Increasing Fruit and Vegetable Variety over Time Is Associated with Lower 15-Year Healthcare Costs: Results from the Australian Longitudinal Study on Women’s Health
Abstract
:1. Introduction
2. Materials and Methods
2.1. Australian Longitudinal Study on Women’s Health (ALSWH)
2.2. Participants: The 1946–1951 Cohort
2.3. Sociodemographic Characteristics and Anthropometry
2.4. Assessment of Dietary Intake
2.5. Fruit and Vegetable Variety Index (FAVVA)
2.6. Medicare Benefit Schedule Data
2.7. Statistical Methods
3. Results
3.1. Part I: Baseline F&V Variety with 15-Year Healthcare Claims/Costs
3.2. Part II: Change in F&V Variety over Time with 15-Year Healthcare Claims/Costs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aune, D.; Giovanucci, E.; Boffetta, P.; Fadnes, L.T.; Keum, N.; Norat, T.; Greenwood, D.; Riboli, E.; Vatten, L.J.; Tonstad, S. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality: A systematic review and dose-response meta-analysis of prospective studies. Int. J. Epidemiol. 2017, 46, 1029–1056. [Google Scholar] [CrossRef]
- World Health Organization. Joint WHO/FAO Expert Consultation on Diet, Nutrition and the Prevention of Chronic Diseases; World Health Organization: Geneva, Switzerland, 2002. [Google Scholar]
- Hall, J.N.; Moore, S.; Harper, S.B.; Lynch, J.W. Global variability in fruit and vegetable consumption. Am. J. Prev. Med. 2009, 36, 402–409.e5. [Google Scholar] [CrossRef]
- Afshin, A.; Sur, P.J.; Fay, K.A.; Cornaby, L.; Ferrara, G.; Salama, J.S.; Mullany, E.C.; Abate, K.H.; Abbafati, C.; Abebe, Z.; et al. Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef] [Green Version]
- Ekwaru, J.P.; Ohinmaa, A.; Loehr, S.; Setayeshgar, S.; Thanh, N.X.; Veugelers, P.J. The economic burden of inadequate consumption of vegetables and fruit in Canada. Public Health Nutr. 2017, 20, 515–523. [Google Scholar] [CrossRef] [Green Version]
- Daviglus, M.L.; Liu, K.; Pirzada, A.; Yan, L.L.; Garside, D.B.; Wang, R.; Van Horn, L.; Manning, W.G.; Manheim, L.M.; Dyer, A.R. Relationship of fruit and vegetable consumption in middle-aged men to medicare expenditures in older age: The Chicago Western Electric Study. J. Am. Diet Assoc. 2005, 105, 1735–1744. [Google Scholar] [CrossRef] [PubMed]
- Patterson, A.; Hure, A.; Burrows, T.; Jackson, J.; Collins, C. Diet quality and 10-year healthcare costs by BMI categories in the mid-age cohort of the Australian Longitudinal Study on Women’s Health. J. Hum. Nutr. Diet 2018, 31, 463–472. [Google Scholar] [CrossRef] [PubMed]
- National Health and Medical Research Council. Australian Dietary Guidelines; National Health and Medical Research Council: Canberra, Australia, 2013. [Google Scholar]
- Public Health England. Government Dietary Recommendations: Government. Recommendations for Energy and Nutrients for Males and Females Aged 1–18 Years and 19+ Years; Department of Health: London, UK, 2016. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/618167/government_dietary_recommendations.pdf (accessed on 17 September 2019).
- US Department of Health and Human Services; US Department of Agriculture. 2015–2020 Dietary Guidelines for Americans, 8th ed.; USDA: Washington, DC, USA, 2015. Available online: http://health.gov/dietaryguidelines/2015/guidelines/ (accessed on 17 September 2019).
