Water Quality and Mortality from Coronary Artery Disease in Sardinia: A Geospatial Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Setting
2.2. Data Collection
2.3. Water Composition
2.4. Statistical Analysis
3. Results
3.1. Correlation between Water Parameters
3.2. Water Minerals and Standardized Mortality Ratio for Coronary Artery Disease
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sauvant, M.P.; Pepin, D. Drinking water and cardiovascular disease. Food Chem. Toxicol. 2002, 40, 1311–1325. [Google Scholar] [CrossRef]
- Naser, A.M.; Clasen, T.F.; Luby, S.P.; Rahman, M.; Unicomb, L.; Ahmed, K.M.; Doza, S.; Ourshalimian, S.; Chang, H.H.; Stowell, J.D.; et al. Groundwater Chemistry and Blood Pressure: A Cross-Sectional Study in Bangladesh. Int. J. Environ. Res. Public Health 2019, 16, 2289. [Google Scholar] [CrossRef] [Green Version]
- Rosborg, I.; Kozisek, F. Drinking Water Minerals and Mineral Balance. In Importance, Health Significance, Safety Precautions, 2nd ed.; Springer International Publishing: London, UK, 2020. [Google Scholar]
- Mozaffarian, D. Global Scourge of Cardiovascular Disease: Time for Health Care Systems Reform and Precision Population Health. J. Am. Coll. Cardiol. 2017, 70, 26–28. [Google Scholar] [CrossRef] [PubMed]
- Roth, G.A.; Johnson, C.; Abajobir, A.; Abd-Allah, F.; Abera, S.F.; Abyu, G.; Ahmed, M.; Aksut, B.; Alam, T.; Alam, K.; et al. Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015. J. Am. Coll. Cardiol. 2017, 70, 1–25. [Google Scholar] [CrossRef]
- Decreto Legislativo 8 Ottobre 2011, n. 176. Available online: https://www.gazzettaufficiale.it/eli/id/2011/11/05/011G0218/sg (accessed on 9 August 2021).
- Hossienifar, F.; Entezari, M.; Hosseini, S. Water hardness zoning of Isfahan Province, Iran, and its relationship with cardiovascular mortality, 2013–2015. ARYA Atheroscler. 2019, 15, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Pomeranz, A.; Korzets, Z.; Vanunu, D.; Krystal, H.; Wolach, B. Elevated salt and nitrate levels in drinking water cause an increase of blood pressure in schoolchildren. Kidney Blood Press. Res. 2000, 23, 400–403. [Google Scholar] [CrossRef]
- Sengupta, P. Potential health impacts of hard water. Int. J. Prev. Med. 2013, 4, 866–875. [Google Scholar] [PubMed]
- Talukder, M.R.R.; Rutherford, S.; Phung, D.; Islam, M.Z.; Chu, C. The effect of drinking water salinity on blood pressure in young adults of coastal Bangladesh. Environ. Pollut. 2016, 214, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Rosinger, A.Y.; Bethancourt, H.; Swanson, Z.S.; Nzunza, R.; Saunders, J.; Dhanasekar, S.; Kenney, W.L.; Hu, K.; Douglass, M.J.; Ndiema, E.; et al. Drinking water salinity is associated with hypertension and hyperdilute urine among Daasanach pastoralists in Northern Kenya. Sci. Total Environ. 2021, 770, 144667. [Google Scholar] [CrossRef]
- Scheelbeek, P.F.; Khan, A.E.; Mojumder, S.; Elliott, P.; Vineis, P. Drinking Water Sodium and Elevated Blood Pressure of Healthy Pregnant Women in Salinity-Affected Coastal Areas. Hypertension 2016, 68, 464–470. [Google Scholar] [CrossRef] [Green Version]
- Khan, J.R.; Awan, N.; Archie, R.J.; Sultana, N.; Muurlink, O. The association between drinking water salinity and hypertension in coastal Bangladesh. Glob. Heart J. 2020, 4, 153–158. [Google Scholar] [CrossRef]
- Kurtz, T.W.; Morris, R.C., Jr. Dietary chloride as a determinant of “sodium-dependent” hypertension. Science 1983, 222, 1139–1141. [Google Scholar] [CrossRef] [PubMed]
- Luft, F.C.; Zemel, M.B.; Sowers, J.A.; Fineberg, N.S.; Weinberger, M.H. Sodium bicarbonate and sodium chloride: Effects on blood pressure and electrolyte homeostasis in normal and hypertensive man. J. Hypertens. 1990, 8, 663–670. [Google Scholar] [CrossRef] [PubMed]
