Supplemented Low-Protein Diet May Delay the Need for Preemptive Kidney Transplantation: A Nationwide Population-Based Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Patient Selection
2.3. Exposure
2.4. Covariates
2.5. Outcomes
2.6. Statistical Analysis
3. Results
3.1. Trend of Preemptive and Total Kidney Transplantations in Taiwan
3.2. Patient Characteristics
3.3. Outcomes
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fukagawa, M.; Drueke, T.B. Introduction: Expanding concepts of chronic kidney disease-mineral and bone disorder (ckd-mbd). Kidney Int. Suppl. 2013, 3, 419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akchurin, O.M.; Kaskel, F. Update on inflammation in chronic kidney disease. Blood Purif. 2015, 39, 84–92. [Google Scholar] [CrossRef]
- Tanaka, H.; Komaba, H.; Koizumi, M.; Kakuta, T.; Fukagawa, M. Role of uremic toxins and oxidative stress in the development of chronic kidney disease-mineral and bone disorder. J. Ren. Nutr. 2012, 22, 98–101. [Google Scholar] [CrossRef]
- Desjardins, L.; Liabeuf, S.; Oliveira, R.B.; Louvet, L.; Kamel, S.; Lemke, H.D.; Vanholder, R.; Choukroun, G.; Massy, Z.A.; European Uremic Toxin Work Group. Uremic toxicity and sclerostin in chronic kidney disease patients. Nephrol. Ther. 2014, 10, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Lewis, D.S. On the influence of a diet with high protein content on the kidney. Can. Med. Assoc. J. 1921, 11, 682–683. [Google Scholar] [PubMed]
- Addis, T.; Lew, W. Diet and death in acute uremia. J. Clin. Investig. 1939, 18, 773–775. [Google Scholar] [CrossRef] [PubMed]
- Walser, M. Ketoacids in the treatment of uremia. Clin. Nephrol. 1975, 3, 180–186. [Google Scholar] [PubMed]
- Walser, M.; Lund, P.; Ruderman, N.B.; Coulter, A.W. Synthesis of essential amino acids from their alpha-keto analogues by perfused rat liver and muscle. J. Clin. Investig. 1973, 52, 2865–2877. [Google Scholar] [CrossRef]
- Kang, C.W.; Tungsanga, K.; Walser, M. Effect of the level of dietary protein on the utilization of alpha-ketoisocaproate for protein synthesis. Am. J. Clin. Nutr. 1986, 43, 504–509. [Google Scholar] [CrossRef] [Green Version]
- Walser, M.; Hill, S.; Ward, L. Progression of chronic renal failure on substituting a ketoacid supplement for an amino acid supplement. J. Am. Soc. Nephrol. 1992, 2, 1178–1185. [Google Scholar] [CrossRef]
- Walser, M.; Hill, S.B.; Ward, L.; Magder, L. A crossover comparison of progression of chronic renal failure: Ketoacids versus amino acids. Kidney Int. 1993, 43, 933–939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, N.; Qian, J.; Sun, W.; Lin, A.; Cao, L.; Wang, Q.; Ni, Z.; Wan, Y.; Linholm, B.; Axelsson, J.; et al. Better preservation of residual renal function in peritoneal dialysis patients treated with a low-protein diet supplemented with keto acids: A prospective, randomized trial. Nephrol. Dial. Transplant. 2009, 24, 2551–2558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellizzi, V.; Chiodini, P.; Cupisti, A.; Viola, B.F.; Pezzotta, M.; De Nicola, L.; Minutolo, R.; Barsotti, G.; Piccoli, G.B.; Di Iorio, B. Very low-protein diet plus ketoacids in chronic kidney disease and risk of death during end-stage renal disease: A historical cohort controlled study. Nephrol. Dial. Transplant. 