- Cooper, A.J.; Sharp, S.J.; Lentjes, M.A.; Luben, R.N.; Khaw, K.-T.; Wareham, N.J.; Forouhi, N.G. A prospective study of the association between quantity and variety of fruit and vegetable intake and incident type 2 diabetes. Diabetes Care 2012, 35, 1293–1300. [Google Scholar] [CrossRef] [Green Version]
- Brown, W.J.; Bryson, L.; Byles, J.E.; Dobson, A.J.; Lee, C.; Mishra, G.; Schofield, M. Women’s Health Australia: Recruitment for a national longitudinal cohort study. Women Health 1999, 28, 23–40. [Google Scholar] [CrossRef] [PubMed]
- Brown, W.J.; Young, A.F.; Byles, J.E. Tyranny of distance? The health of mid--age women living in five geographical areas of Australia. Aust. J. Rural Health 1999, 7, 148–154. [Google Scholar] [CrossRef]
- Lee, C.; Dobson, A.J.; Brown, W.J.; Bryson, L.; Byles, J.; Warner-Smith, P.; Young, A.F. Cohort profile: The Australian Longitudinal Study on Women’s Health. Int. J. Epidemiol. 2005, 34, 987–991. [Google Scholar] [CrossRef] [Green Version]
- Women’s Health Australia. Australian Longitudinal Study on Women’s Health: Sample. 2019. Available online: https://www.alswh.org.au/about/sample (accessed on 17 September 2019).
- Department of Health and Aged Care (GISCA). Measuring Remoteness: Accessibility/Remoteness Index of Australia (ARIA); Commonwealth of Australia: Canberra, Australia, 2001. [Google Scholar]
- World Health Organization. Obesity: Preventing and Managing the Global Epidemic; World Health Organization: Geneva, Switzerland, 2000. [Google Scholar]
- Giles, G.; Ireland, P. Dietary Questionnaire for Epidemiological Studies (Version 2); The Cancer Council Victoria: Melbourne, Australia, 1996. [Google Scholar]
- Hodge, A.; Patterson, A.J.; Brown, W.J.; Ireland, P.; Giles, G. The Anti Cancer Council of Victoria FFQ: Relative validity of nutrient intakes compared with weighed food records in young to middle-aged women in a study of iron supplementation. Aust. N. Z. J. Public Health 2000, 24, 576–583. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.; Milligan, G.C.; Hunt, A. NUTTAB96: Nutrient Data Table for Use in Australia; Australian Government Publishing Service: Canberra, Australia, 1995.
- Ireland, P.; Jolley, D.; Giles, G.; O’Dea, K.; Powles, J.; Rutishauser, I.; Wahlqvist, M.L.; Williams, J. Development of the Melbourne FFQ: A food frequency questionnaire for use in an Australian prospective study involving an ethnically diverse cohort. Asia Pac. J. Clin. Nutr. 1994, 3, 19–31. [Google Scholar] [PubMed]