- McCallum, L.; Lip, S.; Padmanabhan, S. The hidden hand of chloride in hypertension. Pflug. Arch. 2015, 467, 595–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mora-Alvarado, D.M.; Barquero, C.F.P.; Herrera, N.A.; Miraulth, M.H. Diferencias de dureza del agua y las tasas de longevidad en la península de nicoya y los otros distritos de Guanacaste. Tecnol. Marcha 2015, 28, 3–14. [Google Scholar] [CrossRef]
- Mora-Alvarado, D.M.; Herrera, N.A.; Portuquez, C.F.; Brolatto, M.P. Cálculos en las vías urinarias y su relación con el consumo de calcio en el agua de bebida en Costa Rica. Rev. Costarric. Salud Pública 2000, 9, 61–70. [Google Scholar]
- Armstrong, B.K.; Margetts, B.M.; Binns, C.W.; Campbell, N.A.; Masarei, J.R.; McCall, M.G. Water sodium and blood pressure in rural school children. Arch. Environ. Health 1982, 37, 236–245. [Google Scholar] [CrossRef]
- Toxqui, L.; Vaquero, M.P. Aldosterone changes after consumption of a sodium-bicarbonated mineral water in humans. A four-way randomized controlled trial. J. Physiol. Biochem. 2016, 72, 635–641. [Google Scholar] [CrossRef]
- Schoppen, S.; Perez-Granados, A.M.; Carbajal, A.; Oubina, P.; Sanchez-Muniz, F.J.; Gomez-Gerique, J.A.; Vaquero, M.P. A sodium-rich carbonated mineral water reduces cardiovascular risk in postmenopausal women. J. Nutr. 2004, 134, 1058–1063. [Google Scholar] [CrossRef]
- Dore, M.P.; Pes, G.M.; Realdi, G. Health properties of the Italian San Martino® mineral-rich water: A self-controlled pilot study. Biomed. Pharmacother. 2021, 138, 111509. [Google Scholar] [CrossRef]
- Frisoli, T.M.; Schmieder, R.E.; Grodzicki, T.; Messerli, F.H. Salt and hypertension: Is salt dietary reduction worth the effort? Am. J. Med. 2012, 125, 433–439. [Google Scholar] [CrossRef]
- Doria, M.F. Bottled water versus tap water: Understanding consumers’ preferences. J. Water Health 2006, 4, 271–276. [Google Scholar] [CrossRef] [Green Version]
- Dettori, M.; Azara, A.; Loria, E.; Piana, A.; Masia, M.D.; Palmieri, A.; Cossu, A.; Castiglia, P. Population Distrust of Drinking Water Safety. Community Outrage Analysis, Prediction and Management. Int. J. Environ. Res. Public Health 2019, 16, 1004. [Google Scholar] [CrossRef] [Green Version]
- Caselli, G.; Lipsi, R. Survival differences among the oldest old in Sardinia: Who, what, where, and why? Demogr. Res. 2006, 14, 267–294. [Google Scholar] [CrossRef] [Green Version]
- Dettori, B. Prime considerazioni sul chimismo e sul termalismo delle acque minerali della Sardegna settentrionale. Studi Sassar. 1978, 26, 353–374. [Google Scholar]
- Paternoster, M.; Oggiano, G.; Sinisi, R.; Caracausi, A.; Mongelli, G. Geochemistry of two contrasting deep fluids in the Sardinia microplate (western Mediterranean): Relationships with tectonics and heat sources. J. Volcanol. Geotherm. Res. 2017, 336, 108–117. [Google Scholar] [CrossRef]
- Fabian, C.; Reimann, C.; Fabian, K.; Birke, M.; Baritz, R.; Haslinger, E. GEMAS: Spatial distribution of the pH of European agricultural and grazing land soil. Appl. Geochem. 2014, 48, 207–216. [Google Scholar] [CrossRef]
- Pes, G.M.; Cocco, F.; Bibbo, S.; Marras, G.; Dore, M.P. Cancer time trend in a population following a socio-economic transition: Results of age-period-cohort analysis. Int. J. Public Health 2017, 62, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Cavalli-Sforza, L.L. Genes, Peoples, and Languages; University of California Press: New York, NY, USA, 2001. [Google Scholar]
- Sitzia, G. Atlante della Mortalità in Sardegna; Osservatorio Epidemiologico Regionale: Cagliari, Italy, 2005. [Google Scholar]
- Bertorino, G.; Caboi, R.; Caredda, A.M.; Conti-Vecchi, G.; Fanfani, L.; Massoli-Novelli, R.; Zuddas, P. Caratteri idrogeochinici delle acque naturali della Sardegna meridionale: 1. Le acque del Gerrei e della Trexenta. Rend. Soc. Ital. Mineral. Petrol. 1979, 35, 677–691. [Google Scholar]
