Pulses Twice a Week in Replacement of Meat Modestly Increases Diet Sustainability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dietary Survey and Population Sample
2.2. Food Composition Database
2.3. Categorization and Portion Sizes of Foods Declared as Consumed in Esteban
2.4. Categorization and Portion Sizes of Foods Declared as Consumed in Esteban
2.5. Nutritional Characteristics of Diets
2.6. Diet Quality Indicators
2.7. Stratification of the Population According to the Fulfilment of the Recommended Guideline for Pulses
2.8. STARCHES and MEAT Scenarios
2.9. Statistical Analyses
3. Results
3.1. Adeq and InAdeq Observed Diets
3.2. STARCHES and MEAT Substitution Scenarios
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Burlingame, B.A.; Dernini, S. Nutrition and Consumer Protection Division FAO Sustainable diets and biodiversity: Directions and solutions for policy, research and action. In Proceedings of the The International Scientific Symposium on Biodiversity and Sustainable Diets: United Against Hunger, Rome, Italy, 3–5 November 2010; FAO: Rome, Italy, 2012. [Google Scholar]
- Godfray, H.C.J.; Aveyard, P.; Garnett, T.; Hall, J.W.; Key, T.J.; Lorimer, J.; Pierrehumbert, R.T.; Scarborough, P.; Springmann, M.; Jebb, S.A. Meat consumption, health, and the environment. Science 2018, 361, aam5324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seves, S.M.; Verkaik-Kloosterman, J.; Biesbroek, S.; Temme, E.H. Are more environmentally sustainable diets with less meat and dairy nutritionally adequate? Public Health Nutr. 2017, 20, 2050–2062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Temme, E.H.; Bakker, H.M.; Seves, S.M.; Verkaik-Kloosterman, J.; Dekkers, A.L.; van Raaij, J.M.; Ocké, M.C. How may a shift towards a more sustainable food consumption pattern affect nutrient intakes of Dutch children? Public Health Nutr. 2015, 18, 2468–2478. [Google Scholar] [CrossRef] [Green Version]
- Vieux, F.; Darmon, N.; Touazi, D.; Soler, L.-G. Greenhouse gas emissions of self-selected individual diets in France: Changing the diet structure or consuming less? Ecol. Econ. 2012, 75, 91–101. [Google Scholar] [CrossRef]
- Chen, C.; Chaudhary, A.; Mathys, A. Dietary change scenarios and implications for environmental, nutrition, human health and economic dimensions of food sustainability. Nutrients 2019, 11, 856. [Google Scholar] [CrossRef] [Green Version]
- Aleksandrowicz, L.; Green, R.; Joy, E.J.; Smith, P.; Haines, A. The Impacts of Dietary Change on Greenhouse Gas Emissions, Land Use, Water Use, and Health: A Systematic Review. PLoS ONE 2016, 11, e0165797. [Google Scholar] [CrossRef] [Green Version]
- FAO; WHO. Sustainable Healthy Diets—Guiding Principles; FAO: Rome, Italy; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- Masset, G.; Vieux, F.; Darmon, N. Which functional unit to identify sustainable foods? Public Health Nutr. 2015, 18, 2488–2497. [Google Scholar] [CrossRef]
- Calles, T.; del Castello, R.; Baratelli, M.; Xipsiti, M.; Navarro, D. The International Year of Pulses—Final Report; FAO: Rome, Italy, 2019. [Google Scholar]
- Mudryj, A.N.; Yu, N.; Aukema, H.M. Nutritional and health benefits of pulses. Appl. Physiol. Nutr. Metab. 2014, 39, 1197–1204. [Google Scholar] [CrossRef]
- Rebello, C.J.; Greenway, F.L.; Finley, J.W. A review of the nutritional value of legumes and their effects on obesity and its related co-morbidities. Obes. Rev. 2014, 15, 392–407. [Google Scholar] [CrossRef]
- Margier, M.; Georgé, S.; Hafnaoui, N.; Remond, D.; Nowicki, M.; Du Chaffaut, L.; Amiot, M.-J.; Reboul, E. Nutritional Composition and Bioactive Content of Legumes: Characterization of Pulses Frequently Consumed in France and Effect of the Cooking Method. Nutrients 2018, 10, 1668. [Google Scholar] [CrossRef] [Green Version]
- Viguiliouk, E.; Glenn, A.J.; Nishi, S.K.; Chiavaroli, L.; Seider, M.; Khan, T.; Bonaccio, M.; Iacoviello, L.; Mejia, S.B.; Jenkins, D.J.A.; et al. Associations between Dietary Pulses Alone or with Other Legumes and Cardiometabolic Disease Outcomes: An Umbrella Review and Updated Systematic Review and Meta-analysis of Prospective Cohort Studies. Adv. Nutr. 2019, 10, S308–S319. [Google Scholar] [CrossRef]