2015, 30, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.H.; Yang, Y.W.; Hung, S.C.; Kuo, K.L.; Wu, K.D.; Wu, V.C.; Hsieh, T.C.; National Taiwan University Study Group on Acute Renal Failure (NSARF). Ketoanalogues supplementation decreases dialysis and mortality risk in patients with anemic advanced chronic kidney disease. PLoS ONE 2017, 12, e0176847. [Google Scholar] [CrossRef] [Green Version]
- Yen, C.L.; Fan, P.C.; Lee, C.C.; Kuo, G.; Tu, K.H.; Chen, J.J.; Lee, T.H.; Hsu, H.H.; Tian, Y.C.; Chang, C.H. Advanced chronic kidney disease with low and very low gfr: Can a low-protein diet supplemented with ketoanalogues delay dialysis? Nutrients 2020, 12, 3358. [Google Scholar] [CrossRef]
- Walser, M.; Mitch, W.E.; Maroni, B.J.; Kopple, J.D. Should protein intake be restricted in predialysis patients? Kidney Int. 1999, 55, 771–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopple, J.D.; Monteon, F.J.; Shaib, J.K. Effect of energy intake on nitrogen metabolism in nondialyzed patients with chronic renal failure. Kidney Int. 1986, 29, 734–742. [Google Scholar] [CrossRef] [Green Version]
- Piccoli, G.B.; Nazha, M.; Capizzi, I.; Vigotti, F.N.; Mongilardi, E.; Bilocati, M.; Avagnina, P.; Versino, E. Patient survival and costs on moderately restricted low-protein diets in advanced ckd: Equivalent survival at lower costs? Nutrients 2016, 8, 758. [Google Scholar] [CrossRef] [Green Version]
- Piccoli, G.B.; Ventrella, F.; Capizzi, I.; Vigotti, F.N.; Mongilardi, E.; Grassi, G.; Loi, V.; Cabiddu, G.; Avagnina, P.; Versino, E. Low-protein diets in diabetic chronic kidney disease (ckd) patients: Are they feasible and worth the effort? Nutrients 2016, 8, 649. [Google Scholar] [CrossRef] [Green Version]
- Yen, C.L.; Tu, K.H.; Lin, M.S.; Chang, S.W.; Fan, P.C.; Hsiao, C.C.; Chen, C.Y.; Hsu, H.H.; Tian, Y.C.; Chang, C.H. Does a supplemental low-protein diet decrease mortality and adverse events after commencing dialysis? A nationwide cohort study. Nutrients 2018, 10, 1035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piccoli, G.B.; Motta, D.; Martina, G.; Consiglio, V.; Gai, M.; Mezza, E.; Maddalena, E.; Burdese, M.; Colla, L.; Tattoli, F.; et al. Low-protein vegetarian diet with alpha-chetoanalogues prior to pre-emptive pancreas-kidney transplantation. Rev. Diabet. Stud. 2004, 1, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.H.; Skeans, M.A.; Israni, A.K. Current status of kidney transplant outcomes: Dying to survive. Adv. Chronic. Kidney Dis. 2016, 23, 281–286. [Google Scholar] [CrossRef]
- Akkina, S.K.; Connaire, J.J.; Snyder, J.J.; Matas, A.J.; Kasiske, B.L. Earlier is not necessarily better in preemptive kidney transplantation. Am. J. Transplant. 2008, 8, 2071–2076. [Google Scholar] [CrossRef]
- Bohlke, M. Dialysis and kidney transplantation: Why have our rehabilitation hopes not been achieved fully? Am. J. Kidney Dis. 2012, 59, 598–600. [Google Scholar] [CrossRef]