- Hodge, A.M.; Simpson, J.A.; Fridman, M.; Rowley, K.; English, D.R.; Giles, G.G.; Su, Q.; O’Dea, K. Evaluation of an FFQ for assessment of antioxidant intake using plasma biomarkers in an ethnically diverse population. Public Health Nutr. 2009, 12, 2438–2447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hodge, A.M.; Simpson, J.A.; Gibson, R.A.; Sinclair, A.J.; Makrides, M.; O’Dea, K.; English, D.R.; Giles, G.G. Plasma phospholipid fatty acid composition as a biomarker of habitual dietary fat intake in an ethnically diverse cohort. Nutr. Metab. Cardiovasc Dis. 2007, 17, 415–426. [Google Scholar] [CrossRef]
- Ashton, L.; Williams, R.; Wood, L.; Schumacher, T.; Burrows, T.; Rollo, M.; Pezdirc, K.; Callister, R.; Collins, C.E. The comparative validity of a brief diet screening tool for adults: The Fruit and Vegetable VAriety index (FAVVA). Clin. Nutr. ESPEN 2019, 29, 189–197. [Google Scholar] [CrossRef]
- Del Pozo Rubio, R.; Moya-Martinez, P.; Escribano-Sotos, F.; Amo Saus, M.E. Costs of health services associated with fruit and vegetable consumption habits. Nutr. Hosp. 2018, 35, 920–927. [Google Scholar] [CrossRef]
- Sotos-Prieto, M.; Bhupathiraju, S.N.; Mattei, J.; Fung, T.T.; Li, Y.; Pan, A.; Willett, W.C.; Rimm, E.B.; Hu, F.B. Changes in diet quality scores and risk of cardiovascular disease among US men and women. Circulation 2015, 132, 2212–2219. [Google Scholar] [CrossRef] [Green Version]
- Baden, M.Y.; Liu, G.; Satija, A.; Li, Y.; Sun, Q.; Fung, T.T.; Rimm, E.B.; Willett, W.C.; Hu, F.B.; Bhupathiraju, S.N. Changes in plant-based diet quality and total and cause-specific mortality. Circulation 2019, 140, 979–991. [Google Scholar] [CrossRef]
- Sotos-Prieto, M.; Bhupathiraju, S.N.; Mattei, J.; Fung, T.T.; Li, Y.; Pan, A.; Willett, W.C.; Rimm, E.B.; Hu, F.B. Association of changes in diet quality with total and cause-specific mortality. N. Engl. J. Med. 2017, 377, 143–153. [Google Scholar] [CrossRef]
- Australian Bureau of Statistics. National Health Survey: First Results; Australian Government: Canberra, Australia, 2017. Available online: https://www.abs.gov.au/statistics/health/health-conditions-and-risks/national-health-survey-first-results/latest-release (accessed on 17 September 2019).
- Cobiac, L.J.; Tam, K.; Veerman, L.; Blakely, T. Taxes and Subsidies for Improving Diet and Population Health in Australia: A Cost-Effectiveness Modelling Study. PLoS Med. 2017, 14, e1002232. [Google Scholar] [CrossRef]
- Lee, Y.; Mozaffarian, D.; Sy, S.; Huang, Y.; Liu, J.; Wilde, P.E.; Abrahams-Gessel, S.; Jardim, T.d.S.V.; Gaziano, T.A.; Micha, R. Cost-effectiveness of financial incentives for improving diet and health through Medicare and Medicaid: A microsimulation study. PLoS Med. 2019, 16, e1002761. [Google Scholar] [CrossRef] [Green Version]
- Siegel, K.R. Insufficient consumption of fruits and vegetables among individuals 15 years and older in 28 low- and middle-income countries: What can be done? J. Nutr. 2019, 149, 1105–1106. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ouyang, Y.; Liu, J.; Zhu, M.; Zhao, G.; Bao, W.; Hu, F.B. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: Systematic review and dose-response meta-analysis of prospective cohort studies. BMJ 2014, 349, g4490. [Google Scholar] [CrossRef] [Green Version]