- Papandreou, C.; Becerra-Tomás, N.; Bulló, M.; Martínez-González, M.Á.; Corella, D.; Estruch, R.; Ros, E.; Arós, F.; Schroder, H.; Fitó, M.; et al. Legume consumption and risk of all-cause, cardiovascular, and cancer mortality in the PREDIMED study. Clin. Nutr. 2019, 38, 348–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drewnowski, A.; Rehm, C.D. Vegetable Cost Metrics Show That Potatoes and Beans Provide Most Nutrients Per Penny. PLoS ONE 2013, 8, e63277. [Google Scholar] [CrossRef] [Green Version]
- Drewnowski, A. The Nutrient Rich Foods Index helps to identify healthy, affordable foods. Am. J. Clin. Nutr. 2010, 91, 1095S–1101S. [Google Scholar] [CrossRef] [PubMed]
- MacWilliam, S.; Parker, D.; Marinangeli, C.P.F.; Trémorin, D. A meta-analysis approach to examining the greenhouse gas implications of including dry peas (Pisum sativum L.) and lentils (Lens culinaris M.) in crop rotations in western Canada. Agric. Syst. 2018, 166, 101–110. [Google Scholar] [CrossRef]
- Foyer, C.H.; Lam, H.-M.; Nguyen, H.T.; Siddique, K.H.M.; Varshney, R.K.; Colmer, T.D.; Cowling, W.; Bramley, H.; Mori, T.A.; Hodgson, J.M.; et al. Neglecting legumes has compromised human health and sustainable food production. Nat. Plants 2016, 2, 16112. [Google Scholar] [CrossRef]
- Herforth, A.; Arimond, M.; Álvarez-Sánchez, C.; Coates, J.; Christianson, K.; Muehlhoff, E. A Global Review of Food-Based Dietary Guidelines. Adv. Nutr. 2019, 10, 590–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, C.; Bryan, J.; Hodgson, J.; Murphy, K. Definition of the mediterranean diet: A literature review. Nutrients 2015, 7, 9139–9153. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.H.; Aickin, M.; Champagne, C.; Craddick, S.; Sacks, F.M.; McCarron, P.; Most-Windhauser, M.M.; Rukenbrod, F.; Haworth, L. Food group sources of nutrients in the dietary patterns of the DASH-Sodium trial. J. Am. Diet. Assoc. 2003, 103, 488–496. [Google Scholar]
- European Commission Food-Based Dietary Guidelines in Europe. Available online: https://ec.europa.eu/jrc/en/health-knowledge-gateway/promotion-prevention/nutrition/food-based-dietary-guidelines (accessed on 9 December 2020).
- Marinangeli, C.P.F.; Curran, J.; Barr, S.I.; Slavin, J.; Puri, S.; Swaminathan, S.; Tapsell, L.; Patterson, C.A. Enhancing nutrition with pulses: Defining a recommended serving size for adults. Nutr. Rev. 2017, 75, 990–1006. [Google Scholar] [CrossRef] [Green Version]
- Delamaire, C.; Escalon, H.; Noirot, L. Recommandations sur L’alimentation, L’activité Physique & la Sédentarité pour les Adultes; Santé Publique France: Sainte-Maurice, France, 2019. [Google Scholar]
- Ministère des Solidarités et de la Santé. Programme National Nutrition Santé 2019–2023; Ministère des Solidarités et de la Santé: Paris, France, 2019.
- Santé Publique France Les Légumes Secs (Lentilles, Haricots, Pois Chiches, …). Available online: https://www.mangerbouger.fr/Les-recommandations/Augmenter/Les-legumes-secs-lentilles-haricots-pois-chiches-etc (accessed on 2 July 2020).
- Melendrez-Ruiz, J.; Chambaron, S.; Buatois, Q.; Monnery-Patris, S.; Arvisenet, G. A central place for meat, but what about pulses? Studying French consumers’ representations of main dish structure, using an indirect approach. Food Res. Int. 2019, 123, 790–800. [Google Scholar] [CrossRef] [PubMed]
- Melendrez-Ruiz, J.; Buatois, Q.; Chambaron, S.; Monnery-Patris, S.; Arvisenet, G. French consumers know the benefits of pulses, but do not choose them: An exploratory study combining indirect and direct approaches. Appetite 2019, 141, 104311. [Google Scholar] [CrossRef] [PubMed]
- Champ, M.M.-J. Non-nutrient bioactive substances of pulses. Br. J. Nutr. 2002, 88, 307–319. [Google Scholar] [CrossRef]
- Singh, N. Pulses: An overview. J. Food Sci. Technol. 2017, 54, 853–857. [Google Scholar] [CrossRef] [Green Version]
- Sarwar, G.; Peace, R.W.; Botting, H.G.; Brulé, D. Digestibility of protein and amino acids in selected foods as determined by a rat balance method. Plant Foods Hum. Nutr. 1989, 39, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Balicco, A.; Oleko, A.; Szego, E.; Boschat, L.; Deschamps, V.; Saoudi, A.; Zeghnoun, A.; Fillol, C. Esteban design: A cross-sectional health survey about environment, biomonitoring, physical activity and nutrition (2014–2016). Toxicol. Anal. Clin. 2017, 29, 517–537. [Google Scholar] [CrossRef]
- Santé Publique France. Etudes de Santé sur L’environnement, la Biosurveillance, L’activité Physique et la Nutrition (Esteban 2014–2016). Volet Nutrition. Chapitre Dosages Biologiques: Vitamines et Minéraux; Santé Publique France: Saint-Maurice, France, 2019.