- Contu, A.; Pala, A. Le Acque Minerali Della Sardegna: Igiene, Geologia e Idrogeologia; Coedisar: Elmas, Cagliari, Italy, 1998. [Google Scholar]
- Mollié, A.; Richardson, S. Empirical Bayes estimates of cancer mortality rates using spatial models. Stat. Med. 1991, 10, 95–112. [Google Scholar] [CrossRef] [PubMed]
- Hájek, M.; Jiménez-Alfaro, B.; Hájek, O.; Brancaleoni, L.; Cantonati, M.; Carbognani, M.; Dedj, A.; Díu, D.; Gerdol, R.; Hájková, P.; et al. A European map of groundwater pH and calcium. Earth Syst. Sci. Data 2021, 13, 1089–1105. [Google Scholar] [CrossRef]
- Mas-Pla, J.; Ghiglieri, G.; Uras, G. Seawater intrusion and coastal groundwater resources management. Examples from two Mediterranean regions: Catalonia and Sardinia. Contrib. Sci. 2014, 10, 171–184. [Google Scholar]
- Cuccuru, S.; Deluca, F.; Mongelli, G.; Oggiano, G. Granite- and andesite-hosted thermal water: Geochemistry and environmental issues in northern Sardinia, Italy. Environ. Earth Sci. 2020, 79, 257. [Google Scholar] [CrossRef]
- Poulain, M.; Pes, G.M.; Grasland, C.; Carru, C.; Ferrucci, L.; Baggio, G.; Franceschi, C.; Deiana, L. Identification of a geographic area characterized by extreme longevity in the Sardinia island: The AKEA study. Exp. Gerontol. 2004, 39, 1423–1429. [Google Scholar] [CrossRef]
- Lambrakis, N.; Kallergis, G. Contribution to the study of Greek thermal springs: Hydrogeological and hydrochemical characteristics and origin of thermal waters. Hydrogeol. J. 2005, 13, 506–521. [Google Scholar] [CrossRef]
- Knezovic, N.J.; Memic, M.; Mabic, M.; Huremovic, J.; Mikulic, I. Correlation between water hardness and cardiovascular diseases in Mostar city, Bosnia and Herzegovina. J. Water Health 2014, 12, 817–823. [Google Scholar] [CrossRef]
- Rapant, S.; Letkovicova, A.; Jurkovicova, D.; Kosmovsky, V.; Kozisek, F.; Jurkovic, L. Differences in health status of Slovak municipalities supplied with drinking water of different hardness values. Environ. Geochem. Health 2021, 43, 2665–2677. [Google Scholar] [CrossRef]
- Yang, C.Y.; Chang, C.C.; Tsai, S.S.; Chiu, H.F. Calcium and magnesium in drinking water and risk of death from acute myocardial infarction in Taiwan. Environ. Res. 2006, 101, 407–411. [Google Scholar] [CrossRef]
- Morris, J.N.; Crawford, M.D.; Heady, J.A. Hardness of local water-supplies and mortality from cardiovascular disease in the County Boroughs of England and Wales. Lancet 1961, 1, 860–862. [Google Scholar] [CrossRef]
- Stocks, P. Mortality from cancer and cardiovascular diseases in the county boroughs of England and Wales classified according to the sources and hardness of their water supplies, 1958–1967. J. Hyg. 1973, 71, 237–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crawford, M.D.; Gardner, M.J.; Morris, J.N. Mortality and hardness of local water-supplies. Lancet 1968, 1, 827–831. [Google Scholar] [CrossRef]
- Catling, L.A.; Abubakar, I.; Lake, I.R.; Swift, L.; Hunter, P.R. A systematic review of analytical observational studies investigating the association between cardiovascular disease and drinking water hardness. J. Water Health 2008, 6, 433–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yousefi, M.; Najafi Saleh, H.; Yaseri, M.; Jalilzadeh, M.; Mohammadi, A.A. Association of consumption of excess hard water, body mass index and waist circumference with risk of hypertension in individuals living in hard and soft water areas. Environ. Geochem. Health 2019, 41, 1213–1221. [Google Scholar] [CrossRef] [PubMed]
