Predictors of Renal Function Worsening in Patients with Chronic Obstructive Pulmonary Disease (COPD): A Multicenter Observational Study
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Statistical Analysis
3. Results
3.1. Incident CKD (eGFR < 60 mL/min/1.73 m2)
3.2. Rapid Decline of Renal Function (>5 mL/min/1.73 m2/Year)
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fabbri, L.M.; Rabe, K.F. From COPD to chronic systemic inflammatory syndrome? Lancet 2007, 370, 797–799. [Google Scholar] [CrossRef]
- Raad, D.; Gaddam, S.; Schunemann, H.J.; Irani, J.; Abou Jaoude, P.; Honeine, R.; Akl, E.A. Effects of water-pipe smoking on lung function: A systematic review and meta-analysis. Chest 2011, 139, 764–774. [Google Scholar] [CrossRef]
- Gershon, A.S.; Wang, C.; Guan, J.; Vasilevska-Ristovska, J.; Cicutto, L.; To, T. Identifying individuals with physcian diagnosed COPD in health administrative databases. COPD 2009, 6, 388–394. [Google Scholar] [CrossRef] [PubMed]
- Cleutjens, F.A.H.M.; Wouters, E.F.M.; Dijkstra, J.B.; Spruit, M.A.; Franssen, F.M.E.; Vanfleteren, L.E.G.W.; Ponds, R.W.H.M.; Janssen, D.J.A. The COgnitive-Pulmonary Disease (COgnitive-PD) study: Protocol of a longitudinal observational comparative study on neuropsychological functioning of patients with COPD. BMJ Open 2014, 4, e004495. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-Y.; Liao, K.-M. Chronic Obstructive Pulmonary Disease is associated with risk of Chronic Kidney Disease: A Nationwide Case-Cohort Study. Sci. Rep. 2016, 6, 25855. [Google Scholar] [CrossRef] [PubMed]
- Fox, C.S.; Larson, M.G.; Leip, E.P.; Culleton, B.; Wilson, P.W.F.; Levy, D. Predictors of new-onset kidney disease in a community-based population. JAMA 2004, 291, 844–850. [Google Scholar] [CrossRef] [Green Version]
- Elsayed, E.F.; Tighiouart, H.; Griffith, J.; Kurth, T.; Levey, A.S.; Salem, D.; Sarnak, M.J.; Weiner, D.E. Cardiovascular disease and subsequent kidney disease. Arch. Intern. Med. 2007, 167, 1130–1136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pelaia, C.; Vatrella, A.; Sciacqua, A.; Terracciano, R.; Pelaia, G. Role of p38-mitogen-activated protein kinase in COPD: Pathobiological implications and therapeutic perspectives. Expert. Rev. Respir. Med. 2020, 14, 485–491. [Google Scholar] [CrossRef] [PubMed]
- Pastori, D.; Andreozzi, P.; Carnevale, R.; Bartimoccia, S.; Limaj, S.; Melandri, S.; Brunori, M.; Spallacci, G.; Violi, F.; Pignatelli, P. Does the Coexistence of Chronic Obstructive Pulmonary Disease and Atrial Fibrillation Affect Nox2 Activity and Urinary Isoprostanes Excretion? Antioxid. Redox Signal. 2019, 31, 786–790. [Google Scholar] [CrossRef]
- Barnes, P.J. The Cytokine Network in Chronic Obstructive Pulmonary Disease. Am. J. Respir. Cell Mol. Biol. 2009, 41, 631–638. [Google Scholar] [CrossRef]
- Vlahos, R.; Bozinovski, S. Role of alveolar macrophages in chronic obstructive pulmonary disease. Front. Immunol. 2014, 5, 435. [Google Scholar] [CrossRef] [Green Version]
- Tikellis, C.; Thomas, M.C. Angiotensin-Converting Enzyme 2 (ACE2) Is a Key Modulator of the Renin Angiotensin System in Health and Disease. Int. J. Pept. 2012, 2012, 256294. [Google Scholar] [CrossRef]
- Incalzi, R.A.; Corsonello, A.; Pedone, C.; Battaglia, S.; Paglino, G.; Bellia, V. Extrapulmonary Consequences of COPD in the Elderly Study Investigators. Chronic renal failure: A neglected comorbidity of COPD. Chest 2010, 137, 831–837. [Google Scholar]
