Soft drink consumption in Sri Lankan adolescents. Public Health Nutr. 2012, 1333–1337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quartly, J. A Country of Convenience—Taiwan Business TOPICS. 2019. Available online: https://topics.amcham.com.tw/2019/08/country-of-convenience/ (accessed on 21 July 2021).
- Sultson, H.; Kukk, K.; Akkermann, K. Positive and negative emotional eating have different associations with overeating and binge eating: Construction and validation of the Positive-Negative Emotional Eating Scale. Appetite 2017, 116, 423–430. [Google Scholar] [CrossRef] [PubMed]
Variable | Total (n = 18,461) | Male (n = 8953) | Female (n = 9508) | p |
---|---|---|---|---|
School type, n (%) | <0.001 | |||
Junior | 6882 (37.3) | 3572 (39.9) | 3310 (34.8) | |
Senior | 4780 (25.9) | 2059 (23.0) | 2721 (28.6) | |
Vocational | 6799 (36.8) | 3322 (37.1) | 3477 (36.6) | |
BMI, n (%) | <0.001 | |||
<18.5 | 5372 (29.7) | 2546 (29.0) | 2826 (30.3) | |
≥24 | 3130 (17.3) | 1910 (21.7) | 1220 (13.1) | |
18.5–24 | 9608 (53.0) | 4330 (49.3) | 5278 (56.6) | |
Emotional eating, n (%) | <0.001 | |||
High | 5841 (31.8) | 2656 (29.8) | 3185 (33.6) | |
Low | 12,546 (68.2) | 6261 (70.2) | 6285 (66.4) | |
Fast food consumption, n (%) | <0.001 | |||
≥3 times/week | 2948 (16.0) | 1721 (19.2) | 1227 (12.9) | |
0–2 times/week | 15,513 (84.0) | 7232 (80.8) | 8281 (87.1) | |
High-fat snack consumption, n (%) | <0.001 | |||
≥3 times/week | 4891 (26.5) | 2580 (28.8) | 2311 (24.3) | |
0–2 times/week | 13,570 (73.5) | 6373 (71.2) | 7197 (75.7) | |
Processed meat product consumption, n (%) | <0.001 | |||
≥3 times/week | 5504 (29.8) | 3179 (35.5) | 2325 (24.5) | |
0–2 times/week | 12,957 (70.2) | 5774 (64.5) | 7183 (75.5) | |
Dessert food consumption, n (%) | <0.001 | |||
≥3 times/week | 8599 (46.6) | 3882 (43.4) | 4717 (49.6) | |
0–2 times/week | 9862 (53.4) | 5071 (56.6) | 4791 (50.4) | |
Sugar-sweetened beverage consumption, n (%) | <0.001 | |||
≥3 times/week | 11,099 (60.1) | 5789 (64.7) | 5310 (55.8) | |
0–2 times/week | 7362 (39.9) | 3164 (35.3) | 4198 (44.2) | |
Eating while doing something, n (%) | 0.251 | |||
Yes | 9660 (52.4) | 4643 (52.0) | 5017 (52.8) | |
No | 8767 (47.6) | 4288 (48.0) | 4479 (47.2) | |
Nutrition label reading, n (%) | <0.001 | |||
Yes | 8627 (46.9) | 4019 (45.0) | 4608 (48.6) | |
No | 9780 (53.1) | 4909 (55.0) | 4871 (51.4) | |
Skipping breakfast, n (%) | <0.001 | |||
Yes | 2077 (11.3) | 930 (10.4) | 1147 (12.1) | |
No | 16,376 (88.7) | 8018 (89.6) | 8358 (87.9) | |
Sedentary activity, n (%) | 0.003 | |||