- Aljadani, H.M.; Patterson, A.; Sibbritt, D.; Hutchesson, M.J.; Jensen, M.E.; Collins, C.E. Diet quality, measured by fruit and vegetable intake, predicts weight change in young women. J. Obes. 2013, 2013, 525161. [Google Scholar] [CrossRef] [Green Version]
- Guyenet, S.J. Impact of whole, fresh fruit consumption on energy intake and adiposity: A systematic review. Front. Nutr. 2019, 6, 66–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhargava, V.; Lee, J.S.; Jain, R.; Johnson, M.A.; Brown, A. Food insecurity is negatively associated with home health and out-of-pocket expenditures in older adults. J. Nutr. 2012, 142, 1888–1895. [Google Scholar] [CrossRef]
- Park, S.-Y.; Shvetsov, Y.B.; Kang, M.; Setiawan, V.W.; Wilkens, L.R.; Le Marchand, L.; Boushey, C.J. Changes in diet quality over 10 years are associated with baseline sociodemographic and lifestyle factors in the multiethnic cohort study. J. Nutr 2020, 150, 1880–1888. [Google Scholar] [CrossRef]
- Subar, A.F.; Freedman, L.S.; Tooze, J.A.; Kirkpatrick, S.I.; Boushey, C.; Neuhouser, M.L.; Thompson, F.E.; Potischman, N.; Guenther, P.M.; Tarasuk, V.; et al. Addressing current criticism regarding the value of self-seport dietary data. J. Nutr. 2015, 145, 2639–2645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baldwin, J.N.; Forder, P.M.; Haslam, R.L.; Hure, A.J.; Loxton, D.J.; Patterson, A.J.; Collins, C.E. Change in diet quality over 12 years in the 1946–1951 cohort of the Australian Longitudinal Study on Women’s Health. Nutrients 2020, 12, 147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
FAVVA Quintile | ||||||
---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | Q5 | All | |
n | 1796 | 1840 | 1699 | 1761 | 1737 | 8833 |
FAVVA score a | 58.1 ± 10.7 | 77.4 ± 3.7 | 88.6 ± 2.9 | 99.1 ± 3.5 | 117.0 ± 10.5 | 87.7 ± 21.2 |
FAVVA range | ≤70 | 71–83 | 84–93 | 94–105 | ≥106 | |
FAVVA Fruit b | 15.8 ± 6.5 | 22.6 ± 6.4 | 27.0 ± 6.0 | 31.3 ± 6.0 | 39.2 ± 7.1 | 27.1 ± 10.2 |
FAVVA Vegetable c | 42.3 ± 9.6 | 54.8 ± 6.6 | 61.5 ± 6.2 | 67.7 ± 6.2 | 77.9 ± 8.2 | 60.7 ± 14.1 |
Age (y) | 52.5 ± 1.4 | 52.5 ± 1.5 | 52.5 ± 1.5 | 52.5 ± 1.5 | 52.5 ± 1.5 | 52.5 ± 1.5 |
Area of residence | ||||||
Major cities | 35.0 (629) | 33.8 (621) | 36.8 (625) | 33.3 (587) | 33.8 (587) | 34.5 (3049) |
Inner regional | 41.2 (740) | 42.3 (779) | 40.4 (687) | 41.3 (728) | 43.8 (761) | 41.8 (3695) |
Outer regional | 20.7 (371) | 20.2 (372) | 19.5 (332) | 21.8 (384) | 18.7 (325) | 20.2 (1784) |
Remote | 2.3 (41) | 3.2 (59) | 2.8 (48) | 3.0 (52) | 3.1 (53) | 2.9 (253) |
Very remote | 0.8 (15) | 0.5 (9) | 0.4 (7) | 0.6 (10) | 0.6 (11) | 0.6 (52) |
