Analyses and Declarations of Omega-3 Fatty Acids in Canned Seafood May Help to Quantify Their Dietary Intake
Abstract
:1. Introduction
1.1. Role and Feature of Seafood as Sources of Long-Chain Omega-3 FA
1.2. Preference of Coldwater Fish in Canned Products
1.3. Reason for a Reevaluation
2. Similar Methods in Four Clinical Studies
3. Effects on Cardiovascular Risk Factors
3.1. Results of Canned Mackerel and Herring in Healthy Volunteers
3.2. Results in Patients with Hyperlipoproteinemia (HLP)
3.3. Canned Mackerel and Herring in Patients with Mild Essential Hypertension
3.4. Long-Term Study: Canned Mackerel in Patients with Essential Hypertension
4. Arguments for the Design of the Four Studies
5. Practical Aspects for Dietary Intake
6. Suggestions for Future Research
6.1. Comparison of Seafood with Fish Oil Supplements
6.2. Different Efficacy on High and Low Initial Levels of TG and Blood Pressure
6.3. Justification for Quantifying the Supply of Omega-3 FA
- -
- Measurement of the status of fatty acids by means of the Omega-3 Index before and during follow-up.
- -
- Adequate dosage of fish oil or algae oil supplements.
- -
- Consumption of seafood and/or functional food with declared contents of omega-3 FA.
6.4. Omega-3 Index and Controlled Intake of Omega-3 FA
6.5. Acknowledgement by Consumers
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Von Lossoncy, T.O.; Ruiter, A.; Bronsgeest-Schoute, H.C.; van Gent, C.M.; Hermus, R.J.J. The effect of a fish diet on serum lipids in healthy human subjects. Am. J. Clin. Nutr. 1978, 31, 1340–1346. [Google Scholar] [CrossRef]
- Kromhout, D.; Bosschieter, F.B.; de Lezenne Coulander, C. The inverse relation between fish consumption and 20-year-mortality from coronary heart disease. N. Engl. J. Med. 1985, 31, 1205–1209. [Google Scholar] [CrossRef]
- Van Houwelingen, R.; Nordoy, A.; van der Beck, E.; Houtsmuller, U.; de Metz, M.; Hornstra, G. Effect of moderate fish intake on blood pressure, bleeding time, hematology, and clinical chemistry in healthy males. Am. J. Clin. Nutr. 1987, 46, 424–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burr, M.L.; Fehily, A.M.; Gilbert, J.F.; Rogers, S.; Sweetnam, P.M.; Deadman, N.M. Effects of changes in fish and fibre intakes on death and myocardreinfarction: Diet and Reinfarction Trial (DART). Lancet 1989, 2, 757–761. [Google Scholar] [CrossRef]
- Albert, C.M.; Hennekens, C.H.; O´Donnell, C.J.; Ajani, U.A.; Carey, V.J.; Willert, W.C.; Ruskin, J.N.; Manson, J.E. Fish consumption and risk of sudden cardiac death. JAMA 1998, 279, 23–28. [Google Scholar] [CrossRef] [PubMed]
- König, A.; Bouzan, C.; Cohen, J.T.; Connor, W.E.; Kris-Etherton, P.M.; GRAY, G.M.; Lawrence, R.S.; Savitz, D.A.; Teutsch, S.M. Quantitative analysis of fish consumption and coronary heart disease mortality. Am. J. Prev. Med. 2005, 29, 335–346. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Harris, W.S.; Chung, M.; Lichtenstein, A.H.; Balk, E.N.; Kupelnick, B.; Jordan, H.S.; Lau, J. N-3 Fatty acids from fish or fish-oil supplements, but not alpha-linolenic acid, benefit cardiovascular disease outcomes in primary and secondary prevention studies: A systematic review. Am. J. Clin. Nutr. 2006, 84, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Xiong, K.; Cai, J.; Ma, A. Fish Consumption and Coronary Heart Disease; A Meta-Analysis. Nutrients 2020, 12, 2278. [Google Scholar] [CrossRef]