- Goldberg, G.R.; Black, A.E.; Jebb, S.A.; Cole, T.J.; Murgatroyd, P.R.; Coward, W.A.; Prentice, A.M. Critical evaluation of energy intake data using fundamental principles of energy physiology: 1. Derivation of cut-off limits to identify under-recording. Eur. J. Clin. Nutr. 1991, 45, 569–581. [Google Scholar]
- Black, A.E. The sensitivity and specificity of the Goldberg cut-off for EI:BMR for identifying diet reports of poor validity. Eur. J. Clin. Nutr. 2000, 54, 395–404. [Google Scholar] [CrossRef] [Green Version]
- Perignon, M.; Masset, G.; Ferrari, G.; Barré, T.; Vieux, F.; Maillot, M.; Amiot, M.-J.; Darmon, N. How low can dietary greenhouse gas emissions be reduced without impairing nutritional adequacy, affordability and acceptability of the diet? A modelling study to guide sustainable food choices. Public Health Nutr. 2016, 19, 2662–2674. [Google Scholar] [CrossRef] [Green Version]
- Barré, T.; Perignon, M.; Gazan, R.; Vieux, F.; Micard, V.; Amiot, M.-J.; Darmon, N. Integrating nutrient bioavailability and co-production links when identifying sustainable diets: How low should we reduce meat consumption? PLoS ONE 2018, 13, e0191767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perignon, M.; Barré, T.; Gazan, R.; Amiot, M.-J.; Darmon, N. The bioavailability of iron, zinc, protein and vitamin A is highly variable in French individual diets: Impact on nutrient inadequacy assessment and relation with the animal-to-plant ratio of diets. Food Chem. 2018, 238, 73–81. [Google Scholar] [CrossRef]
- ANSES. French Food Composition Table Ciqual; ANSES: Buenos Aires, Argentina, 2013.
- Calloway, D.; Murphy, S. World Food Dietary Assessment; FAO: Rome, Italy, 1998. [Google Scholar]
- Kongkachuichai, R.; Napatthalung, P.; Charoensiri, R. Heme and Nonheme Iron Content of Animal Products Commonly Consumed in Thailand. J. Food Compos. Anal. 2002, 15, 389–398. [Google Scholar] [CrossRef]
- CIV. INRA Valeurs Nutritionnelles des Viandes. Available online: http://www.lessentieldesviandes-pro.org/pdf/PDF-tous%morceaux.pdf (accessed on 1 April 2015).
- Armah, S.M.; Carriquiry, A.; Sullivan, D.; Cook, J.D.; Reddy, M.B. A Complete Diet-Based Algorithm for Predicting Nonheme Iron Absorption in Adults. J. Nutr. 2013, 143, 1136–1140. [Google Scholar] [CrossRef] [PubMed]
- Bertoluci, G.; Masset, G.; Gomy, C.; Mottet, J.; Darmon, N. How to Build a Standardized Country-Specific Environmental Food Database for Nutritional Epidemiology Studies. PLoS ONE 2016, 11, e0150617. [Google Scholar] [CrossRef] [PubMed]
- Kantar Worldpanel French Household Consumer Panel. Available online: http://www.kantarworldpanel.com/global/Sectors (accessed on 20 January 2018).