Self-reported ability to manage on their current income | ||||||
Easy | 14.4 (259) | 19.3 (355) | 18.9 (321) | 19.2 (338) | 21.0 (365) | 18.5 (1638) |
Not too bad | 39.4 (708) | 43.0 (791) | 46.5 (790) | 44.6 (786) | 44.6 (775) | 43.6 (3850) |
Difficult some of the time | 30.6 (550) | 25.9 (476) | 24.5 (416) | 27.1 (477) | 26.4 (458) | 26.9 (2377) |
Difficult all of the time | 13.3 (239) | 10.5 (194) | 9.3 (158) | 7.4 (131) | 7.1 (123) | 9.6 (845) |
Impossible | 2.2 (40) | 1.3 (24) | 0.8 (14) | 1.6 (29) | 0.9 (16) | 1.4 (139) |
Weight (kg) | 71.4 ± 16.1 | 71.6 ± 14.9 | 71.0 ± 14.5 | 71.6 ± 14.7 | 71.0 ± 14.7 | 71.4 ± 15.0 |
BMI (kg/m2) | 27.1 ± 5.9 | 27.0 ± 5.6 | 26.7 ± 5.3 | 26.9 ± 5.3 | 26.6 ± 5.2 | 26.9 ± 5.5 |
BMI category | ||||||
Underweight | 1.9 (35) | 1.6 (30) | 1.2 (20) | 0.9 (16) | 1.0 (18) | 1.3 (119) |
Healthy weight | 41.1 (738) | 40.9 (753) | 43.6 (740) | 41.6 (732) | 44.9 (780) | 42.4 (3743) |
Overweight/obese | 57.0 (1023) | 57.4 (1057) | 55.3 (939) | 57.5 (1013) | 54.1 (939) | 56.3 (4971) |
Energy intake (kJ/day) | 5972.7 ± 2323.3 | 6487.2 ± 2287.5 | 6625.3 ± 2237.0 | 6872.1 ± 2392.7 | 7457.2 ± 2938.7 | 6676.6 ± 2494.6 |
Fruit and vegetable intake (g/day) d | 268.2 ± 136.4 | 345.5 ± 147.5 | 385.7 ± 152.0 | 443.1 ± 163.5 | 528.4 ± 185.7 | 393.0 ± 180.6 |
Fruit intake (g/day) d | 124.9 ± 100.4 | 176.2 ± 119.9 | 211.8 ± 122.8 | 255.0 ± 130.3 | 319.4 ± 138.8 | 216.5 ± 139.8 |
Vegetable intake (g/day) d | 143.3 ± 81.2 | 169.4 ± 75.2 | 174.0 ± 74.5 | 188.1 ± 75.7 | 209.0 ± 80.4 | 176.5 ± 80.4 |
Under Weight b n = 119 | Healthy Weight n = 3743 | Overweight/Obese n = 4971 | ALL n = 8833 | ||||||
---|---|---|---|---|---|---|---|---|---|
BMI, Mean ± SD | 17.6 ± 0.9 | 22.6 ± 1.6 | 30.4 ± 4.8 | 26.9 ± 5.5 | |||||
2001 FAVVA Quintile | Medicare Variable | Median | Q1, Q3 | Median | Q1, Q3 | Median | Q1, Q3 | Median | Q1, Q3 |
1 (lowest) | n | 37 | 748 | 1041 | 1826 | ||||
FAVVA | 62 | 45, 68 | 62 | 53, 70 | 63 | 53, 70 | 62 | 53, 70 | |
Claims (n) c | 228 | 147, 441 | 226 | 145, 358 | 266 | 170, 401 | 250 | 157, 387 | |
Charge ($) d | 12,580 | 7504, 27,566 | 13,262 | 7782, 23,063 | 15,169 | 8787, 24,673 | 14,261 | 8195, 24,246 | |
Benefit ($) e | 11,393 | 6798, 20,669 | 10,055 | 6066, 17,603 | 12,230 | 7223, 19,636 | 11,265 | 6620, 18,910 | |
Gap ($) f | 2190 | 705, 3988 | 2583 | 923, 5458 | 2168 | 759, 5631 | 2345 | 802, 5540 | |
2 | n | 32 | 835 | 1119 | 1986 | ||||
FAVVA | 79 | 72, 85 | 79 | 73, 86 | 79 | 72, 86 | 79 | 73, 86 | |
Claims (n) | 192 | 109, 321 | 219 | 147, 315 | 260 | 163, 381 | 240 | 156, 353 | |
Charge ($) | 10,845 | 6253, 17,903 | 13,404 | 8099, 22,050 | 15,839 | 8811, 24,764 | 14,614 | 8450, 23,615 | |
Benefit ($) | 8158 | 4764, 15,694 | 10,044 | 6242, 15,647 | 12,021 | 7016, 19,020 | 10,984 | 6512, 17,497 | |
