Effects of Nitrate Supplementation on Exercise Performance in Humans: A Narrative Review
Abstract
:1. Introduction
1.1. Nitrates: Mechanisms of Action as an Ergogenic Aid
1.2. Nitrates: Metabolism
2. Nitrates and Exercise Performance
2.1. Nitrates: Supplementation Protocol
2.2. Nitrates: Effects of Exercise Type and Conditions
2.3. Nitrates: Food Sources and Supplementation
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Clements, W.T.; Lee, S.; Bloomer, R.J. Nitrate ingestion: A review of the health and physical performance effects. Nutrients 2014, 6, 5224–5264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez, A.M.; Trexler, E.T. Effects of Citrulline Supplementation on Exercise Performance in Humans: A Review of the Current Literature. J. Strength Cond. Res. 2020, 34, 1480–1495. [Google Scholar] [CrossRef] [PubMed]
- Campos, H.O.; Drummond, L.R.; Rodrigues, Q.T.; Machado, F.S.M.; Pires, W.; Wanner, S.P.; Coimbra, C.C. Nitrate supplementation improves physical performance specifically in non-athletes during prolonged open-ended tests: A systematic review and meta-analysis. Br. J. Nutr. 2018, 119, 636–657. [Google Scholar] [CrossRef]
- Van De Walle, G.P.; Vukovich, M.D. The Effect of Nitrate Supplementation on Exercise Tolerance and Performance: A Systematic Review and Meta-Analysis. J. Strength Cond. Res. 2018, 32, 1796–1808. [Google Scholar] [CrossRef]
- Lacerda, A.C.R.; Marubayashi, U.; Balthazar, C.H.; Coimbra, C.C. Evidence that brain nitric oxide inhibition increases metabolic cost of exercise, reducing running performance in rats. Neurosci. Lett. 2006, 393, 260–263. [Google Scholar] [CrossRef]
- Wanner, S.P.; Leite, L.H.R.; Guimarães, J.B.; Coimbra, C.C. Increased brain L-arginine availability facilitates cutaneous heat loss induced by running exercise. Clin. Exp. Pharmacol. Physiol. 2015, 42, 609–616. [Google Scholar] [CrossRef]
- Lacerda, A.C.R.; Marubayashi, U.; Coimbra, C.C. Nitric oxide pathway is an important modulator of heat loss in rats during exercise. Brain Res. Bull. 2005, 67, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.M. Dietary nitrate supplementation and exercise performance. Sports Med. 2014, 44, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Lundberg, J.O.; Weitzberg, E.; Gladwin, M.T. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat. Rev. Drug Discov. 2008, 7, 156–167. [Google Scholar] [CrossRef]
- Webb, A.J.; Patel, N.; Loukogeorgakis, S.; Okorie, M.; Aboud, Z.M.; Misra, S.; Rashid, R.; Miall, P.; Deanfield, J.; Benjamin, N.; et al. Acute blood pressure lowering, vasoprotective, and antiplatelet properties of dietary nitrate via bioconversion to nitrite. Hypertension 2008, 51, 784–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanaway, L.; Rutherfurd-Markwick, K.; Page, R.; Ali, A. Performance and Health Benefits of Dietary Nitrate Supplementation in Older Adults: A Systematic Review. Nutrients 2017, 9, 1171. [Google Scholar] [CrossRef] [PubMed]
- Clifford, T.; Howatson, G.; West, D.J.; Stevenson, E.J. The Potential Benefits of Red Beetroot Supplementation in Health and Disease. Nutrients 2015, 7, 2801–2822. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, S.T.J.; Wylie, L.J.M.; Winyard, P.G.; Vanhatalo, A.; Jones, A.M. The Effects of Chronic Nitrate Supplementation and the Use of Strong and Weak Antibacterial Agents on Plasma Nitrite Concentration and Exercise Blood Pressure. Int. J. Sports Med. 2015, 36, 1177–1185. [Google Scholar] [CrossRef]