- Darmon, N.; Drewnowski, A. Contribution of food prices and diet cost to socioeconomic disparities in diet quality and health: A systematic review and analysis. Nutr. Rev. 2015, 73, 643–660. [Google Scholar] [CrossRef]
- Chaltiel, D.; Adjibade, M.; Deschamps, V.; Touvier, M.; Hercberg, S.; Julia, C.; Kesse-Guyot, E. Programme national nutrition santé—Guidelines score 2 (pnns-gs2): Development and validation of a diet quality score reflecting the 2017 French dietary guidelines. Br. J. Nutr. 2019, 122, 331–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unité de Surveillance et D’épidémiologie Nutritionnelle (USEN). Etude Nationale Nutrition Santé (ENNS, 2006). Situation Nutritionnelle en France en 2006 Selon les Indicateurs D’objectif et les Repères du Programme National Nutrition Santé (PNNS); USEN: Saint-Maurice, France, 2007. [Google Scholar]
- Ministère de L’économie de L’industrie et du Numérique. Recommandations Nutrition, Groupe D’étude des Marchés de Restauration Collective et Nutrition—Version 2.0—JUILLET 2015; Ministère de L’économie de L’industrie et du Numérique: Paris, France, 2015. [Google Scholar]
- Joint FAO/WHO/UNU Expert Consultation. Protein and Amino Acid Requirements in Human Nutrition; WHO Technical Report Series; WHO: Geneva, Switzerland, 2007; pp. 1–265. [Google Scholar]
- Agence Nationale de Sécurité Sanitaire de L’alimentation de L’environnement et du Travail. Actualisation des Repères du PNNS: Révision des Repères de Consommations Alimentaires—Rapport D’expertise Collective; Agence Nationale de Sécurité Sanitaire de L’alimentation de L’environnement et du Travail: Maisons-Alfort, France, 2016. [Google Scholar]
- Miller, L.V.; Krebs, N.F.; Hambidge, K.M. A mathematical model of zinc absorption in humans as a function of dietary zinc and phytate. J. Nutr. 2007, 137, 135–141. [Google Scholar] [CrossRef]
- Bocquier, A.; Vieux, F.; Lioret, S.; Dubuisson, C.; Caillavet, F.; Darmon, N. Socio-economic characteristics, living conditions and diet quality are associated with food insecurity in France. Public Health Nutr. 2015, 18, 2952–2961. [Google Scholar] [CrossRef] [Green Version]
- Vieux, F.; Soler, L.-G.; Touazi, D.; Darmon, N. High nutritional quality is not associated with low greenhouse gas emissions in self-selected diets of French adults. Am. J. Clin. Nutr. 2013, 97, 569–583. [Google Scholar] [CrossRef] [Green Version]
- EFSA; NDA Panel (EFSA Panel on Dietetic Products Nutrition and Allergies). Scientific Opinion on Dietary Reference Values for zinc. EFSA J. 2014, 12, 3844. [Google Scholar] [CrossRef] [Green Version]
- Agence Nationale de Sécurité Sanitaire de L’alimentation de L’environnement et du Travail. Actualisation des Repères du PNNS : Élaboration des Références Nutritionnelles; Agence Nationale de Sécurité Sanitaire de L’alimentation de L’environnement et du Travail: Maisons-Alfort, France, 2016. [Google Scholar]
- Mudryj, A.N.; Yu, N.; Hartman, T.J.; Mitchell, D.C.; Lawrence, F.R.; Aukema, H.M. Pulse consumption in Canadian adults influences nutrient intakes. Br. J. Nutr. 2012, 108, S27–S36. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, D.C.; Lawrence, F.R.; Hartman, T.J.; Curran, J.M. Consumption of Dry Beans, Peas, and Lentils Could Improve Diet Quality in the US Population. J. Am. Diet. Assoc. 2009, 109, 909–913. [Google Scholar] [CrossRef]
- Steib, C.A.; Johansson, I.; Hefni, M.E.; Witthöft, C.M. Diet and nutrient status of legume consumers in Sweden: A descriptive cross-sectional study. Nutr. J. 2020, 19, 27. [Google Scholar] [CrossRef]
- Perera, T.; Russo, C.; Takata, Y.; Bobe, G. Legume consumption patterns in us adults: National health and nutrition examination survey (NHANES) 2011–2014 and beans, lentils, peas (BLP) 2017 survey. Nutrients 2020, 12, 2017. [Google Scholar] [CrossRef]
- Mertens, E.; van’t Veer, P.; Hiddink, G.J.; Steijns, J.M.; Kuijsten, A. Operationalising the health aspects of sustainable diets: A review. Public Health Nutr. 2017, 20, 739–757. [Google Scholar] [CrossRef] [Green Version]
- Röös, E.; Carlsson, G.; Ferawati, F.; Hefni, M.; Stephan, A.; Tidåker, P.; Witthöft, C. Less meat, more legumes: Prospects and challenges in the transition toward sustainable diets in Sweden. Renew. Agric. Food Syst. 2018, 13, 192–205. [Google Scholar] [CrossRef] [Green Version]
- Temme, E.H.; van der Voet, H.; Thissen, J.T.; Verkaik-Kloosterman, J.; van Donkersgoed, G.; Nonhebel, S. Replacement of meat and dairy by plant-derived foods: Estimated effects on land use, iron and SFA intakes in young Dutch adult females. Public Health Nutr. 2013, 16, 1900–1907. [Google Scholar] [CrossRef] [Green Version]
- Hoolohan, C.; Berners-Lee, M.; McKinstry-West, J.; Hewitt, C.N. Mitigating the greenhouse gas emissions embodied in food through realistic consumer choices. Energy Policy 2013, 63, 1065–1074. [Google Scholar] [CrossRef]
- Margier, M.; Antoine, T.; Siriaco, A.; Nowicki, M.; Halimi, C.; Maillot, M.; Georgé, S.; Reboul, E. The Presence of Pulses within a Meal can Alter Fat-Soluble Vitamin Bioavailability. Mol. Nutr. Food Res. 2019, 63, 1801323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antoine, T.; Icard-Vernière, C.; Scorrano, G.; Salhi, A.; Halimi, C.; Georgé, S.; Carrière, F.; Mouquet-Rivier, C.; Reboul, E. Evaluation of vitamin D bioaccessibility and mineral solubility from test meals containing meat and/or cereals and/or pulses using in vitro digestion. Food Chem. 2021, 347, 128621. [Google Scholar] [CrossRef] [PubMed]
- Zielińska-Dawidziak, M. Plant Ferritin—A Source of Iron to Prevent Its Deficiency. Nutrients 2015, 7, 1184–1201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theil, E.C. Iron, ferritin and nutrition. Annu. Rev. Nutr. 2004, 24, 327–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gazan, R.; Barré, T.; Perignon, M.; Maillot, M.; Darmon, N.; Vieux, F. A methodology to compile food metrics related to diet sustainability into a single food database: Application to the French case. Food Chem. 2018, 238, 125–133. [Google Scholar] [CrossRef] [PubMed]
- ADEME. Documentation Agribalyse. Available online: https://doc.agribalyse.fr/documentation/acces-donnees (accessed on 2 March 2021).