Gap ($) | 2019 | 878, 3858 | 3028 * | 1320, 6087 | 2821 | 949, 6345 | 2886 * | 1081, 6206 | |
3 | n | 22 | 699 | 919 | 1640 | ||||
FAVVA | 89 | 85, 96 | 89 | 83, 95 | 89 | 83, 95 | 89 | 83, 95 | |
Claims (n) | 226 | 128, 283 | 224 * | 156, 320 | 269 | 182, 392 | 246 | 170, 363 | |
Charge ($) | 15,045 | 8061, 20,111 | 13,553 | 8435, 22,154 | 16,770 | 9852, 27,132 | 15,290 | 9336, 25,061 | |
Benefit ($) | 11,122 | 6818, 14,200 | 10,085 | 6605, 15,905 | 12,881 | 7772, 19,952 | 11,470 | 7132, 18,301 | |
Gap ($) | 2850 | 1620, 6143 | 3131 * | 1268, 5983 | 3308 * | 1399, 7317 | 3230 * | 1330, 6702 | |
4 | n | 15 | 703 | 910 | 1628 | ||||
FAVVA | 100 | 98, 106 | 99 | 92, 106 | 98 | 91, 104 | 98 | 92, 105 | |
Claims (n) | 431 | 202, 532 | 223 * | 150, 326 | 252 | 167, 379 | 239 | 161, 358 | |
Charge ($) | 22,803 | 15,527, 33,031 | 13,728 | 8293, 22,532 | 15,331 | 9060, 25,531 | 14,788 | 8844, 24,292 | |
Benefit ($) | 18,016 | 8683, 29,663 | 10,327 | 6336, 16,445 | 11,754 | 7155, 18,994 | 10,859 | 6800, 18,019 | |
Gap ($) | 3729 | 1548, 6974 | 3070 * | 1440, 6128 | 3434 * | 1351, 6895 | 3251 * | 1387, 6586 | |
5 (highest) | n | 13 | 758 | 982 | 1753 | ||||
FAVVA | 114 | 109, 123 | 112 | 105, 120 | 111 | 104, 121 | 112 | 104, 121 | |
Claims (n) | 208 | 176, 277 | 220 * | 144, 318 | 260 | 167, 393 | 237 | 154, 357 | |
Charge ($) | 13,988 | 11,982, 16,097 | 14,010 | 8008, 21,279 | 16,813 | 9206, 26,808 | 15,251 | 8695, 24,394 | |
Benefit ($) | 11,357 | 8319, 13,101 | 9878 | 6091, 15,673 | 12,262 | 7058, 20,286 | 11,250 | 6618, 18,151 | |
Gap ($) | 2666 | 686, 4740 | 3552 | 1375, 6399 | 3250 * | 1249, 7242 | 3448 * | 1321, 6761 |
2001 Fruit and Vegetable Intake | Medicare Variable | Healthy Weight n = 3743 | Overweight/Obese n = 4971 | All n = 8833 |
---|---|---|---|---|
FAVVA Total | Claims (n) b | −4.3 (−6.8, −1.7) * | 0.3 (−2.3, 2.9) | −1.6 (−3.4, 0.2) |
Charge ($AUD) c | −132.6 (−321.6, 56.5) | 187.8 (2.4, 373.2) * | 47.1 (−85.7, 179.9) | |
Benefit ($AUD) d | −188.0 (−325.8, −50.1) * | 66.9 (−69.2, 203.0) | −45.0 (−142.6, 52.5) | |
Gap ($AUD) e | 55.4 (−10.4, 121.2) | 120.9 (56.3, 185.5) * | 92.2 (46.2, 138.1) * | |
FAVVA Fruit | Claims (n) | −4.9 (−10.2, 0.3) | 5.6 (0.2, 10.9) * | 1.4 (−2.5, 5.2) |
Charge ($AUD) | −13.9 (−409.9, 382.1) | 567.4 (184.0, 950.7) * | 324.8 (48.2, 601.4) * | |
Benefit ($AUD) | −182.7 (−471.6, 106.2) | 336.7 (55.2, 618.1) * | 119.5 (−83.8, 322.8) | |
Gap ($AUD) | 168.8 (31.1, 306.5) * | 230.7 (97.0, 364.4) * | 205.3 (109.6, 301.0) * | |
FAVVA Vegetable | Claims (n) | −7.1 (−10.9, −3.3) * | −2.2 (−6.1, 1.7) | −4.4 (−7.1, −1.6) * |
Charge ($AUD) | −293.0 (−577.4, −8.6) * | 122.3 (−153.6, 398.1) | −61.9 (−260.4, 136.5) | |
Benefit ($AUD) | −331.4 (−538.7, −124.0) * | −26.0 (−228.4, 176.5) | −162.0 (−307.8, −16.3) * | |