- Levey, A.S.; Coresh, J.; Balk, E.; Kausz, A.T.; Levin, A.; Steffes, M.W.; Hogg, R.J.; Perrone, R.D.; Lau, J.; Eknoyan, G. National Kidney Foundation. National Kidney Foundation practice guidelines for chronic kidney disease: Evaluation, classification, and stratification. Ann. Intern. Med. 2003, 139, 137–147. [Google Scholar] [CrossRef]
- Suzuki, A.; Obi, Y.; Hayashi, T.; Kotani, N.; Uemura, Y.; Imai, E.; Makino, H.; Hishida, A. Visit-to-visit variability in estimated glomerular filtration rate predicts hospitalization and death due to cardiovascular events. Clin. Exp. Nephrol. 2019, 23, 661–668. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, N.; Matsuki, E.; Araumi, A.; Ashitomi, S.; Watanabe, S.; Kudo, K.; Ichikawa, K.; Inoue, S.; Watanabe, M.; Ueno, Y.; et al. Association among chronic kidney disease, airflow limitation, and mortality in a community-based population: The Yamagata (Takahata) study. Sci. Rep. 2020, 10, 5570. [Google Scholar] [CrossRef] [PubMed]
- Trudzinski, F.C.; Alqudrah, M.; Omlor, A.; Zewinger, S.; Fliser, D.; Speer, T.; Seiler, F.; Biertz, F.; Koch, A.; Vogelmeier, C.; et al. German COSYCONET consortium. Consequences of chronic kidney disease in chronic obstructive pulmonary disease. Respir. Res. 2019, 20, 151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navaneethan, S.D.; Schold, J.D.; Huang, H.; Nakhoul, G.; Jolly, S.E.; Arrigain, S.; Dweik, R.A.; Nally, J.V. Mortality Outcomes of Patients with Chronic Kidney Disease and Chronic Obstructive Pulmonary Disease. Am. J. Nephrol. 2016, 43, 39–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartziokas, K.; Papaioannou, A.I.; Loukides, S.; Papadopoulos, A.; Haniotou, A.; Papiris, S.; Kostikas, K. Serum uric acid as a predictor of mortality and future exacerbations of COPD. Eur. Respir. J. 2014, 43, 43–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kahnert, K.; Alter, P.; Welte, T.; Huber, R.M.; Behr, J.; Biertz, F.; Watz, H.; Bals, R.; Vogelmeier, C.F.; Jörres, R.A. Uric acid, lung function, physical capacity and exacerbation frequency in patients with COPD: A multi-dimensional approach. Respir. Res. 2018, 19, 110. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Liang, R.; Jin, S. Hyperuricemia is a biomarker of early mortality in patients with chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis. 2015, 10, 2519–2523. [Google Scholar]
- Shaheen, S.O. Uric acid, lung function and COPD: A causal link is unlikely. Thorax 2018, 73, 697–698. [Google Scholar] [CrossRef]
- Aida, Y.; Shibata, Y.; Osaka, D.; Abe, S.; Inoue, S.; Fukuzaki, K.; Tokairin, Y.; Igarashi, A.; Yamauchi, K.; Nemoto, T.; et al. The relationship between serum uric acid and spirometric values in participants in a health check: The Takahata study. Int. J. Med. Sci. 2011, 8, 470–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobylecki, C.J.; Vedel-Krogh, S.; Afzal, S.; Nielsen, S.F.; Nordestgaard, B.G. Plasma urate, lung function and chronic obstructive pulmonary disease: A Mendelian randomisation study in 114 979 individuals from the general population. Thorax 2018, 73, 748–757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durmus Kocak, N.; Sasak, G.; Aka Akturk, U.; Akgun, M.; Boga, S.; Sengul, A.; Gungor, S.; Arinc, S. Serum Uric Acid Levels and Uric Acid/Creatinine Ratios in Stable Chronic Obstructive Pulmonary Disease (COPD) Patients: Are These Parameters Efficient Predictors of Patients at Risk for Exacerbation and/or Severity of Disease? Med. Sci. Monit. 2016, 22, 4169–4176. [Google Scholar] [CrossRef]
- Global Strategy for the Diagnosis Management and Prevention of COPD. Global Initiative for Chronic Obstructive Lung Disease (GOLD). 2021. Available online: http://www.goldcopd.org/ (accessed on 5 July 2021).