Nutrient | Algorithm to Estimate the Absorption Rate | Positive Modulators | Negative Modulators |
---|---|---|---|
Iron | [44] | Vitamin C (mg/day), Total meat and fish (g/day) | Serum ferritin (μg/L); Number of cups of black tea equivalents; Phytate (mg/day); Calcium (mg/day); Nonheme iron (mg/day) |
Zinc | [53] | Total dietary zinc (mmol/day) | Phytates (mmol/day) |
All (n = 2028) | Adeq (n = 175, 9.6%) | InAdeq (n = 1853, 90.4%) | p Value * | |
---|---|---|---|---|
Age (mean ± SE) | 47.3 ± 0.62 | 49.8 ± 1.84 | 47.1 ± 0.58 | 0.208 |
Gender (%) | <0.0001 | |||
Men | 47.4 | 67.5 | 45.2 | |
Women | 52.6 | 32.5 | 54.8 | |
Income (%) | 0.573 | |||
below 840 €/month | 4.3 | 4.7 | 4.3 | |
between 840 and 1599 €/month | 15.7 | 20.9 | 15.2 | |
between 1600 and 2499 €/month | 26.7 | 25.6 | 26.8 | |
between 2500 and 4599 €/month | 38.0 | 37.1 | 38.0 | |
higher or equal than 4600 €/month | 15.3 | 11.7 | 15.7 | |
Educational level (%) | 0.652 | |||
No diploma | 8.8 | 7.1 | 9.0 | |
High school | 59.3 | 62.6 | 58.9 | |
University | 31.9 | 30.2 | 32.1 | |
Physical activity level (%) | 0.943 | |||
Low | 36.4 | 35.1 | 36.5 | |
Moderate | 50.1 | 50.4 | 50.1 | |
High | 13.5 | 14.5 | 13.4 | |
Diet status (%) | 0.052 | |||
No diet | 76.0 | 80.3 | 75.6 | |
For medical reason | 3.2 | 2.6 | 3.3 | |
For losing weight | 8.0 | 3.8 | 8.4 | |
Vegetarian or vegan diet | 0.8 | 3.1 | 0.6 | |
Other reason | 12.0 | 10.2 | 12.2 | |
Serum ferritin status (%) | ||||
Depleted iron store | 7.1 | 3.6 | 7.4 | 0.2868 |
Low iron store | 9.7 | 9.2 | 9.7 | |
Normal iron store | 83.3 | 87.2 | 82.8 |
Nutritional Characteristics | Adeq (n = 175) | InAdeq (n = 1853) | |||
---|---|---|---|---|---|
Adj.Mean | SE | Adj.Mean | SE | p Values † | |
Pulses intake (g/day) | 88.3 | 4.6 | 5.4 | 0.9 | <0.001 |
Energy intake (kcal/day) | 2145.1 | 74.1 | 1980.0 | 45.6 | 0.017 |
Diet quantity (g/day) | 2988.7 | 93.5 | 2835.9 | 67.0 | 0.069 |
Proteins (% energy) | 16.6 | 0.5 | 16.3 | 0.3 | 0.400 |
Carbohydrates (% energy) | 46.7 | 0.8 | 45.5 | 0.5 | 0.107 |
Total fats (% energy) | 33.2 | 0.6 | 35.6 | 0.3 | 0.001 |
Saturated fats (% energy) | 11.8 | 0.3 | 13.7 | 0.2 | <0.001 |
Free sugars (% energy) | 9.1 | 0.7 | 10.9 | 0.5 | 0.004 |
Sodium (g/day) | 3903.5 | 125.8 | 3608.4 | 85.9 | 0.003 |
Fibers (g/day) | 26.8 | 0.8 | 19.8 | 0.5 | <0.001 |
Iron (mg/day) | 13.9 | 0.4 | 12.5 | 0.2 | <0.001 |
Heme iron (g/day) | 1.1 | 0.1 | 1.3 | 0.1 | 0.263 |
Non-heme iron (g/day) | 12.7 | 0.4 | 11.3 | 0.3 | <0.001 |
Total meat plus fish (g/day) ‡ | 145.7 | 11.1 | 150.8 | 6.9 | 0.617 |
Vitamin C (g/day) ‡ | 117.2 | 7.2 | 100.3 | 4.0 | 0.014 |
Phytates (mg/day) ¶ | 1397.6 | 46.8 | 1066.4 | 33.9 | <0.001 |
Polyphenols from beverages (eq. cups of tea/day) § | 1.6 | 0.1 | 1.7 | 0.1 | 0.602 |