- Moham, D.; Mente, A.; Dehghan, M.; Rangarajan, S.; O’Donnell, M.; Hu, W.; Dagenais, G.; Wielgosz, A.; Lear, S.; Wei, L.; et al. Associations of Fish Comsumption with Risk of Cardiovascular Disease and Mortality among Individuals with or without Vascular Disease from 58 Countries. JAMA Intern. Med. 2021, 181, 631–649. [Google Scholar] [CrossRef]
- Rimm, E.B.; Appel, U.; Chiuve, S.E.; Djousse, L.; Engler, M.B.; Krisd-Etherton, P.M.; Mozzaffarion, D.; Siscovick, D.; Lichtenstein, A.H. Seafood Long-Chain n-3 Polyunsaturated Fatty Acids and Cardiovascular Disease: A Science Advisory from the American Heart Association. Circulation 2018, 138, e35–e47. [Google Scholar] [CrossRef]
- Innes, J.K.; Calder, P.C. Marine Omega-3 (N-3) Fatty Acids for Cardiovascular Health: An Update 2020. Int. J. Mol. Sci. 2020, 61, 1362. [Google Scholar] [CrossRef] [Green Version]
- Ackman, R.G. Variability of fatty acids and lipids in seafoods. N-3 News 1990, 5, 1–4. [Google Scholar] [CrossRef]
- Armstrong, S.G.; Wyllie, S.G.; Leach, D.N. Effects of season and location of catch on the fatty acid composition of some Australian fish species. Food Chem. 1994, 51, 295–305. [Google Scholar] [CrossRef]
- Singer, P.; Wirth, M.; Singer, K. Canned seawater fish with declared content of omega-3 fatty acids: A novel benefit for dietary practice and research. Letter to the Editor. Eur. J. Clin. Nutr. 2016, 70, 1093–1094. [Google Scholar] [CrossRef] [PubMed]
- Hepburn, F.N. Provisional tables on the content of omega-3 fatty acids and other fat components of selected foods. J. Am. Diet. Assoc. 1986, 86, 788–793. [Google Scholar] [CrossRef]
- Ackman, R.G.; Eaton, C.A.; Dyerberg, J. Marine docosaenoic isomer distribution in the plasma of Greenland Eskimos. Am. J. Clin. Nutr. 1980, 33, 1814–1817. [Google Scholar] [CrossRef]
- Dyerberg, J. N-3 fatty acids: The beginnings. Clin. Pharmacol. 1992, 5, 1–13. [Google Scholar]
- Singer, P.; Jaeger, W.; Wirth, M.; Voigt, S.; Naumann, E.; Zimontkowaki, S.; Hajdu, I.; Goedicke, W. Lipid and blood pressure-lowering effect of mackerel diet in men. Atherosclerosis 1983, 49, 99–108. [Google Scholar] [CrossRef]
- Regulation (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on Nutrition and Health Claims Made on Foods. Off. J. Eur. Union2006, L 404, 9–25. Available online: http://data.europa.eu/eli/reg/2006/1924/oj (accessed on 30 December 2006).
- EFSA. Scientific opinion of the panel of dietary products, nutrition and allergies on a request from the European Commission related to labelling reference intake values for n-3 and n-6 polyunsaturated fatty acids. EFSA J. 2009, 1176, 1–11. [Google Scholar] [CrossRef]
- EFSA. Panel on Dietetic Products, Nutrition and Allergies. Scientific opinion on the tolerable upper intake level of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA). EFSA J. 2012, 10, 2815–2863. [Google Scholar] [CrossRef]
- Gladyshew, M.I.; Sushshik, N.N.; Makhutova, O.N.; Kalachova, G.S. Content of essential polyunsaturated fatty acids in three canned fish species. Int. J. Food Sci. Nutr. 2009, 60, 224–230. [Google Scholar] [CrossRef]
- Fredrickson, D.S.; Levy, R.J.; Lees, R.S. Fat transport in lipoproteins. An integrated approach to mechanisms and disorders. N. Engl. J. Med. 1967, 276, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Singer, P.; Wirth, M.; Berger, I.; Voigt, S.; Gerike, U.; Goedicke, W.; Köberle, U.; Heine, H. Influence on serum lipids, lipoproteins and blood pressure of mackerel and herring diet in patients with type IV and V hyperlipoproteinemia. Atherosclerosis 1986, 56, 111–118. [Google Scholar] [CrossRef]