- Rowland, S.N.; Chessor, R.; French, G.; Robinson, G.P.; O’Donnell, E.; James, L.J.; Bailey, S.J. Oral nitrate reduction is not impaired after training in chlorinated swimming pool water in elite swimmers. Appl. Physiol. Nutr. Metab. 2021, 46, 86–89. [Google Scholar] [CrossRef] [PubMed]
- Larsen, F.J.; Weitzberg, E.; Lundberg, J.O.; Ekblom, B. Effects of dietary nitrate on oxygen cost during exercise. Acta Physiol. 2007, 191, 59–66. [Google Scholar] [CrossRef]
- Bailey, S.J.; Winyard, P.; Vanhatalo, A.; Blackwell, J.R.; Dimenna, F.J.; Wilkerson, D.P.; Tarr, J.; Benjamin, N.; Jones, A.M. Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans. J. Appl. Physiol. (1985) 2009, 107, 1144–1155. [Google Scholar] [CrossRef] [Green Version]
- Bailey, S.J.; Fulford, J.; Vanhatalo, A.; Winyard, P.G.; Blackwell, P.R.; DiMenna, F.J.; Wilkerson, D.P.; Benjamin, N.; Jones, A.M. Dietary nitrate supplementation enhances muscle contractile efficiency during knee-extensor exercise in humans. J. Appl. Physiol. (1985) 2010, 109, 135–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanhatalo, A.; Bailey, S.J.; Blackwell, J.R.; DiMenna, F.J.; Pavey, T.G.; Wilkerson, D.P.; Benjamin, N.; Winyard, P.G.; Jones, A.M. Acute and chronic effects of dietary nitrate supplementation on blood pressure and the physiological responses to moderate-intensity and incremental exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 299, R1121–R1131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masschelein, E.; Van Thienen, R.; Wang, X.; Van Schepdael, A.; Thomis, M.; Hespel, P. Dietary nitrate improves muscle but not cerebral oxygenation status during exercise in hypoxia. J. Appl. Physiol. (1985) 2012, 113, 736–745. [Google Scholar] [CrossRef] [Green Version]
- Muggeridge, D.J.; Howe, C.C.F.; Spendiff, O.; Pedlar, C.; James, P.E.; Easton, C. The effects of a single dose of concentrated beetroot juice on performance in trained flatwater kayakers. Int. J. Sport Nutr. Exerc. Metab. 2013, 23, 498–506. [Google Scholar] [CrossRef] [PubMed]
- Porcelli, S.; Ramaglia, M.; Bellistri, G.; Pavei, G.; Pugliese, L.; Montorsi, M.; Rasica, L.; Marzorati, M. Aerobic Fitness Affects the Exercise Performance Responses to Nitrate Supplementation. Med. Sci. Sports Exerc. 2015, 47, 1643–1651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lansley, K.E.; Winyard, P.G.; Bailey, S.J.; Vanhatalo, A.; Wilkerson, D.P.; Blackwell, J.R.; Gilchrist, M.; Benjamin, N.; Jones, A.M. Acute dietary nitrate supplementation improves cycling time trial performance. Med. Sci. Sports Exerc. 2011, 43, 1125–1131. [Google Scholar] [CrossRef] [Green Version]
- Murphy, M.; Eliot, K.; Heuertz, R.M.; Weiss, E. Whole beetroot consumption acutely improves running performance. J. Acad. Nutr. Diet. 2012, 112, 548–552. [Google Scholar] [CrossRef] [PubMed]
- Nyakayiru, J.; Jonvik, K.L.; Trommelen, J.; Pinckaers, P.J.M.; Senden, J.M.; van Loon, L.J.C.; Verdijk, L.B. Beetroot Juice Supplementation Improves High-Intensity Intermittent Type Exercise Performance in Trained Soccer Players. Nutrients 2017, 9, 314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cermak, N.M.; Res, P.; Stinkens, R.; Lundberg, J.O.; Gibala, M.J.; van Loon, L.J.C. No improvement in endurance performance after a single dose of beetroot juice. Int. J. Sport Nutr. Exerc. Metab. 2012, 22, 470–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christensen, P.M.; Nyberg, M.; Bangsbo, J. Influence of nitrate supplementation on VO₂ kinetics and endurance of elite cyclists. Scand. J. Med. Sci. Sports 2013, 23, e21–e31. [Google Scholar] [CrossRef]