- Graham, B.L.; Steenbruggen, I.; Miller, M.R.; Barjaktarevic, I.Z.; Cooper, B.G.; Hall, G.L.; Hallstrand, T.S.; Kaminsky, D.A.; McCarthy, K.; McCormack, M.C.; et al. Standardization of Spirometry 2019 Update. An Official American Thoracic Society and European Respiratory Society Technical Statement. Am. J. Respir. Crit. Care Med. 2019, 200, e70–e88. [Google Scholar] [CrossRef]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. ESC Scientific Document Group. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef]
- American Diabetes Association. (2) Classification and diagnosis of diabetes. Diabetes Care 2015, 38 (Suppl. 1), S8–S16. [Google Scholar] [CrossRef] [Green Version]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F.; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration). A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Stevens, P.E.; Levin, A. Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group Members. Evaluation and management of chronic kidney disease: Synopsis of the kidney disease: Improving global outcomes 2012 clinical practice guideline. Ann. Intern. Med. 2013, 158, 825–830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elmahallawy, I.I.; Qora, M.A. Prevalence of chronic renal failure in COPD patients. Egypt. J. Chest Dis. Tuberc. 2013, 62, 221–227. [Google Scholar] [CrossRef] [Green Version]
- Gjerde, B.; Bakke, P.S.; Ueland, T.; Hardie, J.A.; Eagan, T.M.L. The prevalence of undiagnosed renal failure in a cohort of COPD patients in western Norway. Respir. Med. 2012, 106, 361–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshizawa, T.; Okada, K.; Furuichi, S.; Ishiguro, T.; Yoshizawa, A.; Akahoshi, T.; Gon, Y.; Akashiba, T.; Hosokawa, Y.; Hashimoto, S. Prevalence of chronic kidney diseases in patients with chronic obstructive pulmonary disease: Assessment based on glomerular filtration rate estimated from creatinine and cystatin C levels. Int. J. Chron. Obstruct. Pulmon. Dis. 2015, 10, 1283–1289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jitraknatee, J.; Ruengorn, C.; Nochaiwong, S. Prevalence and Risk Factors of Chronic Kidney Disease among Type 2 Diabetes Patients: A Cross-Sectional Study in Primary Care Practice. Sci. Rep. 2020, 10, 6205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Retnakaran, R.; Cull, C.A.; Thorne, K.I.; Adler, A.I.; Holman, R.R. UKPDS Study Group. Risk factors for renal dysfunction in type 2 diabetes: U.K. Prospective Diabetes Study 74. Diabetes 2006, 55, 1832–1839. [Google Scholar] [CrossRef] [Green Version]
- Cai, W.; Duan, X.-M.; Liu, Y.; Yu, J.; Tang, Y.-L.; Liu, Z.-L.; Jiang, S.; Zhang, C.-P.; Liu, J.-Y.; Xu, J.-X. Uric Acid Induces Endothelial Dysfunction by Activating the HMGB1/RAGE Signaling Pathway. Biomed. Res. Int. 2017, 2017, 4391920. [Google Scholar] [CrossRef] [PubMed]