- Jansz, T.T.; Bonenkamp, A.A.; Boereboom, F.T.J.; van Reekum, F.E.; Verhaar, M.C.; van Jaarsveld, B.C. Health-related quality of life compared between kidney transplantation and nocturnal hemodialysis. PLoS ONE 2018, 13, e0204405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vollmer, W.M.; Wahl, P.W.; Blagg, C.R. Survival with dialysis and transplantation in patients with end-stage renal disease. N. Engl. J. Med. 1983, 308, 1553–1558. [Google Scholar] [CrossRef] [PubMed]
- Hsing, A.W.; Ioannidis, J.P. Nationwide population science: Lessons from the taiwan national health insurance research database. JAMA Intern. Med. 2015, 175, 1527–1529. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.Y.; Warren-Gash, C.; Smeeth, L.; Chen, P.C. Data resource profile: The national health insurance research database (nhird). Epidemiol. Health 2018, 40, e2018062. [Google Scholar] [CrossRef]
- Hsieh, C.Y.; Su, C.C.; Shao, S.C.; Sung, S.F.; Lin, S.J.; Kao Yang, Y.H.; Lai, E.C. Taiwan’s national health insurance research database: Past and future. Clin. Epidemiol. 2019, 11, 349–358. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, M.S.; Chiu, C.S.; How, C.K.; Chiang, J.H.; Sheu, M.L.; Chen, W.C.; Lin, H.J.; Hsieh, V.C.; Hu, S.Y. Contrast medium exposure during computed tomography and risk of development of end-stage renal disease in patients with chronic kidney disease: A nationwide population-based, propensity score-matched, longitudinal follow-up study. Medicine 2016, 95, e3388. [Google Scholar] [CrossRef]
- Lin, C.C.; Wu, Y.T.; Yang, W.C.; Tsai, M.J.; Liu, J.S.; Yang, C.Y.; Li, S.Y.; Ou, S.M.; Tarng, D.C.; Hsu, C.C. Angiotensin receptor blockers are associated with lower mortality than ace inhibitors in predialytic stage 5 chronic kidney disease: A nationwide study of therapy with renin-angiotensin system blockade. PLoS ONE 2017, 12, e0189126. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.S.; Lai, M.S.; Gau, S.S.; Wang, S.C.; Tsai, H.J. Concordance between patient self-reports and claims data on clinical diagnoses, medication use, and health system utilization in taiwan. PLoS ONE 2014, 9, e112257. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, C.Y.; Chen, C.H.; Li, C.Y.; Lai, M.L. Validating the diagnosis of acute ischemic stroke in a national health insurance claims database. J. Formos. Med. Assoc. 2015, 114, 254–259. [Google Scholar] [CrossRef] [PubMed]
- Elze, M.C.; Gregson, J.; Baber, U.; Williamson, E.; Sartori, S.; Mehran, R.; Nichols, M.; Stone, G.W.; Pocock, S.J. Comparison of propensity score methods and covariate adjustment: Evaluation in 4 cardiovascular studies. J. Am. Coll. Cardiol. 2017, 69, 345–357. [Google Scholar] [CrossRef] [PubMed]
- Ikizler, T.A.; Burrowes, J.D.; Byham-Gray, L.D.; Campbell, K.L.; Carrero, J.J.; Chan, W.; Fouque, D.; Friedman, A.N.; Ghaddar, S.; Goldstein-Fuchs, D.J.; et al. Kdoqi clinical practice guideline for nutrition in ckd: 2020 update. Am. J. Kidney Dis. 2020, 76, S1–S107. [Google Scholar] [CrossRef] [PubMed]