Yes | 10,000 (54.3) | 4947 (55.4) | 5053 (53.2) | |
No | 8425 (45.7) | 3981 (44.6) | 4444 (46.8) | |
Physical activity, n (%) | <0.001 | |||
Yes | 8564 (46.6) | 5179 (58.2) | 3385 (35.7) | |
No | 9806 (53.4) | 3715 (41.8) | 6091 (64.3) | |
Binge drinking, n (%) | <0.001 | |||
Yes | 1195 (6.5) | 748 (8.4) | 447 (4.7) | |
No | 17,254 (93.5) | 8198 (91.6) | 9056 (95.3) | |
Smoking, n (%) | <0.001 | |||
Yes | 1040 (5.6) | 793 (8.9) | 247 (2.6) | |
No | 17,411 (94.4) | 8152 (91.1) | 9259 (97.4) | |
Peer support, n (%) | <0.001 | |||
Yes | 15,773 (86.0) | 7403 (83.4) | 8370 (88.5) | |
No | 2562 (14.0) | 1470 (16.6) | 1092 (11.5) | |
School support, n (%) | <0.001 | |||
Yes | 16,832 (93.2) | 7927 (90.7) | 8905 (95.5) | |
No | 1231 (6.8) | 811 (9.3) | 420 (4.5) | |
Father education, n (%) | 0.850 | |||
University graduate | 5951 (35.7) | 2862 (35.6) | 3089 (35.7) | |
Senior high school graduate | 7123 (42.7) | 3447 (42.9) | 3676 (42.5) | |
Junior high school graduate and below | 3613 (21.7) | 1728 (21.5) | 1885 (21.8) | |
Mother education, n (%) | 0.204 | |||
University graduate | 5716 (34.1) | 2771 (34.8) | 2945 (33.6) | |
Senior high school graduate | 8186 (48.9) | 3879 (48.7) | 4307 (49.1) | |
Junior high school graduate and below | 2838 (17.0) | 1321 (16.6) | 1517 (17.3) |
Variables | Fast Foods | High-Fat Snacks | Processed Meat Products | Dessert Foods | SSBs | |||||
---|---|---|---|---|---|---|---|---|---|---|
OR (95%CI) | p | OR (95%CI) | p | OR (95%CI) | p | OR (95%CI) | p | OR (95%CI) | p | |
Personal Factors | ||||||||||
Emotional Eating (High vs. Low) | 2.40 (2.18–2.64) | <0.001 | 2.30 (2.12–2.49) | <0.001 | 1.92 (1.78–2.08) | <0.001 | 2.49 (2.31–2.69) | <0.001 | 1.83 (1.69–1.98) | <0.001 |
Sex (Male vs. Female) | 1.63 (1.48–1.80) | <0.001 | 1.31 (1.21–1.42) | <0.001 | 1.71 (1.59–1.85) | <0.001 | 0.78 (0.73–0.84) | <0.001 | 1.43 (1.33–1.54) | <0.001 |
Behavioral Factors | ||||||||||
Eating while doing something (Yes vs. No) | 2.05 (1.85–2.28) | <0.001 | 2.28 (2.09–2.47) | <0.001 | 1.72 (1.59–1.86) | <0.001 | 2.08 (1.94–2.28) | <0.001 | 2.17 (2.02–2.33) | <0.001 |
Label reading (Yes vs. No) | 0.91 (0.83–0.99) | 0.042 | 0.87 (0.80–0.94) | <0.001 | 0.93 (0.87–1.01) | 0.068 | 0.97 (0.90–1.04) | 0.356 | 0.82 (0.76–0.88) | <0.001 |
Sedentary activity (Yes vs. No) | 1.59 (1.44–1.76) | <0.001 | 1.41 (1.30–1.53) | <0.001 | 1.33 (1.23–1.44) | <0.001 | 1.19 (1.11–1.28) | <0.001 | 1.62 (1.51–1.74) | <0.001 |
Binge drinking (Yes vs. No) | 1.29 (1.09–1.53) | 0.003 | 1.15 (0.98–1.34) | 0.081 | 1.21 (1.04–1.40) | 0.012 | 1.24 (1.07–1.44) | 0.004 | 0.98 (0.84–1.15) | 0.810 |