- Singer, P.; Wirth, M.; Berger, I. N-3 fatty acids are the most effective polyunsaturated fatty acids for dietary prevention and treatment of cardiovascular risk factors. World Rev. Nutr. Diet. 1992, 69, 74–112. [Google Scholar] [CrossRef]
- Wilder, J. Basimetric approach (law of initial value) to biological rhythms. Ann. N. Y. Acad. Sci. 1962, 98, 1211–1220. [Google Scholar] [CrossRef]
- Barnaro, N.D.; Willett, W.C.; Ding, E.L. The misuse of meta-analysis in nutrition research. JAMA 2017, 318, 1435–1436. [Google Scholar] [CrossRef]
- Singer, P.; Wirth, M.; Voigt, S.; Richter-Heinrich, E.; Goedicke, W.; Berger, I.; Naumann, E.; Listing, J.; Hartrodt, W.; Taube, C. Blood pressure- and lipid-lowering effects of mackerel and herring diet in patients with mild essential hypertension. Atherosclerosis 1985, 56, 223–235. [Google Scholar] [CrossRef]
- Singer, P.; Berger, I.; Lück, C.; Taube, C.; Naumann, E.; Goedicke, W. Long-term effect of mackerel diet on blood pressure, serum lipids and thromboxane formation in patients with mild essential hypertension. Atherosclerosis 1986, 62, 259–265. [Google Scholar] [CrossRef]
- Bjerve, K.S. N-3 Fatty acid deficiency in man. J. Intern. Med. 1989, 225 (Suppl. S1), 171–175. [Google Scholar] [CrossRef] [PubMed]
- Kris-Etherton, P.M.; Harris, W.S.; Appel, I.J. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 2002, 106, 2747–2757. [Google Scholar] [CrossRef]
- Krauss, R.M.; Eckel, R.H.; Howard, B.; Appel, L.J.; Daniels, S.R.; Deckelbaum, R.J.; Erdmann, J.W.; Kris-Etherton, P.M.; Goldberg, I.J.; Kotchen, T.A.; et al. AHA Dietary Guidelines–Revision 2000. A Statement for Health Care Professionals from the Nutrition Committee of the American Heart Association. Circulation 2000, 102, 2284–2299. [Google Scholar] [CrossRef] [Green Version]
- International Society for the Study of Fatty Acids and Lipids (ISSFAL). Recommendations for Intake of Polyunsaturated Fatty Acids in Healthy Adults (Statement 3). 2004. Available online: www.issfal.org.uk (accessed on 8 December 2016).
- UK Scientific Advisory Committee on Nutrition. Reports & Position Statements: The effects of Long-Chain Polyunsaturated Fatty Acids on Early Human Growth and Cognitive Function. 2004. Available online: http//www.sacn.gov.uk (accessed on 8 December 2016).
- JBS 2. Joint British Societies’ guidelines on prevention of cardiovascular disease in clinical practice. Heart 2005, 91 (Suppl. S5), v1–v52. [Google Scholar] [CrossRef] [Green Version]
- Global Organization for EPA and DHA (GOED). Global Recommendations for EPA and DHA intake (Rev. 19 November 2014). Available online: https://www.issfal.org/assets/globalrecommendationssummary19nov2014landscape_-3-.pdf (accessed on 19 November 2014).
- Harris, W.S. International recommendations for consumption of long-chain omega-3 fatty acids. J. Cardiovasc. Med. 2007, 8 (Suppl. S1), S50–S52. [Google Scholar] [CrossRef]
- Skulas-Ray, A.C.; Wilson, P.W.F.; Harris, W.S.; Brinton, F.E.A.; Kris-Etherton, P.M.; Richter, C.K.; Jacobson, T.A.; Engler, M.B.; Miller, M.; Robinson, J.G.; et al. Omega-3 Fatty Acids for the Management of Hypertriglyceridemia: A Science Advisory from the American Heart Association. Circulation 2019, 140, e673–e691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scorletti, E.; Byrne, C.D. Omega-3 fatty acids, hepatic lipid metabolism, and Nonalcoholic Fatty Liver Disease. Ann. Rev. Nutr. 2013, 33, 231–248. [Google Scholar] [CrossRef] [PubMed]