- Orozco-Guillien, A.O.; Munoz-Manrique, C.; Reyes-Lopez, M.A.; Perichat-Perera, O.; Miranda-Araujo, O.; D’Alessandro, C.; Piccoli, G.B. Quality or quantity of proteins in the diet for ckd patients: Does "junk food" make a difference? Lessons from a high-risk pregnancy. Kidney Blood Press Res. 2021, 46, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Bastani, B. The present and future of transplant organ shortage: Some potential remedies. J. Nephrol. 2019, 33, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Taylor, D.; Robb, M.; Casula, A.; Caskey, F. Uk renal registry 19th annual report: Chapter 11 centre variation in access to kidney transplantation (2010–2015). Nephron 2017, 137 (Suppl. 1), 259–268. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.M.; Lin, M.S.; Hsu, J.T.; Hsiao, J.F.; Chang, S.T.; Pan, K.L.; Lin, C.L.; Lin, Y.S. Effects of statin therapy on cerebrovascular and renal outcomes in patients with predialysis advanced chronic kidney disease and dyslipidemia. J. Clin. Lipidol. 2017, 11, 422–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cupisti, A.; Brunori, G.; Di Iorio, B.R.; D’Alessandro, C.; Pasticci, F.; Cosola, C.; Bellizzi, V.; Bolasco, P.; Capitanini, A.; Fantuzzi, A.L.; et al. Nutritional treatment of advanced ckd: Twenty consensus statements. J. Nephrol. 2018, 31, 457–473. [Google Scholar] [CrossRef] [Green Version]
- Piccoli, G.B.; Capizzi, I.; Vigotti, F.N.; Leone, F.; D’Alessandro, C.; Giuffrida, D.; Nazha, M.; Roggero, S.; Colombi, N.; Mauro, G.; et al. Low protein diets in patients with chronic kidney disease: A bridge between mainstream and complementary-alternative medicines? BMC Nephrol. 2016, 17, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | Total (n = 245) | sLPD (n = 63) | Non-sLPD (n = 182) | p |
---|---|---|---|---|
Age (years; mean ± SD) | 43.8 ± 15.0 | 47.5 ± 13.4 | 42.5 ± 15.4 | 0.022 |
Male | 118 (48.2) | 37 (58.7) | 81 (44.5) | 0.052 |
Primary kidney disease | 0.151 | |||
Interstitial nephritis | 24 (9.8) | 6 (9.5) | 18 (9.9) | |
Obstructive nephropathy | NA | NA | NA | |
Polycystic kidney | NA | NA | NA | |
Hypertension nephropathy | 131 (53.5) | 42 (66.7) | 89 (48.9) | |
Diabetes nephropathy | 6 (2.5) | 0 (0.0) | 6 (3.3) | |
Chronic glomerulonephritis | 50 (20.4) | 10 (15.9) | 40 (22.0) | |
Others | 27 (11.0) | NA | NA | |
Comorbid condition | ||||
Hypertension | 194 (79.2) | 53 (84.1) | 141 (77.5) | 0.262 |
Diabetes mellitus | 38 (15.5) | 13 (20.6) | 25 (13.7) | 0.192 |
Dyslipidemia | 60 (24.5) | 17 (27.0) | 43 (23.6) | 0.593 |
Gouty arthritis | 41 (16.7) | 11 (17.5) | 30 (16.5) | 0.858 |
Peptic ulcer/GERD | 25 (10.2) | 6 (9.5) | 19 (10.4) | 0.836 |
Ischemic heart disease | 14 (5.7) | 4 (6.4) | 10 (5.5) | 0.801 |
Liver cirrhosis | 3 (1.2) | 0 (0.0) | 3 (1.7) | 0.305 |
CCI total score median [Q1–Q3] | 2 (2–3) | 2 (2–3) | 2 (2–3) | 0.837 |
CCI total score group | 0.698 | |||
2 | 145 (59.2) | 39 (61.9) | 106 (58.2) | |
3 | 50 (20.4) | 11 (17.5) | 39 (21.4) | |
4 | 27 (11.0) | 5 (7.9) | 22 (12.1) | |
5 | 9 (3.7) | 3 (4.8) | 6 (3.3) | |
≥6 | 14 (5.7) | 5 (7.9) | 9 (5.0) | |
History of event | ||||
Heart failure hospitalization | 6 (2.5) | NA | NA | 0.608 |
Ischemic stroke | NA | NA | NA | 0.430 |
Hemorrhage stroke | NA | NA | NA | 0.556 |
Myocardial infarction | 0 (0.0) | 0 (0.0) | 0 (0.0) | - |
Medication | ||||