- Gersch, C.; Palii, S.P.; Imaram, W.; Kim, K.M.; Karumanchi, S.A.; Angerhofer, A.; Johnson, R.J.; Henderson, G.N. Reactions of peroxynitrite with uric acid: Formation of reactive intermediates, alkylated products and triuret, and in vivo production of triuret under conditions of oxidative stress. Nucleosides Nucleotides Nucleic Acids 2009, 28, 118–149. [Google Scholar] [CrossRef] [Green Version]
- Maruhashi, T.; Hisatome, I.; Kihara, Y.; Higashi, Y. Hyperuricemia and endothelial function: From molecular background to clinical perspectives. Atherosclerosis 2018, 278, 226–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khosla, U.M.; Zharikov, S.; Finch, J.L.; Nakagawa, T.; Roncal, C.; Mu, W.; Krotova, K.; Block, E.R.; Prabhakar, S.; Johnson, R.J. Hyperuricemia induces endothelial dysfunction. Kidney Int. 2005, 67, 1739–1742. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, I.F.; Grupper, A.; Chernichovski, T.; Grupper, A.; Hillel, O.; Engel, A.; Schwartz, D. Hyperuricemia attenuates aortic nitric oxide generation, through inhibition of arginine transport, in rats. J. Vasc. Res. 2011, 48, 252–260. [Google Scholar] [CrossRef]
- Borghi, C.; Agabiti-Rosei, E.; Johnson, R.J.; Kielstein, J.T.; Lurbe, E.; Mancia, G.; Redon, J.; Stack, A.G.; Tsioufis, K.P. Hyperuricaemia and gout in cardiovascular, metabolic and kidney disease. Eur. J. Intern. Med. 2020, 80, 1–11. [Google Scholar] [CrossRef]
- Stellato, D.; Morrone, L.F.; Di Giorgio, C.; Gesualdo, L. Uric acid: A starring role in the intricate scenario of metabolic syndrome with cardio-renal damage? Intern. Emerg. Med. 2012, 7, 5–8. [Google Scholar] [CrossRef]
- Mazzali, M.; Hughes, J.; Kim, Y.G.; Jefferson, J.A.; Kang, D.H.; Gordon, K.L.; Lan, H.Y.; Kivlighn, S.; Johnson, R.J. Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism. Hypertension 2001, 38, 1101–1106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz-Hurtado, G.; Ruilope, L.M. Hypertension and Obesity: Correlates With Renin-Angiotensin-Aldosterone System and Uric Acid. J. Clin. Hypertens. 2014, 16, 559–560. [Google Scholar] [CrossRef] [Green Version]
- Conti, V.; Corbi, G.; Manzo, V.; Pelaia, G.; Filippelli, A.; Vatrella, A. Sirtuin 1 and aging theory for chronic obstructive pulmonary disease. Anal. Cell. Pathol. 2015, 2015, 897327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnes, P.J. Senescence in COPD and Its Comorbidities. Annu. Rev. Physiol. 2017, 79, 517–539. [Google Scholar] [CrossRef] [PubMed]
- Violi, F.; Loffredo, L.; Carnevale, R.; Pignatelli, P.; Pastori, D. Atherothrombosis and Oxidative Stress: Mechanisms and Management in Elderly. Antioxid. Redox Signal. 2017, 27, 1083–1124. [Google Scholar] [CrossRef]