- McQuillan, J.; Dulson, D.; Laursen, P.; Kilding, A. Dietary Nitrate Fails to Improve 1 and 4km Cycling Performance in Highly-Trained Cyclists. Int. J. Sport Nutr. Exerc. Metab. 2017, 27, 1–26. [Google Scholar] [CrossRef]
- McQuillan, J.A.; Dulson, D.K.; Laursen, P.B.; Kilding, A.E. The Effect of Dietary Nitrate Supplementation on Physiology and Performance in Trained Cyclists. Int. J. Sports Physiol. Perform. 2017, 12, 684–689. [Google Scholar] [CrossRef] [Green Version]
- Nyakayiru, J.M.; Jonvik, K.L.; Pinckaers, P.J.M.; Senden, J.; van Loon, L.J.C.; Verdijk, L.B. No Effect of Acute and 6-Day Nitrate Supplementation on VO2 and Time-Trial Performance in Highly Trained Cyclists. Int. J. Sport. Nutr. Exerc. Metab. 2017, 27, 11–17. [Google Scholar] [CrossRef]
- Peacock, O.; Tjønna, A.E.; James, P.; Wisløff, U.; Welde, B.; Böhlke, N.; Smith, A.; Stokes, K.; Cook, C.; Sandbakk, O. Dietary nitrate does not enhance running performance in elite cross-country skiers. Med. Sci. Sports Exerc. 2012, 44, 2213–2219. [Google Scholar] [CrossRef]
- Wilkerson, D.P.; Hayward, G.M.; Bailey, S.J.; Vanhatalo, A.; Blackwell, J.R.; Jones, A.M. Influence of acute dietary nitrate supplementation on 50 mile time trial performance in well-trained cyclists. Eur. J. Appl. Physiol. 2012, 112, 4127–4134. [Google Scholar] [CrossRef]
- Larsen, F.J.; Weitzberg, E.; Lundberg, J.O.; Ekblom, B. Dietary nitrate reduces maximal oxygen consumption while maintaining work performance in maximal exercise. Free. Radic. Biol. Med. 2010, 48, 342–347. [Google Scholar] [CrossRef]
- Vanhatalo, A.; Fulford, J.; Bailey, S.J.; Blackwell, J.R.; Winyard, P.G.; Jones, A.M. Dietary nitrate reduces muscle metabolic perturbation and improves exercise tolerance in hypoxia. J. Physiol. 2011, 589, 5517–5528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bescos, R.; Ferrer-Roca, V.; Galilea, P.A.; Roig, A.; Drobnic, F.; Sureda, A.; Martorell, M.; Cordova, A.; Tur, J.A.; Pons, A. Sodium Nitrate Supplementation Does Not Enhance Performance of Endurance Athletes. Med. Sci. Sports Exerc. 2012, 44, 2400–2409. [Google Scholar] [CrossRef] [PubMed]
- Bond, H.; Morton, L.; Braakhuis, A.J. Dietary nitrate supplementation improves rowing performance in well-trained rowers. Int J. Sport Nutr. Exerc. Metab. 2012, 22, 251–256. [Google Scholar] [CrossRef]
- Cermak, N.M.; Gibala, M.J.; van Loon, L.J.C. Nitrate supplementation’s improvement of 10-km time-trial performance in trained cyclists. Int. J. Sport. Nutr. Exerc. Metab. 2012, 22, 64–71. [Google Scholar] [CrossRef]
- Kelly, J.; Vanhatalo, A.; Wilkerson, D.; Wylie, L.; Jones, A. Effects of Nitrate on the Power–Duration Relationship for Severe-Intensity Exercise. Med. Sci. Sports Exercise. 2013, 45, 1798–1806. [Google Scholar] [CrossRef] [Green Version]
- Breese, B.C.; McNarry, M.A.; Marwood, S.; Blackwell, J.R.; Bailey, S.J.; Jones, A.M. Beetroot juice supplementation speeds O2 uptake kinetics and improves exercise tolerance during severe-intensity exercise initiated from an elevated metabolic rate. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013, 305, R1441–R1450. [Google Scholar] [CrossRef] [Green Version]