Calcium (mg/day) § | 936.4 | 48.5 | 929.4 | 33.6 | 0.855 |
Heme iron absorption rate (%) | 30.1 | 0.6 | 30.5 | 0.3 | 0.518 |
Non-heme iron absorption rate (%) | 3.7 | 0.3 | 4.1 | 0.1 | 0.135 |
Iron absorption rate (%) | 5.7 | 0.3 | 6.7 | 0.2 | 0.008 |
Iron available for absorption (mg/day) | 0.8 | 0.1 | 0.8 | 0.1 | 0.541 |
Zinc (mg/day) | 10.1 | 0.3 | 10.3 | 0.2 | 0.661 |
Zinc absorption rate (%) | 26.1 | 0.3 | 28.2 | 0.2 | <0.001 |
Zinc available for absorption (mg/day) | 2.5 | 0.1 | 2.7 | 0.0 | <0.001 |
Histidine (% requirement) | 168.4 | 0.9 | 168.3 | 0.6 | 0.593 |
Isoleucin (% requirement) | 169.3 | 1.1 | 168.9 | 0.8 | 0.782 |
Leucine (% requirement) | 134.3 | 0.8 | 134.7 | 0.7 | 0.421 |
Lysine (% requirement) | 149.4 | 2.4 | 150.6 | 2.0 | 0.168 |
Sulfur amino acids (% requirement) | 162.1 | 0.9 | 163.2 | 0.7 | 0.014 |
Aromatic a.a (% requirement) | 198.2 | 0.8 | 197.4 | 0.5 | 0.133 |
Threonin (% requirement) | 158.7 | 1.1 | 158.9 | 1.0 | 0.451 |
Tryptophan (% requirement) | 203.2 | 0.8 | 203.1 | 0.6 | 0.543 |
Valin (% requirement) | 197.0 | 1.5 | 198.0 | 1.0 | 0.286 |
PDCAAS (%) | 93.5 | 0.0 | 94.1 | 0.0 | <0.001 |
Food Subgroups and Food Families | InAdeq Observed Diets (n = 1853) | Substituted diets | ||||
---|---|---|---|---|---|---|
STARCHES (n = 1853) | MEAT (n = 1853) | |||||
Mean | SE | Mean | SE | Mean | SE | |
Total pulses | 6.1 | 0.4 | 56.2 | 0.2 | 57.9 | 0.2 |
Pulses per se | 3.0 | 0.3 | 53.2 | 0.3 | 54.8 | 0.3 |
Pulses from mixed dishes | 3.1 | 0.3 | 3.0 | 0.3 | 3.1 | 0.3 |
Refined starches | 142.0 | 3.2 | 109.8 | 2.9 | 142.0 | 3.2 |
Bread | 82.3 | 2.2 | 82.3 | 2.2 | 82.3 | 2.2 |
Pasta/rice and semolina | 59.7 | 2.3 | 27.4 | 1.9 | 59.7 | 2.3 |
Unrefined starches (without pulses) | 71.8 | 2.2 | 59.2 | 2.1 | 71.8 | 2.2 |
Wholegrain cereals | 19.0 | 0.9 | 19.0 | 0.9 | 19.0 | 0.9 |
Potatoes | 52.8 | 1.8 | 40.2 | 1.7 | 52.8 | 1.8 |
Meat | 116.6 | 3.2 | 116.6 | 3.2 | 96.5 | 3.1 |
Ruminant meats | 31.9 | 1.6 | 31.9 | 1.6 | 19.2 | 1.3 |
Pork | 13.6 | 0.9 | 13.6 | 0.9 | 13.0 | 0.9 |
Poultry and games | 32.5 | 1.5 | 32.5 | 1.5 | 30.6 | 1.5 |
Processed meat | 26.0 | 1.2 | 26.0 | 1.2 | 22.0 | 1.1 |
Cooked ham | 9.7 | 0.6 | 9.7 | 0.6 | 8.8 | 0.6 |
Offals | 3.0 | 0.4 | 3.0 | 0.4 | 2.9 | 0.4 |
Observed Diets * InAdeq (n = 1853) | Substituted Diets STARCHES (n = 1853) | Observed Diets * InAdeq (n = 1853) | Substituted Diets MEAT (n = 1853) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Nutritional, Environmental Characteristics and Diet Cost | Adj. Mean | SE | Adj. Mean | SE | p Value † | Adj. Mean | SE | Adj. Mean | SE | p Value ‡ | p Value § |
Energy (kcal/day) | 2058.2 | 20.1 | 2033.8 | 20.1 | <0.0001 | 2058.2 | 20.1 | 2063.2 | 20.0 | <0.0001 | <0.0001 |