Smoking (Yes vs. No) | 1.26 (1.05–1.51) | 0.014 | 1.14 (0.97–1.36) | 0.120 | 1.17 (0.99–1.38) | 0.052 | 0.89 (0.76–1.05) | 0.159 | 1.45 (1.22–1.74) | <0.001 |
Sex | EmE | School Type | Fast Foods | High-Fat Snacks | Processed Meat Products | Dessert Foods | SSBs | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
OR (95%CI) | p | OR (95%CI) | p | OR (95%CI) | p | OR (95%CI) | p | OR (95%CI) | p | |||
Male | High | Junior | 1.04 (0.83–1.31) | 0.750 | 0.77 (0.62–0.95) | 0.015 | 1.24 (1.00–1.54) | 0.045 | 0.92 (0.74–1.15) | 0.475 | 0.98 (0.76–1.26) | 0.884 |
Senior | 0.83 (0.64–1.07) | 0.150 | 0.93 (0.74–1.18) | 0.553 | 0.98 (0.78–1.24) | 0.891 | 0.96 (0.75–1.22) | 0.735 | 1.05 (0.78–1.38) | 0.724 | ||
V (ref) | 1 | 1 | 1 | 1 | 1 | |||||||
Low | Junior | 1.26 (1.03–1.55) | 0.027 | 0.69 (0.58–0.81) | <0.001 | 1.15 (0.99–1.34) | 0.064 | 0.78 (0.67–0.90) | 0.001 | 1.16 (1.00–1.33) | 0.046 | |
Senior | 1.36 (1.09–1.70) | 0.007 | 1.162 (0.98–1.39) | 0.094 | 1.36 (1.16–1.60) | <0.001 | 1.18 (1.01–1.38) | 0.035 | 1.47 (1.26–1.71) | <0.001 | ||
V (ref) | 1 | 1 | 1 | 1 | 1 | |||||||
Female | High | Junior | 1.04 (0.82–1.32) | 0.735 | 0.83 (0.68–1.02) | 0.072 | 1.08 (0.88–1.32) | 0.460 | 0.91 (0.74–1.122 | 0.383 | 0.98 (0.79–1.21) | 0.823 |
Senior | 0.89 (0.69–1.15) | 0.377 | 0.86 (0.70–1.06) | 0.165 | 1.05 (0.85–1.30) | 0.651 | 1.06 (0.86–1.32) | 0.569 | 0.81 (0.65–1.00) | 0.054 | ||
V (ref) | 1 | 1 | 1 | 1 | 1 | |||||||
Low | Junior | 1.11 (0.86–1.42) | 0.430 | 0.76 (0.63–0.91) | 0.003 | 0.89 (0.75–1.06) | 0.192 | 0.63 (0.55–0.73) | <0.001 | 0.93 (0.81–1.07) | 0.301 | |
Senior | 1.00 (0.77–1.31) | 0.984 | 0.93 (0.78–1.12) | 0.453 | 1.04 (0.88–1.24) | 0.629 | 1.05 (0.91–1.21) | 0.487 | 1.09 (0.95–1.26) | 0.222 | ||
V (ref) | 1 | 1 | 1 | 1 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bui, C.; Lin, L.-Y.; Wu, C.-Y.; Chiu, Y.-W.; Chiou, H.-Y. Association between Emotional Eating and Frequency of Unhealthy Food Consumption among Taiwanese Adolescents. Nutrients 2021, 13, 2739. https://doi.org/10.3390/nu13082739
Bui C, Lin L-Y, Wu C-Y, Chiu Y-W, Chiou H-Y. Association between Emotional Eating and Frequency of Unhealthy Food Consumption among Taiwanese Adolescents. Nutrients. 2021; 13(8):2739. https://doi.org/10.3390/nu13082739
Chicago/Turabian StyleBui, Chung, Li-Yin Lin, Chih-Yi Wu, Ya-Wen Chiu, and Hung-Yi Chiou. 2021. "Association between Emotional Eating and Frequency of Unhealthy Food Consumption among Taiwanese Adolescents" Nutrients 13, no. 8: 2739. https://doi.org/10.3390/nu13082739