- Wylie, L.J.; Kelly, J.; Bailey, S.J.; Blackwell, J.R.M.; Skiba, P.F.; Winyard, P.G.; Jeukendrup, A.E.; Vanhatalo, A.; Jones, A.M. Beetroot juice and exercise: Pharmacodynamic and dose-response relationships. J. Appl. Physiol. (1985) 2013, 115, 325–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wylie, L.J.; Mohr, M.; Krustrup, P.; Jackman, S.R.; Ermιdis, G.; Kelly, J.; Black, M.I.; Bailey, S.J.; Vanhatalo, A.; Jones, A.M. Dietary nitrate supplementation improves team sport-specific intense intermittent exercise performance. Eur. J. Appl. Physiol. 2013, 113, 1673–1684. [Google Scholar] [CrossRef]
- Hoon, M.W.; Jones, A.M.; Johnson, N.A.; Blackwell, J.R.; Broad, E.M.; Lundy, B.M.; Rice, A.J.; Burke, L.M. The effect of variable doses of inorganic nitrate-rich beetroot juice on simulated 2,000-m rowing performance in trained athletes. Int. J. Sports Physiol. Perform. 2014, 9, 615–620. [Google Scholar] [CrossRef]
- Boorsma, R.K.; Whitfield, J.; Spriet, L.L. Beetroot juice supplementation does not improve performance of elite 1500-m runners. Med. Sci. Sports Exerc. 2014, 46, 2326–2334. [Google Scholar] [CrossRef]
- Martin, K.; Smee, D.; Thompson, K.G.; Rattray, B. No improvement of repeated-sprint performance with dietary nitrate. Int. J. Sports Physiol. Perform. 2014, 9, 845–850. [Google Scholar] [CrossRef]
- Peeling, P.; Cox, G.R.; Bullock, N.; Burke, L.M. Beetroot Juice Improves On-Water 500 M Time-Trial Performance, and Laboratory-Based Paddling Economy in National and International-Level Kayak Athletes. Int. J. Sport. Nutr. Exerc. Metab. 2015, 25, 278–284. [Google Scholar] [CrossRef]
- Wylie, L.J.; Bailey, S.J.; Kelly, J.; Blackwell, J.R.; Vanhatalo, A.; Jones, A.M. Influence of beetroot juice supplementation on intermittent exercise performance. Eur. J. Appl. Physiol. 2015, 116, 415–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christensen, P.M.; Petersen, N.K.; Friis, S.N.; Weitzberg, E.; Nybo, L. Effects of nitrate supplementation in trained and untrained muscle are modest with initial high plasma nitrite levels. Scand. J. Med. Sci. Sports 2017, 27, 1616–1626. [Google Scholar] [CrossRef]
- Vasconcellos, J.; Henrique Silvestre, D.; Dos Santos Baião, D.; Werneck-de-Castro, J.P.; Silveira Alvares, T.; Paschoalin, V.M.F. A Single Dose of Beetroot Gel Rich in Nitrate Does Not Improve Performance but Lowers Blood Glucose in Physically Active Individuals. J. Nutr. Metab. 2017, 2017, 7853034. [Google Scholar] [CrossRef] [PubMed]
- Shannon, O.M.; Barlow, M.J.; Duckworth, L.; Williams, E.; Wort, G.; Woods, D.; Siervo, M.; O’Hara, J.P. Dietary nitrate supplementation enhances short but not longer duration running time-trial performance. Eur. J. Appl. Physiol. 2017, 117, 775–785. [Google Scholar] [CrossRef]
- de Castro, T.F.; de Assis Manoel, F.; Figueiredo, D.H.; Figueiredo, D.H.; Machado, F.A. Effect of beetroot juice supplementation on 10-km performance in recreational runners. Appl. Physiol. Nutr. Metab. 2019, 44, 90–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuenca, E.; Jodra, P.; Pérez-López, A.; González-Rodríguez, L.G.; da Silva, S.F.; Veiga-Herreros, P.; Domínguez, R. Effects of Beetroot Juice Supplementation on Performance and Fatigue in a 30-s All-Out Sprint Exercise: A Randomized, Double-Blind Cross-Over Study. Nutrients 2018, 10, 1222. [Google Scholar] [CrossRef] [Green Version]
- Oskarsson, J.; McGawley, K. No individual or combined effects of caffeine and beetroot-juice supplementation during submaximal or maximal running. Appl. Physiol. Nutr. Metab. 2018, 43, 697–703. [Google Scholar] [CrossRef]
- Jo, E.; Fischer, M.; Auslander, A.T.; Beigarten, A.; Daggy, B.; Hansen, K.; Kessler, L.; Osmond, A.; Wang, H.; Wes, R. The Effects of Multi-Day vs. Single Pre-exercise Nitrate Supplement Dosing on Simulated Cycling Time Trial Performance and Skeletal Muscle Oxygenation. J. Strength Cond. Res. 2019, 33, 217–224. [Google Scholar] [CrossRef]