- Reiner, Z. Hypertriglyceridemia and risk of coronary artery disease. Nat. Rev. Cardiol. 2017, 14, 401–441. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, D.L.; Steg, P.G.; Miller, M.; Brinton, E.A.; Jacobson, T.A.; Ketchum, S.B.; Doyle, R.T.; Juliano, R.A.; Jiao, L.; Granowitz, C.; et al. Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia. N. Engl. J. Med. 2019, 380, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Jackson, K.H.; Polreis, J.M.; Tintle, N.L.; Kris-Etherton, P.M.; Harris, W.S. Association of reported fish intake and supplementation status with the omega-3 index. Prostaglandins Leukot. Essent. Fat. Acids 2019, 142, 4–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, W.S.; Pottala, J.V.; Snds, S.A.; Jones, P.G. Comparison of the effects of fish and fish-oil capsules on the n-3 fatty acid content of blood cells and plasma phospholipids. Am. J. Clin. Nutr. 2007, 86, 162–165. [Google Scholar] [CrossRef]
- Singer, P.; Wirth, M.; Berger, I.; Kretschmer, H. Canned fish is more effective than fish oil on lowering serum lipids, apolipoprotein B, free fatty acids and blood pressure in patients with hyperlipoproteinemia, (English Abstract). Akt. Ernaehr. Med. 1990, 15, 150–161. [Google Scholar]
- Zibaeenezhad, M.J.; Ghavipisheh, N.; Attar, A.; Aslan, A. Comparison of the effect of omega-3 supplements and fresh fish on lipid profile: A randomized, open-labeled trial. Nutr. Diabetes 2017, 1, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Elvevoll, E.O.; Barstad, H.; Breino, E.S.; Brox, J.T.; Eilertsen, K.E.; Lund, T.; Olsen, J.; Osterud, B. Enhanced incorporation of n-3 fatty acids from fish compared with fish oils. Lipids 2006, 41, 1109–1114. [Google Scholar] [CrossRef]
- Browning, L.M.; Walker, C.G.; Mander, A.P.; West, A.L.; Gambell, J.; Madden, J.; Calder, P.C.; Jebb, A. Compared with daily, weekly n-3 PUFA intake affects the incorporation of eicosapentaenoic acid and docosahexaenoic acid into platelets and mononuclear cells in humans. J. Nutr. 2014, 144, 667–672. [Google Scholar] [CrossRef] [Green Version]
- Ghasemifard, S.; Sinclair, A.J.; Kaur, G.; Lewandowski, P.; Turchini, G.M. What is the most effective way of increasing the bioavailability of dietary long chain omega-3 fatty Acids—Daily vs. weekly administration of fish oil? Nutrients 2015, 7, 5628–5645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visioli, F.; Rise, P.; Barass, M.C.; Marangomi, F.; Galli, C. Dietary intake of fish vs. formulations leads to higher plasma concentrations of n-3 fatty acids. Lipids 2003, 38, 415–418. [Google Scholar] [CrossRef] [PubMed]
- Schuchardt, J.P.; Hahn, A. Bioavailability of long-chain omega-3 fatty aids. Prostaglandins Leukot. Essent. Fat. Acids 2013, 89, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Tenore, G.C.; Calabrese, G.; Ritieni, A.; Campiglia, P.; Giannetti, D.; Novelino, E. Canned bluefin tuna, an in vitro cardioprotective functional food potentially safer than commercial fish oil based pharmaceutical formulations. Food Chem. Toxicol. 2014, 71, 231–235. [Google Scholar] [CrossRef]
- Singer, P. Blood Pressure-Lowering Effect of Mackerel Diet. Klin. Wochenschr. 1990, 68 (Suppl. S20), 40–48. [Google Scholar]
- Stark, K.D.; van Elsewyk, M.E.; Higgins, M.R.; Weatherford, C.A.; Salem, N. Global survey of the omega-3 fatty acids, docosahexaenoic acid, and eicosapentaenoic acid in the blood stream. Prog. Lipid Res. 2016, 63, 132–152. [Google Scholar] [CrossRef]
- Harris, W.S.; von Schacky, C. The Omega-3 Index: A new risk factor for death from coronary heart disease? Prev. Med. 2004, 39, 212–220. [Google Scholar] [CrossRef]
- Von Schacky, C. Omega-3 Index and Cardiovascular Health. Nutrients 2014, 6, 799–814. [Google Scholar] [CrossRef]