- Mofrad, M.D.; Djafarian, K.; Mozaffari, H.; Shab-Bidar, S. Effect of magnesium supplementation on endothelial function: A systematic review and meta-analysis of randomized controlled trials. Atherosclerosis 2018, 273, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Bjørklund, G.; Dadar, M.; Chirumbolo, S.; Aaseth, J. High Content of Lead Is Associated with the Softness of Drinking Water and Raised Cardiovascular Morbidity: A Review. Biol. Trace Elem. Res. 2018, 186, 384–394. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C.D.; Severo, M.; Araujo, J.R.; Guimaraes, J.T.; Pestana, D.; Santos, A.; Ferreira, R.; Ascensao, A.; Magalhaes, J.; Azevedo, I.; et al. Relevance of a Hypersaline Sodium-Rich Naturally Sparkling Mineral Water to the Protection against Metabolic Syndrome Induction in Fructose-Fed Sprague-Dawley Rats: A Biochemical, Metabolic, and Redox Approach. Int. J. Endocrinol. 2014, 2014, 384583. [Google Scholar] [CrossRef]
Total Dissolved Solids | pH | Sodium (Na+) | Potassium (K+) | Calcium (Ca2+) | Magnesium (Mg2+) | Bicarbonate (HCO3−) | Sulphate (SO42−) | |
---|---|---|---|---|---|---|---|---|
Total dissolved solids | ||||||||
pH | 0.087 | |||||||
Sodium (Na+) | 0.463 ** | 0.322 | ||||||
Potassium (K+) | 0.363 ** | −0.289 | 0.429 ** | |||||
Calcium (Ca2+) | 0.286 * | −0.270 | 0.298 * | 0.375 ** | ||||
Magnesium (Mg2+) | 0.432 ** | −0.388 | 0.152 * | 0.132 | 0.234 ** | |||
Bicarbonate (HCO3−) | 0.215 | −0.331 | 0.183 * | 0.676 ** | 0.331 ** | 0.350 ** | ||
Sulphate (SO42-) | 0.171 | −0.276 | 0.328 ** | 0.834 ** | 0.281 ** | 0.191 ** | 0.799 ** | |
Chloride (Cl−) | 0.396 ** | 0.211 | 0.844 ** | 0.686 ** | 0.334 ** | 0.177 * | 0.439 ** | 0.660 ** |
Parameter | Unit | Average Values in Spring Waters | Minimum and Maximum | Pearson Correlation Coefficient with Mortality for AMI | Pearson Correlation Coefficient with Mortality for IHD |
---|---|---|---|---|---|
Total dissolved | mg/L | 529.9 ± 437.4 | 108–2522 | −0.066 | −0.057 |
solids | |||||
pH | 7.35 ± 0.78 | 6.5–9.6 | −0.071 | −0.113 | |
Sodium (Na+) | mg/L | 53.5 ± 47.2 | 7.4–250.0 | 0.036 | 0.074 |
Potassium (K+) | mg/L | 3.6 ± 5.3 | 0.6–46.0 | −0.032 | −0.070 |
Calcium (Ca2+) | mg/L | 22.6 ± 29.3 | 0.2–213.0 | −0.123 1 | −0.146 3 |
Magnesium (Mg2+) | mg/L | 16.9 ± 28.5 | 0.1–345.0 | −0.131 2 | −0.138 4 |
Bicarbonate (HCO3−) | mg/L | 164.2 ± 276.5 | 6.1–1159.3 | −0.147 | −0.126 5 |
Sulphate (SO42-) | mg/L | 26.0 ± 36.9 | 1.9–203.5 | −0.099 | −0.121 |
Chloride (Cl−) | mg/L | 84.9 ± 72.8 | 14.0–408.2 | 0.072 | 0.013 |
95% CrI | |||
---|---|---|---|
Effect | Coefficient | Lower | Upper |
Intercept | 113.3 | 100.8 | 125.7 |
Calcium (Ca2+) | −0.470 | −0.743 | −0.197 |
Magnesium (Mg2+) | −0.082 | −0.228 | 0.065 |
Sodium (Na+) | −0.318 | −0.706 | 0.070 |
Potassium (K+) | 0.020 | −3.129 | 3.168 |
Bicarbonate (HCO3−) | 0.038 | −0.025 | 0.101 |
Sulphate (SO42-) | 0.026 | −0.671 | 0.724 |
Chloride (Cl−) | 0.291 | 0.018 | 0.564 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dore, M.P.; Parodi, G.; Portoghese, M.; Errigo, A.; Pes, G.M. Water Quality and Mortality from Coronary Artery Disease in Sardinia: A Geospatial Analysis. Nutrients 2021, 13, 2858. https://doi.org/10.3390/nu13082858
Dore MP, Parodi G, Portoghese M, Errigo A, Pes GM. Water Quality and Mortality from Coronary Artery Disease in Sardinia: A Geospatial Analysis. Nutrients. 2021; 13(8):2858. https://doi.org/10.3390/nu13082858
Chicago/Turabian StyleDore, Maria Pina, Guido Parodi, Michele Portoghese, Alessandra Errigo, and Giovanni Mario Pes. 2021. "Water Quality and Mortality from Coronary Artery Disease in Sardinia: A Geospatial Analysis" Nutrients 13, no. 8: 2858. https://doi.org/10.3390/nu13082858
APA StyleDore, M. P., Parodi, G., Portoghese, M., Errigo, A., & Pes, G. M. (2021). Water Quality and Mortality from Coronary Artery Disease in Sardinia: A Geospatial Analysis. Nutrients, 13(8), 2858. https://doi.org/10.3390/nu13082858