- Rokkedal-Lausch, T.; Franch, J.; Poulsen, M.K.; Thomsen, L.P.; Weitzberg, E.; Kamavuako, E.N.; Karbing, D.S.; Larsen, R.G. Chronic high-dose beetroot juice supplementation improves time trial performance of well-trained cyclists in normoxia and hypoxia. Nitric Oxide 2019, 85, 44–52. [Google Scholar] [CrossRef] [Green Version]
- Esen, O.; Nicholas, C.; Morris, M.; Bailey, S.J. No Effect of Beetroot Juice Supplementation on 100-m and 200-m Swimming Performance in Moderately Trained Swimmers. Int. J. Sports Physiol. Perform. 2019, 14, 706–710. [Google Scholar] [CrossRef] [PubMed]
- Wickham, K.A.; McCarthy, D.G.; Pereira, J.M.; Cervone, D.T.; Verdijk, L.B.; van Loon, L.C.J.; Power, G.A.; Spriet, L.L. No effect of beetroot juice supplementation on exercise economy and performance in recreationally active females despite increased torque production. Physiol. Rep. 2019, 7, e13982. [Google Scholar] [CrossRef]
- Kent, G.L.; Dawson, B.; McNaughton, L.R.; Cox, G.R.; Burke, L.M.; Peeling, P. The effect of beetroot juice supplementation on repeat-sprint performance in hypoxia. J. Sports Sci. 2019, 37, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Mosher, S.L.; Gough, L.A.; Deb, S.; Saunders, B.; Mc Naughton, L.R. High dose Nitrate ingestion does not improve 40 km cycling time trial performance in trained cyclists. Res. Sports Med. 2019, 28, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Ranchal-Sanchez, A.; Diaz-Bernier, V.M.; De La Florida-Villagran, C.A.; Llorente-Cantarero, F.J.; Campos-Perez, J.; Jurado-Castro, J.M. Acute Effects of Beetroot Juice Supplements on Resistance Training: A Randomized Double-Blind Crossover. Nutrients 2020, 12, 1912. [Google Scholar] [CrossRef] [PubMed]
- López-Samanes, Á.; Pérez-López, A.; Moreno-Pérez, V.; Nakamura, F.Y.; Acebes-Sánchez, J.; Quintana-Milla, I.; Sánchez-Oliver, A.J.; Moreno-Pérez, D.; Fernández-Elías, V.E.; Domínguez, R. Effects of Beetroot Juice Ingestion on Physical Performance in Highly Competitive Tennis Players. Nutrients 2020, 12, 584. [Google Scholar] [CrossRef] [Green Version]
- Liubertas, T.; Kairaitis, R.; Stasiule, L.; Viskelis, P.; Viškelis, J.; Urbonaviciene, D. The influence of amaranth (Amaranthus hypochondriacus) dietary nitrates on the aerobic capacity of physically active young persons. J. Int. Soc. Sport Nutr. 2020, 17, 37. [Google Scholar] [CrossRef]
- Rodríguez-Fernández, A.; Castillo, D.; Raya-González, J.; Domínguez, R.; Bailey, S.J. Beetroot juice supplementation increases concentric and eccentric muscle power output. Original Investigation. J. Sports Sci. Med. 2020, 24. [Google Scholar] [CrossRef]
- Jonvik, K.L.; Hoogervorst, D.; Peelen, H.B.; de Niet, M.; Verdijk, L.B.; van Loon, L.J.C.; van Dijk, J.W. The impact of beetroot juice supplementation on muscular endurance, maximal strength and countermovement jump performance. Eur. J. Sport Sci. 2021, 21, 871–878. [Google Scholar] [CrossRef]
- Dumar, A.M.; Huntington, A.F.; Rogers, R.R.; Kopec, T.J.; Williams, T.D.; Ballmann, C.G. Acute Beetroot Juice Supplementation Attenuates Morning-Associated Decrements in Supramaximal Exercise Performance in Trained Sprinters. Int. J. Env. Res. Public Health 2021, 18, 412. [Google Scholar] [CrossRef]