- Lee, W.; Thomas, P.S. Oxidative stress in COPD and its measurement through exhaled breath condensate. Clin. Transl. Sci. 2009, 2, 150–155. [Google Scholar] [CrossRef] [Green Version]
- Barnes, P.J. Mechanisms of development of multimorbidity in the elderly. Eur. Respir. J. 2015, 45, 790–806. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Xie, H.; Wang, X.; Yang, X.; Yang, L.; Zhang, J.; Wang, F.; Shen, T.; Zhu, Q. Oxidative stress mediates renal endothelial cell damage in trichloroethylene-sensitized mice. J. Toxicol. Sci. 2019, 44, 317–326. [Google Scholar] [CrossRef] [Green Version]
- Polverino, F.; Laucho-Contreras, M.E.; Petersen, H.; Bijol, V.; Sholl, L.M.; Choi, M.E.; Divo, M.; Pinto-Plata, V.; Chetta, A.; Tesfaigzi, Y.; et al. A Pilot Study Linking Endothelial Injury in Lungs and Kidneys in Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2017, 195, 1464–1476. [Google Scholar] [CrossRef] [PubMed]
- Perticone, F.; Maio, R.; Sciacqua, A.; Perticone, M.; Laino, I.; Miceli, S.; Mazzaferro, D.; Pascale, A.; Andreozzi, F.; Sesti, G. Insulin-like growth factor-1 and glomerular filtration rate in hypertensive patients. J. Hypertens. 2009, 27, 613–617. [Google Scholar] [CrossRef] [PubMed]
- Rumora, L.; Hlapčić, I.; Popović-Grle, S.; Rako, I.; Rogić, D.; Čepelak, I. Uric acid and uric acid to creatinine ratio in the assessment of chronic obstructive pulmonary disease: Potential biomarkers in multicomponent models comprising IL-1beta. PLoS ONE 2020, 15, e0234363. [Google Scholar] [CrossRef] [PubMed]
All | Renal Dysfunction | No Renal Dysfunction | p | |
---|---|---|---|---|
(n = 707) | (n = 157) | (n = 550) | ||
eGFR, mL/min/1.73 m2 | 79.7 ± 26.1 | 48.3 ± 8.5 | 88.6 ± 22.2 | <0.0001 |
Gender, m/f | 367/340 | 88/69 | 279/271 | 0.239 |
Age, years | 61.8 ± 9.9 | 67.4 ± 5.7 | 60.2 ± 10.3 | <0.0001 |
BMI, kg/m2 | 29.2 ± 5.8 | 29.1 ± 5.9 | 29.2 ± 5.7 | 0.859 |
SBP, mmHg | 141.2 ± 15.4 | 143.5 ± 18.6 | 140.5 ± 14.3 | 0.065 |
DBP, mmHg | 82.7 ± 10.5 | 82.8 ± 11.3 | 82.7 ± 10.3 | 0.970 |
Pulse pressure, mmHg | 58.4 ± 14.3 | 60.7 ± 16.1 | 57.8 ± 13.9 | 0.038 |
Fasting glucose, mg/dL | 103.7 ± 22.8 | 115.5 ± 34.4 | 100.4 ± 16.9 | <0.0001 |
Fasting insulin, mU/mL | 12.6 ± 5.8 | 15.8 ± 8.5 | 11.7 ± 4.5 | <0.0001 |
HOMA | 3.2 ± 1.9 | 4.4 ± 3.1 | 2.9 ± 1.2 | <0.0001 |
Total cholesterol, mg/dL | 198.8 ± 46.1 | 200.9 ± 40.3 | 198.1 ± 47.6 | 0.489 |
LDL-cholesterol, mg/dL | 117.1 ± 35.6 | 117.4 ± 36.3 | 117.1 ± 35.4 | 0.919 |
HDL-cholesterol, mg/dL | 48.9 ± 14.8 | 45.2 ± 11.8 | 50.1 ± 15.4 | <0.0001 |
Triglycerides, mg/dL | 137.3 ± 87.9 | 141.2 ± 97.8 | 136.1 ± 84.9 | 0.554 |
Creatinine, mg/dL | 1.01 ± 0.2 | 1.21 ± 0.4 | 0.96 ± 0.1 | <0.0001 |
Uric acid, mg/dL | 5.5 ± 2.5 | 6.9 ± 2.4 | 5.1 ± 2.3 | <0.0001 |
hs-CRP, mg/dL | 2.9 ± 2.1 | 3.6 ± 2.4 | 2.7 ± 1.9 | <0.0001 |