Gap ($AUD) | 38.3 (−60.7, 137.3) | 148.3 (52.1, 244.4) * | 100.1 (31.4, 168.8) * |
Change in Intake 2001–2013 | Medicare Variable | Healthy Weight n = 3007 | Overweight/Obese n = 3857 | All n = 6955 |
---|---|---|---|---|
FAVVA Total | Claims (n) | −2.1 (−5.3, 1.2) | −4.9 (−8.3, −1.5) * | −4.3 (−6.8, −1.9) * |
Charge ($AUD) | −152.9 (−402.8, 97.1) | −368.1 (−623.0, −113.1) * | −309.1 (−488.8, −129.3) * | |
Benefit ($AUD) | −141.3 (−322.6, 40.0) | −280.6 (−466.0, −95.3) * | −252.0 (−383.0, −121.0) * | |
Gap ($AUD) | −11.6 (−99.5, 76.4) | −87.4 (−177.5, 2.6) | −57.0 (−120.0, 5.9) | |
FAVVA Fruit | Claims (n) | −1.9 (−8.2, 4.4) | −4.9 (−11.4, 1.6) | −4.7 (−9.3, −0.03) * |
Charge ($AUD) | −175.5 (−657.4, 306.4) | −452.8 (−933.6, 28.0) | −392.6 (−735.4, −49.7) * | |
Benefit ($AUD) | −159.3 (−508.8, 190.3) | −315.3 (−664.9, 34.2) | −297.6 (−547.6, −47.7) * | |
Gap ($AUD) | −16.2 (−185.8, 153.3) | −137.5 (−307.2, 32.2) | −94.9 (−215.0, 25.1) | |
FAVVA Vegetables | Claims (n) | −3.3 (−8.1, 1.5) | −7.3 (−12.1, −2.3) * | −6.4 (−9.9, −2.9) * |
Charge ($AUD) | −227.0 (−593.4, 139.3) | −494.9 (−860.6, −129.3) * | −421.1 (−681.3, −161.0) * | |
Benefit ($AUD) | −211.6 (−477.3, 54.1) | −394.7 (−660.5, −128.8) * | −356.4 (−546.0, −166.8) * | |
Gap ($AUD) | −15.5 (−144.4, 113.4) | −100.3 (−229.4, 28.9) | −64.8 (−156.0, 26.4) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baldwin, J.N.; Ashton, L.M.; Forder, P.M.; Haslam, R.L.; Hure, A.J.; Loxton, D.J.; Patterson, A.J.; Collins, C.E. Increasing Fruit and Vegetable Variety over Time Is Associated with Lower 15-Year Healthcare Costs: Results from the Australian Longitudinal Study on Women’s Health. Nutrients 2021, 13, 2829. https://doi.org/10.3390/nu13082829
Baldwin JN, Ashton LM, Forder PM, Haslam RL, Hure AJ, Loxton DJ, Patterson AJ, Collins CE. Increasing Fruit and Vegetable Variety over Time Is Associated with Lower 15-Year Healthcare Costs: Results from the Australian Longitudinal Study on Women’s Health. Nutrients. 2021; 13(8):2829. https://doi.org/10.3390/nu13082829
Chicago/Turabian StyleBaldwin, Jennifer N., Lee M. Ashton, Peta M. Forder, Rebecca L. Haslam, Alexis J. Hure, Deborah J. Loxton, Amanda J. Patterson, and Clare E. Collins. 2021. "Increasing Fruit and Vegetable Variety over Time Is Associated with Lower 15-Year Healthcare Costs: Results from the Australian Longitudinal Study on Women’s Health" Nutrients 13, no. 8: 2829. https://doi.org/10.3390/nu13082829
APA StyleBaldwin, J. N., Ashton, L. M., Forder, P. M., Haslam, R. L., Hure, A. J., Loxton, D. J., Patterson, A. J., & Collins, C. E. (2021). Increasing Fruit and Vegetable Variety over Time Is Associated with Lower 15-Year Healthcare Costs: Results from the Australian Longitudinal Study on Women’s Health. Nutrients, 13(8), 2829. https://doi.org/10.3390/nu13082829