- Marshall, A.R.; Rimmer, J.E.; Shah, N.; Bye, K.; Kipps, C.; Woods, D.R.; O’Hara, J.; Boos, C.J.; Barlow, M. Marching to the Beet: The effect of dietary nitrate supplementation on high altitude exercise performance and adaptation during a military trekking expedition. Nitric Oxide 2021, 113–114, 70–77. [Google Scholar] [CrossRef]
- Fowler, R.; Jeffries, O.; Tallent, J.; Theis, N.; Heffernan, S.M.; McNarry, M.A.; Kilduff, L.; Waldron, M. No thermoregulatory or ergogenic effect of dietary nitrate among physically inactive males, exercising above gas exchange threshold in hot and dry conditions. Eur. J. Sport Sci. 2021, 21, 370–378. [Google Scholar] [CrossRef] [PubMed]
- Townsend, J.R.; Hart, T.L.; Haynes, J.T., 4th; Woods, C.A.; Toy, A.M.; Pihera, B.C.; Aziz, M.A.; Zimmerman, G.A.; Jones, M.D.; Vantrease, W.C.; et al. Influence of Dietary Nitrate Supplementation on Physical Performance and Body Composition Following Offseason Training in Division I Athletes. J. Diet. Suppl. 2021, 1–16. [Google Scholar] [CrossRef]
- Andersen, P.; Henriksson, J. Capillary supply of the quadriceps femoris muscle of man: Adaptive response to exercise. J. Physiol. 1977, 270, 677–690. [Google Scholar] [CrossRef] [PubMed]
- Poveda, J.J.; Riestra, A.; Salas, E.; Cagigas, M.L.; López-Somoza, C.; Amado, J.A.; Berrazueta, J.R. Contribution of nitric oxide to exercise-induced changes in healthy volunteers: Effects of acute exercise and long-term physical training. Eur. J. Clin. Investig. 1997, 27, 967–971. [Google Scholar] [CrossRef]
- Nevill, A.M.; Brown, D.; Godfrey, R.; Johnson, P.J.; Romer, L.; Stewart, A.D.; Winter, E.M. Modeling Maximum Oxygen Uptake of Elite Endurance Athletes. Med. Sci. Sports Exer. 2003, 35, 488–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saltin, B.; Astrand, P.O. Maximal oxygen uptake in athletes. J. Appl. Physiol. 1967, 23, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Seals, D.R. Endurance exercise performance in Masters athletes: Age-associated changes and underlying physiological mechanisms. J. Physiol. 2008, 586, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Maughan, R.J.; Burke, L.M.; Dvorak, J.; Larson-Meyer, D.E.; Peeling, P.E.; Phillips, S.M.; Rawson, E.S.; Walsh, N.P.; Garthe, I.; Geyer, H.; et al. IOC consensus statement: Dietary supplements and the high-performance athlete. Br. J. Sports Med. 2018, 52, 439–455. [Google Scholar] [CrossRef] [PubMed]
- Burke, D.G.; Chilibeck, P.D.; Parise, G.; Candow, D.G.; Mahoney, D.; Tarnopolsky, M. Effect of creatine and weight training on muscle creatine and performance in vegetarians. Med. Sci. Sports Exerc. 2003, 35, 1946–1955. [Google Scholar] [CrossRef]
- Stamler, J.S.; Singel, D.J.; Loscalzo, J. Biochemistry of nitric oxide and its redox-activated forms. Science 1992, 258, 1898–1902. [Google Scholar] [CrossRef]
- Freeman, B. Free radical chemistry of nitric oxide. Looking at the dark side. Chest 1994, 105, 79–84. [Google Scholar] [CrossRef]
- Kuchakulla, M.; Masterson, T.; Arora, H.; Kulandavelu, S.; Ramasamy, R. Effect of nitroso-redox imbalance on male reproduction. Transl. Urol. 2018, 7, 968–977. [Google Scholar] [CrossRef]
- Simon, J.N.; Ziberna, K.; Casadei, B. Compromised redox homeostasis, altered nitroso-redox balance, and therapeutic possibilities in atrial fibrillation. Cardiovasc. Res. 2016, 109, 510–518. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Cabrera, M.C.; Domenech, E.; Romagnoli, M.; Arduini, A.; Borras, C.; Pallardo, F.V.; Sastre, J.; Viña, J. Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. Am. J. Clin. Nutr. 2008, 87, 142–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morrison, D.; Hughes, J.; Della Gatta, P.A.; Mason, S.; Lamon, S.; Russell, A.P.; Wadley, G.D. Vitamin C and E supplementation prevents some of the cellular adaptations to endurance-training in humans. Free. Radic. Biol. Med. 2015, 89, 852–862. [Google Scholar] [CrossRef]