Antiplatelet | 19 (7.8) | 7 (11.1) | 12 (6.6) | 0.248 |
ACEi/ARB | 107 (43.7) | 29 (46.0) | 78 (42.9) | 0.662 |
NSAID + COX-II inhibitors | 3 (1.2) | 0 (0.0) | 3 (1.7) | 0.305 |
Statin | 67 (27.4) | 21 (33.3) | 46 (25.3) | 0.216 |
Iron supplement | 67 (27.4) | 15 (23.8) | 52 (28.6) | 0.465 |
Vitamin D therapy | 62 (25.3) | 14 (22.2) | 48 (26.4) | 0.514 |
Calcium supplementation | 112 (45.7) | 26 (41.3) | 86 (47.3) | 0.411 |
OHA | 38 (15.5) | 11 (17.5) | 27 (14.8) | 0.620 |
Insulin | 25 (10.2) | 6 (9.5) | 19 (10.4) | 0.836 |
Outcome | Total (n = 245) | sLPD (n = 63) | Non-sLPD (n = 182) | Unadjusted HR (95% CI) | Adjusted HR (95% CI) * |
---|---|---|---|---|---|
All-cause mortality | 18 (7.4) | 1 (1.6) | 17 (9.3) | 0.31 (0.04, 2.36) | 0.42 (0.05, 3.67) |
Cardiovascular event | |||||
Acute myocardial infarction | NA | NA | NA | - | - |
Acute ischemic stroke | NA | NA | NA | 2.95 (0.46, 18.90) | 1.95 (0.35, 10.95) |
Intracerebral hemorrhage | NA | NA | NA | - | - |
Heart failure hospitalization | NA | NA | NA | - | - |
Cardiovascular death | 5 (2.0) | 0 (0.0) | 5 (2.8) | - | - |
Infection death | 6 (2.5) | 1 (1.6) | 5 (2.8) | 1.06 (0.12, 9.31) | 0.87 (0.07, 10.44) |
Sepsis-related hospitalization | 19 (7.8) | 3 (4.8) | 16 (8.8) | 0.87 (0.26, 2.95) | 1.29 (0.28, 5.98) |
Sepsis death | 6 (2.5) | 1 (1.6) | 5 (2.8) | 1.06 (0.12, 9.31) | 0.87 (0.07, 10.44) |
Newly diagnosed malignancy | 22 (9.0) | 5 (7.9) | 17 (9.3) | 1.74 (0.65, 4.64) | 1.21 (0.42, 3.52) |
Osteoporosis-related fracture | 13 (5.3) | NA | NA | 0.85 (0.19, 3.84) | 1.18 (0.26, 5.36) |
New-onset diabetes | 24 (9.8) | 6 (9.5) | 18 (9.9) | 1.26 (0.51, 3.13) | 1.20 (0.39, 3.66) |
Dialysis after transplant | 32 (13.1) | 5 (7.9) | 27 (14.8) | 0.99 (0.37, 2.65) | 1.21 (0.40, 3.70) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yen, C.-L.; Fan, P.-C.; Kuo, G.; Chen, C.-Y.; Cheng, Y.-L.; Hsu, H.-H.; Tian, Y.-C.; Chatrenet, A.; Piccoli, G.B.; Chang, C.-H. Supplemented Low-Protein Diet May Delay the Need for Preemptive Kidney Transplantation: A Nationwide Population-Based Cohort Study. Nutrients 2021, 13, 3002. https://doi.org/10.3390/nu13093002
Yen C-L, Fan P-C, Kuo G, Chen C-Y, Cheng Y-L, Hsu H-H, Tian Y-C, Chatrenet A, Piccoli GB, Chang C-H. Supplemented Low-Protein Diet May Delay the Need for Preemptive Kidney Transplantation: A Nationwide Population-Based Cohort Study. Nutrients. 2021; 13(9):3002. https://doi.org/10.3390/nu13093002
Chicago/Turabian StyleYen, Chieh-Li, Pei-Chun Fan, George Kuo, Chao-Yu Chen, Ya-Lien Cheng, Hsiang-Hao Hsu, Ya-Chun Tian, Antoine Chatrenet, Giorgina Barbara Piccoli, and Chih-Hsiang Chang. 2021. "Supplemented Low-Protein Diet May Delay the Need for Preemptive Kidney Transplantation: A Nationwide Population-Based Cohort Study" Nutrients 13, no. 9: 3002. https://doi.org/10.3390/nu13093002
APA StyleYen, C.-L., Fan, P.-C., Kuo, G., Chen, C.-Y., Cheng, Y.-L., Hsu, H.-H., Tian, Y.-C., Chatrenet, A., Piccoli, G. B., & Chang, C.-H. (2021). Supplemented Low-Protein Diet May Delay the Need for Preemptive Kidney Transplantation: A Nationwide Population-Based Cohort Study. Nutrients, 13(9), 3002. https://doi.org/10.3390/nu13093002