Total quantity (g/day) | 2615.9 | 26.8 | 2631.5 | 26.6 | <0.0001 | 2625.1 | 26.7 | 2652.7 | 26.7 | <0.0001 | <0.0001 |
MAR (% adequacy) | 80.8 | 0.3 | 81.8 | 0.3 | <0.0001 | 81.0 | 0.3 | 81.6 | 0.3 | <0.0001 | <0.0001 |
MER (% excess) | 135.2 | 0.6 | 136.9 | 0.6 | <0.0001 | 136.0 | 0.6 | 135.1 | 0.6 | <0.0001 | <0.0001 |
SED (kcal/100 g) | 168.0 | 1.3 | 166.2 | 1.3 | <0.0001 | 168.3 | 1.3 | 163.8 | 1.2 | <0.0001 | <0.0001 |
sPNNS-GS2 | −0.5 | 0.1 | −0.1 | 0.1 | <0.0001 | −0.6 | 0.1 | 0.2 | 0.1 | <0.0001 | <0.0001 |
Proteins (% energy) | 16.9 | 0.1 | 17.3 | 0.1 | <0.0001 | 16.8 | 0.1 | 16.4 | 0.1 | <0.0001 | <0.0001 |
Carbohydrates (% energy) | 44.3 | 0.2 | 43.4 | 0.2 | <0.0001 | 44.3 | 0.2 | 45.5 | 0.2 | <0.0001 | <0.0001 |
Total fats (% energy) | 36.5 | 0.2 | 36.7 | 0.2 | <0.0001 | 36.5 | 0.2 | 35.4 | 0.2 | <0.0001 | <0.0001 |
Saturated fats (% energy) | 14.6 | 0.1 | 14.6 | 0.1 | <0.0001 | 14.6 | 0.1 | 14.1 | 0.1 | <0.0001 | <0.0001 |
Free sugars (% energy) | 11.1 | 0.2 | 11.3 | 0.2 | <0.0001 | 11.2 | 0.2 | 11.1 | 0.2 | <0.0001 | <0.0001 |
Sodium (g/day) | 3530.8 | 23.9 | 3661.9 | 24.5 | <0.0001 | 3551.5 | 24.1 | 3627.8 | 23.8 | <0.0001 | <0.0001 |
Fibers (g/day) | 17.9 | 0.2 | 20.2 | 0.2 | <0.0001 | 17.9 | 0.2 | 21.0 | 0.2 | <0.0001 | <0.0001 |
Greenhouse gas emission (g CO2eq/day) | 3852.5 | 34.3 | 3933.1 | 34.3 | <0.0001 | 3874.7 | 34.4 | 3720.5 | 32.1 | <0.0001 | <0.0001 |
Atmospheric acidification (g SO2eq/day) | 48.0 | 0.6 | 48.3 | 0.6 | <0.0001 | 48.3 | 0.6 | 43.2 | 0.5 | 0.0424 | <0.0001 |
Marine eutrophication (g Neq/day) | 16.7 | 0.1 | 17.6 | 0.1 | <0.0001 | 16.8 | 0.1 | 16.8 | 0.1 | <0.0001 | <0.0001 |
Estimated diet cost (€/day) | 6.3 | 0.1 | 6.4 | 0.1 | <0.0001 | 6.4 | 0.1 | 6.2 | 0.1 | <0.0001 | <0.0001 |
Iron (mg/day) | 12.0 | 0.1 | 12.9 | 0.1 | <0.0001 | 12.1 | 0.1 | 12.5 | 0.1 | <0.0001 | <0.0001 |
Heme iron (g/day) | 1.5 | 0.0 | 1.5 | 0.0 | <0.0001 | 1.5 | 0 | 1.2 | 0.0 | <0.0001 | <0.0001 |
Non-heme iron (g/day) | 10.5 | 0.1 | 11.3 | 0.1 | <0.0001 | 10.6 | 0.1 | 11.3 | 0.1 | <0.0001 | <0.0001 |
Total meat plus fish (g/day) || | 168.0 | 2.6 | 169.0 | 2.6 | <0.0001 | 169.0 | 2.6 | 148.8 | 2.5 | <0.0001 | <0.0001 |
Vitamin C(g/day) || | 92.8 | 1.7 | 91.9 | 1.7 | <0.0001 | 93.1 | 1.7 | 92.9 | 1.7 | <0.0001 | <0.0001 |
Phytates (mg/day) ** | 922.3 | 8.9 | 1023.1 | 9.3 | <0.0001 | 928.0 | 9.0 | 1078.1 | 9.1 | <0.0001 | <0.0001 |
Polyphenols from beverages (eq. cups of tea/day) ¶ | 1.5 | 0.0 | 1.5 | 0.0 | 0.7795 | 1.5 | 0.0 | 1.5 | 0.0 | 0.7795 | 0.7678 |
Calcium (mg/day) ¶ | 910.0 | 8.0 | 928.0 | 8.1 | <0.0001 | 915.4 | 8.1 | 929.7 | 8.0 | <0.0001 | <0.0001 |
Heme absorption rate (%) | 30.9 | 0.2 | 30.8 | 0.2 | <0.0001 | 30.9 | 0.2 | 30.9 | 0.2 | <0.0001 | <0.0001 |