- Dutra, M.T.; Alex, S.; Silva, A.F.; Brown, L.E.; Bottaro, M. Antioxidant Supplementation Impairs Changes in Body Composition Induced by Strength Training in Young Women. Int. J. Exerc. Sci. 2019, 12, 287–296. [Google Scholar]
- Hoon, M.W.; Johnson, N.A.; Chapman, P.G.; Burke, L.M. The effect of nitrate supplementation on exercise performance in healthy individuals: A systematic review and meta-analysis. Int. J. Sport Nutr. Exerc. Metab. 2013, 23, 522–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pawlak-Chaouch, M.; Boissière, J.; Gamelin, F.X.; Cuvelier, G.; Berthoin, S.; Aucouturier, J. Effect of dietary nitrate supplementation on metabolic rate during rest and exercise in human: A systematic review and a meta-analysis. Nitric Oxide. 2016, 53, 65–76. [Google Scholar] [CrossRef] [PubMed]
- McMahon, N.F.; Leveritt, M.D.; Pavey, T.G. The Effect of Dietary Nitrate Supplementation on Endurance Exercise Performance in Healthy Adults: A Systematic Review and Meta-Analysis. Sports Med. 2017, 47, 735–756. [Google Scholar] [CrossRef] [Green Version]
- Senefeld, J.W.; Wiggins, C.C.; Regimbal, R.J.; Dominelli, P.B.; Baker, S.E.; Joyner, M.J. Ergogenic Effect of Nitrate Supplementation: A Systematic Review and Meta-analysis. Med. Sci. Sports Exerc. 2020, 52, 2250–2261. [Google Scholar] [CrossRef]
- Jones, A.M. Influence of dietary nitrate on the physiological determinants of exercise performance: A critical review. Appl. Physiol. Nutr. Metab. 2014, 39, 1019–1028. [Google Scholar] [CrossRef]
- Laursen, P.B.; Francis, G.T.; Abbiss, C.R.; Newton, M.J.; Nosaka, K. Reliability of time-to-exhaustion versus time-trial running tests in runners. Med. Sci. Sports Exerc. 2007, 39, 1374–1379. [Google Scholar] [CrossRef] [PubMed]
- Fery, Y.A.; Ferry, A.; Hofe, A.V.; Rieu, M. Effect of Physical Exhaustion on Cognitive Functioning. Percept. Mot. Ski. 1997, 84, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Thompson, C.; Wylie, L.J.; Fulford, J.; Kelly, J.; Black, M.I.; McDonagh, S.T.J.; Jeukendrup, A.E.; Vanhatalo, A.; Jones, A.M. Dietary nitrate improves sprint performance and cognitive function during prolonged intermittent exercise. Eur. J. Appl. Physiol. 2015, 115, 1825–1834. [Google Scholar] [CrossRef]
- Aamand, R.; Dalsgaard, T.; Ho, Y.C.L.; Møller, A.; Roepstorff, A.; Lund, T.E. A NO way to BOLD? Dietary nitrate alters the hemodynamic response to visual stimulation. Neuroimage 2013, 83, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Haskell-Ramsay, C.; Thompson, K.; Jones, A.M.; Blackwell, J.R.; Winyard, P.G.; Forster, J.S. Nitrate-rich beetroot juice modulates cerebral blood flow and cognitive performance in humans. Appetite 2011, 57, 560. [Google Scholar] [CrossRef]
- Thompson, C.; Vanhatalo, A.; Jell, H.; Fulford, J.; Carter, J.; Nyman, L.; Bailey, S.J.; Jone, A.M. Dietary nitrate supplementation improves sprint and high-intensity intermittent running performance. Nitric Oxide 2016, 61, 55–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- San Juan, A.F.; Dominguez, R.; Lago-Rodríguez, Á.; Montoya, J.J.; Tan, R.; Bailey, S.J. Effects of Dietary Nitrate Supplementation on Weightlifting Exercise Performance in Healthy Adults: A Systematic Review. Nutrients 2020, 12, 2227. [Google Scholar] [CrossRef]