Pre-bronchodilator FEV1, % | 82.3 ± 22.2 | 81.7 ± 22.3 | 86.2 ± 21.6 | 0.022 |
FEV1/FVC | 0.61 ± 0.07 | 0.60 ± 0.07 | 0.62 ± 0.06 | 0.013 |
All | Renal Dysfunction | No Renal Dysfunction | p | |
---|---|---|---|---|
(n = 707) | (n = 157) | (n = 550) | ||
Smokers, n (%) | 436 (61) | 101 (64.3) | 330 (60) | 0.326 |
Hypertension, n (%) | 535 (75.7) | 120 (76.4) | 415 (75.4) | 0.801 |
Obesity, n (%) | 251 (35.5) | 53 (33.8) | 198 (36) | 0.604 |
Hypercholesterolemia, n (%) | 259 (36.6) | 61 (38.8) | 198 (36) | 0.512 |
Diabetes, n (%) | 184 (26) | 52 (33.1) | 132 (24) | 0.021 |
Drugs | ||||
Antihypertensives, n (%) | 580 (82) | 130 (82.8) | 450 (81.8) | 0.776 |
—RAAS inhibitors, n (%) | 469 (66.3) | 104 (80) | 365 (81.1) | 0.776 |
—Calcium-blockers, n (%) | 245 (34.6) | 55 (42.3) | 190 (42.2) | 0.986 |
—Diuretics, n (%) | 280 (39.6) | 70 (53.8) | 210 (46.6) | 0.149 |
—Others, n (%) | 43 (6.1) | 12 (9.2) | 31 (6.9) | 0.751 |
Antiplatelet agents, n (%) | 162 (22.9) | 40 (25) | 122 (22.1) | 0.386 |
Statins, n (%) | 169 (23.9) | 44 (28) | 125 (22.7) | 0.169 |
Oral antidiabetic drugs, n (%) | 350 (49.5) | 90 (57.3) | 260 (47.3) | 0.026 |
Panel A | Hazard Ratio | 95% Confidence Interval | p |
Sex, m/f | 0.649 | 0.492–0.855 | 0.002 |
Uric acid, 1 mg/dL | 1.153 | 1.099–1.210 | <0.0001 |
Diabetes, yes/no | 1.09 | 1.022–1.304 | <0.0001 |
Baseline eGFR, 10 mL/min/1.73 m2 | 0.968 | 0.960–0.975 | <0.0001 |
Panel B | Hazard Ratio | 95% Confidence Interval | p |
Uric acid, 1 mg/dL | 1.148 | 1.098–1.201 | <0.0001 |
Diabetes, yes/no | 1.050 | 1.019–1.290 | <0.0001 |
Rapid Decline of eGFR | No rapid Decline of eGFR | p | |
---|---|---|---|
(n = 200) | (n = 507) | ||
Sex, m/f | 87/113 | 280/227 | 0.004 |
Age, years | 62.3 ± 9.4 | 60.4 ± 11.1 | 0.034 |
BMI, kg/m2 | 29.4 ± 6.1 | 29.1 ± 5.6 | 0.603 |
SBP, mmHg | 142.3 ± 15.4 | 138.6 ± 14.9 | 0.005 |
DBP, mmHg | 82.6 ± 10.7 | 83.1 ± 10.1 | 0.637 |
Pulse pressure, mmHg | 59.5 ± 14.6 | 55.6 ± 13.2 | 0.001 |
Fasting glucose, mg/dL | 105.5 ± 24.9 | 99.3 ± 15.4 | <0.0001 |
Fasting Insulin, mU/mL | 12.9 ± 6.1 | 11.5 ± 5.1 | 0.001 |
HOMA | 3.4 ± 2.1 | 2.8 ± 1.4 | <0.0001 |
Cholesterol, mg/dL | 199.9 ± 37.2 | 198.4 ± 48.4 | 0.694 |
LDL, mg/dL | 121.7 ± 40.1 | 115.4 ± 33.6 | 0.063 |
HDL, mg/dL | 48.4 ± 14.6 | 50.5 ± 15.2 | 0.103 |
Hypercholesterolemic, mg/dL | 137.9 ± 87.1 | 135.6 ± 90.1 | 0.801 |
Creatinine, mg/dL | 0.97 ± 0.1 | 1.01 ± 0.3 | <0.0001 |
eGFR, mL/min/1.73 m2 | 93.8 ± 24.8 | 74.1 ± 24.4 | <0.0001 |
Uric acid, mg/dL | 7.5 ± 2.2 | 4.7 ± 2.1 | <0.0001 |
hs-CRP, mg/dL | 2.7 ± 2.1 | 2.9 ± 2.2 | 0.180 |
Pre-bronchodilator FEV1, % | 79.8 ± 21.2 | 83.8 ± 22.5 | 0.032 |
FEV1/FVC | 0.60 ± 0.08 | 0.62 ± 0.07 | 0.019 |
Rapid Decline of eGFR | No Rapid Decline of eGFR | p | |