- Von Schacky, C. Omega-3 Fatty Acids in Cardiovascular Disease—An Uphill Battle. Prostaglandin Leukot. Essent. Fat. Acids 2015, 92, 41–47. [Google Scholar] [CrossRef]
- Kris-Etheton, P.M.; Richter, C.K.; Bowen, K.J.; Skalus-Ray, A.C.; Jackson, K.H.; Petersen, K.S.; Harris, W.S. Recent Clinical Trials Shed New Light on the Cardiovascular Benefits of Omega-3 Fatty Acids. Methodist Debakey Cardiovasc. J. 2019, 15, 171–178. [Google Scholar] [CrossRef]
- Baltas, G. Nutrition labelling: Issues and policies. Eur. J. Mark. 2001, 35, 708–721. [Google Scholar] [CrossRef]
- Pieniak, Z.; Verbeke, W.; Scholderer, J.; Brunsoe, J. European consumers’ information use of and trust in information sources about fish. Food Qual. Prefer. 2007, 8, 1050–1063. [Google Scholar] [CrossRef]
- Kornelis, M.; de Jonge, J.; Frewer, L.; Dagevos, H. Consumer Selection of Food-Safety Information Sources. Risk Anal. 2007, 27, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Cowburn, G.; Stockley, L. Consumer understanding and use of nutrition labelling: A systematic review. Public Health Nutr. 2005, 8, 21–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thuppal, S.V.; von Schacky, C.; Harris, W.S.; Sherif, K.D.; Denby, N.; Steinbaum, S.R.; Haycook, B.; Bailay, R.L. Discrepancy Between Knowledge and Perception of Dietary Omega-B3 Fatty Acid Intake Compared with the Omega-3 Index. Nutrients 2017, 9, 930. [Google Scholar] [CrossRef]
- Stamler, J. Towards a modern Mediterranean diet for the 21st century. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 1159–1162. [Google Scholar] [CrossRef] [PubMed]
Fish Species | Month | TG | EPA | DHA | EPA + DHA |
---|---|---|---|---|---|
Herring | April | 1.6 | 0.04 | 0.04 | 0.08 |
September | 7.3 | 0.67 | 0.72 | 1.39 | |
Mackerel | February | 2.4 | 0.11 | 0.12 | 0.23 |
November | 11.0 | 1.10 | 1.58 | 2.68 |
Mackerel | Tomato Pulp | |||
---|---|---|---|---|
TG | PL | TG | PL | |
Monounsaturated FA | ||||
16:1 | 4.6 | 1.5 | 3.4 | 0.7 |
18:1 | 22.2 | 14.8 | 20.2 | 18.3 |
20:1 | 9.5 | 5.5 | 9.6 | 8.8 |
22:1 | 16.3 | 5.7 | 24.7 | 17.2 |
Polyunsaturated FA | ||||
Omega-6 FA | ||||
18:2 | 2.9 | 4.9 | 7.5 | 8.5 |
20:4 | 0.5 | 1.2 | 0.4 | 0.5 |
Omega-3 FA | ||||
18:3—(ALA) | 2.1 | 0.8 | 1.8 | 1.8 |
20:5—(EPA) | 4.4 | 6.0 | 3.4 | 3.7 |
22:5—(DPA) | 0.2 | 0.5 | 0.0 | 0.1 |
22:6—(DHA) | 7.0 | 15.7 | 4.8 | 6.6 |
Total of FA groups | ||||
Saturated FA | 25.2 | 26.0 | 18.3 | 14.9 |
Monounsaturated FA | 54.0 | 52.6 | 59.1 | 58.4 |
Omega-6 FA | 3.4 | 6.1 | 7.9 | 9.0 |
Omega-3 FA | 13.7 | 23.0 | 10.0 | 12.2 |
Fish Species |
---|
Benefits |
|
Disadvantages |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singer, P.; Richter, V.; Singer, K.; Löhlein, I. Analyses and Declarations of Omega-3 Fatty Acids in Canned Seafood May Help to Quantify Their Dietary Intake. Nutrients 2021, 13, 2970. https://doi.org/10.3390/nu13092970
Singer P, Richter V, Singer K, Löhlein I. Analyses and Declarations of Omega-3 Fatty Acids in Canned Seafood May Help to Quantify Their Dietary Intake. Nutrients. 2021; 13(9):2970. https://doi.org/10.3390/nu13092970
Chicago/Turabian StyleSinger, Peter, Volker Richter, Konrad Singer, and Iris Löhlein. 2021. "Analyses and Declarations of Omega-3 Fatty Acids in Canned Seafood May Help to Quantify Their Dietary Intake" Nutrients 13, no. 9: 2970. https://doi.org/10.3390/nu13092970
APA StyleSinger, P., Richter, V., Singer, K., & Löhlein, I. (2021). Analyses and Declarations of Omega-3 Fatty Acids in Canned Seafood May Help to Quantify Their Dietary Intake. Nutrients, 13(9), 2970. https://doi.org/10.3390/nu13092970