Non-heme absorption rate (%) | 4.5 | 0.1 | 4.3 | 0.1 | <0.0001 | 4.5 | 0.1 | 4.3 | 0.1 | <0.0001 | <0.0001 |
Iron absorption rate (%) | 7.6 | 0.1 | 7.3 | 0.1 | <0.0001 | 7.6 | 0.1 | 6.7 | 0.1 | <0.0001 | <0.0001 |
Iron available for absorption (mg/day) | 0.9 | 0.0 | 0.9 | 0.0 | <0.0001 | 0.9 | 0.0 | 0.8 | 0.0 | <0.0001 | <0.0001 |
Zinc (mg/day) | 10.3 | 0.1 | 10.5 | 0.1 | <0.0001 | 10.4 | 0.1 | 9.9 | 0.1 | <0.0001 | <0.0001 |
Zinc absorption rate (%) | 29.1 | 0.1 | 28.1 | 0.1 | <0.0001 | 29.0 | 0.1 | 28.1 | 0.1 | <0.0001 | 0.0051 |
Zinc available for absorption (mg/day) | 2.8 | 0.0 | 2.8 | 0.0 | <0.0001 | 2.9 | 0.0 | 2.6 | 0.0 | <0.0001 | <0.0001 |
Histidine (%requirement) | 170.5 | 0.3 | 171.9 | 0.3 | <0.0001 | 170.5 | 0.3 | 169.3 | 0.3 | <0.0001 | <0.0001 |
Isoleucin (% requirement) | 170.6 | 0.2 | 171.7 | 0.2 | <0.0001 | 170.6 | 0.2 | 171.1 | 0.2 | <0.0001 | <0.0001 |
Leucine (% requirement) | 135.7 | 0.1 | 136.4 | 0.1 | <0.0001 | 135.7 | 0.1 | 136.1 | 0.1 | <0.0001 | <0.0001 |
Lysin (% requirement) | 154.7 | 0.4 | 157.0 | 0.4 | <0.0001 | 154.7 | 0.4 | 153.2 | 0.4 | <0.0001 | <0.0001 |
Sulfur amino acids (% requirement) | 165.3 | 0.2 | 163.7 | 0.2 | <0.0001 | 165.3 | 0.2 | 163.4 | 0.2 | <0.0001 | <0.0001 |
Aromatic amino acids (% requirement) | 197.3 | 0.2 | 198.0 | 0.2 | <0.0001 | 197.3 | 0.2 | 199.1 | 0.2 | <0.0001 | <0.0001 |
Threonin (% requirement) | 160.6 | 0.2 | 161.9 | 0.2 | <0.0001 | 160.6 | 0.2 | 160.1 | 0.2 | <0.0001 | <0.0001 |
Tryptophan (% requirement) | 201.7 | 0.2 | 201.2 | 0.2 | <0.0001 | 201.7 | 0.2 | 202.3 | 0.2 | <0.0001 | <0.0001 |
Valin (% requirement) | 198.2 | 0.2 | 198.9 | 0.2 | <0.0001 | 198.2 | 0.2 | 199.3 | 0.2 | <0.0001 | <0.0001 |
PDCAAS (%) | 94.9 | 0.02 | 94.5 | 0.02 | <0.0001 | 94.9 | 0.02 | 94.5 | 0.02 | <0.0001 | 0.9406 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gazan, R.; Maillot, M.; Reboul, E.; Darmon, N. Pulses Twice a Week in Replacement of Meat Modestly Increases Diet Sustainability. Nutrients 2021, 13, 3059. https://doi.org/10.3390/nu13093059
Gazan R, Maillot M, Reboul E, Darmon N. Pulses Twice a Week in Replacement of Meat Modestly Increases Diet Sustainability. Nutrients. 2021; 13(9):3059. https://doi.org/10.3390/nu13093059
Chicago/Turabian StyleGazan, Rozenn, Matthieu Maillot, Emmanuelle Reboul, and Nicole Darmon. 2021. "Pulses Twice a Week in Replacement of Meat Modestly Increases Diet Sustainability" Nutrients 13, no. 9: 3059. https://doi.org/10.3390/nu13093059
APA StyleGazan, R., Maillot, M., Reboul, E., & Darmon, N. (2021). Pulses Twice a Week in Replacement of Meat Modestly Increases Diet Sustainability. Nutrients, 13(9), 3059. https://doi.org/10.3390/nu13093059