---|---|---|---|
(n = 200) | (n = 507) | ||
Smokers, n (%) | 123 (61.5) | 308 (60.7) | 0.853 |
Hypertension, n (%) | 145 (72.5) | 390 (76.9) | 0.217 |
Obesity, n (%) | 72 (36) | 179 (35.3) | 0.862 |
Hypercholesterolemia, n (%) | 77 (38.5) | 182 (35.9) | 0.517 |
Diabetes, n (%) | 69 (34.5) | 115 (22.7) | 0.001 |
Drugs | |||
Antihypertensives, n (%) | 175 (87.5) | 405 (79.9) | 0.017 |
—RAAS inhibitors, n (%) | 139 (79.4) | 330 (81.5) | 0.564 |
—Calcium-blockers, n (%) | 69 (39.4) | 176 (43.4) | 0.262 |
—Diuretics, n (%) | 88 (50.3) | 192 (47.4) | 0.429 |
—Others, n (%) | 18 (10.3) | 25 (4.9) | 0.203 |
Antiplatelet agents, n (%) | 55 (27.5) | 107 (21.1) | 0.068 |
Statins, n (%) | 57 (28.5) | 113 (22.3) | 0.081 |
Antidiabetics, n (%) | 100 (50) | 250 (49.3) | 0.868 |
Panel A | Odds Ratio | 95% Confidence Interval | p |
Pulse pressure, 10 mmHg | 1.023 | 1.011–1.060 | 0.001 |
Uric acid, 1 mg/dL | 2.296 | 1.992–2.646 | <0.0001 |
Diabetes, yes/no | 1.102 | 1.097–1.324 | 0.011 |
Baseline eGFR, 10 mL/min/1.73 m2 | 1.055 | 1.043–1.068 | <0.0001 |
Panel B | Odds Ratio | 95% Confidence Interval | p |
Uric acid, 1 mg/dL | 2.158 | 1.896–2.457 | <0.0001 |
Diabetes, yes/no | 1.100 | 1.096–1.320 | 0.009 |
Baseline eGFR, 10 mL/min/1.73 m2 | 1.054 | 1.043–1.066 | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pelaia, C.; Pastori, D.; Armentaro, G.; Miceli, S.; Cassano, V.; Barbara, K.; Pelaia, G.; Perticone, M.; Maio, R.; Pignatelli, P.; et al. Predictors of Renal Function Worsening in Patients with Chronic Obstructive Pulmonary Disease (COPD): A Multicenter Observational Study. Nutrients 2021, 13, 2811. https://doi.org/10.3390/nu13082811
Pelaia C, Pastori D, Armentaro G, Miceli S, Cassano V, Barbara K, Pelaia G, Perticone M, Maio R, Pignatelli P, et al. Predictors of Renal Function Worsening in Patients with Chronic Obstructive Pulmonary Disease (COPD): A Multicenter Observational Study. Nutrients. 2021; 13(8):2811. https://doi.org/10.3390/nu13082811
Chicago/Turabian StylePelaia, Corrado, Daniele Pastori, Giuseppe Armentaro, Sofia Miceli, Velia Cassano, Keti Barbara, Giulia Pelaia, Maria Perticone, Raffaele Maio, Pasquale Pignatelli, and et al. 2021. "Predictors of Renal Function Worsening in Patients with Chronic Obstructive Pulmonary Disease (COPD): A Multicenter Observational Study" Nutrients 13, no. 8: 2811. https://doi.org/10.3390/nu13082811
APA StylePelaia, C., Pastori, D., Armentaro, G., Miceli, S., Cassano, V., Barbara, K., Pelaia, G., Perticone, M., Maio, R., Pignatelli, P., Violi, F., Perticone, F., Sesti, G., & Sciacqua, A. (2021). Predictors of Renal Function Worsening in Patients with Chronic Obstructive Pulmonary Disease (COPD): A Multicenter Observational Study. Nutrients, 13(8), 2811. https://doi.org/10.3390/nu13082811