- Shannon, O.M.; McGawley, K.; Nybäck, L.; Duckworth, L.; Barlow, M.J.; Woods, D.; Siervo, M.; O’Hara, J.P. “Beet-ing” the Mountain: A Review of the Physiological and Performance Effects of Dietary Nitrate Supplementation at Simulated and Terrestrial Altitude. Sports Med. 2017, 47, 2155–2169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Mil, A.H.M.; Spilt, A.; Van Buchem, M.A.; Bollen, E.L.E.M.; Teppema, L.; Westendorp, R.G.J.; Blauw, G.J. Nitric oxide mediates hypoxia-induced cerebral vasodilation in humans. J. Appl. Physiol. 2002, 92, 962–966. [Google Scholar] [CrossRef] [Green Version]
- Diesen, D.L.; Hess, D.T.; Stamler, J.S. Hypoxic vasodilation by red blood cells: Evidence for an s-nitrosothiol-based signal. Circ. Res. 2008, 103, 545–553. [Google Scholar] [CrossRef] [Green Version]
- Martin, D.S.; Gilbert-Kawai, E.T.; Meale, P.M.; Fernandez, B.O.; Cobb, A.; Khosravi, M.; Mitchell, K.; Grocott, M.P.; Levett, D.Z.; Mythen, M.G.; et al. Xtreme Alps Research Group. Design and conduct of ‘Xtreme Alps’: A double-blind, randomised controlled study of the effects of dietary nitrate supplementation on acclimatisation to high altitude. Contemp. Clin. Trials 2013, 36, 450–459. [Google Scholar] [CrossRef] [Green Version]
- Cumpstey, A.F.; Hennis, P.J.; Gilbert-Kawai, E.T.; Fernandez, B.O.; Grant, D.; Jenner, W.; Poudevigne, M.; Moyses, H.; Levett, D.Z.; Cobb, A.; et al. Effects of dietary nitrate supplementation on microvascular physiology at 4559 m altitude—A randomised controlled trial (Xtreme Alps). Nitric Oxide. 2020, 94, 27–35. [Google Scholar] [CrossRef]
- Stellingwerff, T.; Peeling, P.; Garvican-Lewis, L.A.; Hall, R.; Koivisto, A.E.; Heikura, I.A.; Burke, L.M. Nutrition and Altitude: Strategies to Enhance Adaptation, Improve Performance and Maintain Health: A Narrative Review. Sports Med. 2019, 49, 169–184. [Google Scholar] [CrossRef] [Green Version]
- Salehzadeh, H.; Maleki, A.; Rezaee, R.; Shahmoradi, B.; Ponnet, K. The nitrate content of fresh and cooked vegetables and their health-related risks. PLoS ONE 2020, 15, e0227551. [Google Scholar] [CrossRef]
- Van der Avoort, C.M.T.; Van Loon, L.J.C.; Hopman, M.T.E.; Verdijk, L.B. Increasing vegetable intake to obtain the health promoting and ergogenic effects of dietary nitrate. Eur. J. Clin. Nutr. 2018, 72. [Google Scholar] [CrossRef]
- Walpurgis, K.; Thomas, A.; Geyer, H.; Mareck, U.; Thevis, M. Dietary Supplement and Food Contaminations and Their Implications for Doping Controls. Foods 2020, 9, 1012. [Google Scholar] [CrossRef] [PubMed]
Study (Year) | Number of Participants (Sex) | Participant Characteristics | Supplementation Protocol | Performance Protocol (Measured Variable) | Main Findings |
---|---|---|---|---|---|
Larsen et al. (2007) [15] | 9 (7 M, 2 F) | Cyclists and triathlon competitors (VO2peak 55 ± 3.7 mL/kg/min) | 0.033 mmol NO3−/kg BM for 2 consecutive days thrice daily | Incremental ergometer test (time in s) | ↔ Time to exhaustion |
Bailey et al. (2009) [16] | 8 (M) | Healthy and recreationally active VO2max 49 ± 5 mL/kg/min) | 5.5 mmol NO3− for 6 consecutive days | High-intensity exercise (time in s) | ↓ O2 uptake during high-intensity exercise ↑ Time to exhaustion ↓ Systolic blood pressure |
Bailey et al. (2010) [17] | 7 (M) | Healthy and recreationally active | 5.1 mmol NO3− for 6 consecutive days | High-intensity exercise (time in s) | ↓ Muscle phosphocreatine degradation ↑ Time to exhaustion ↑ ATP turnover |
Vanhatalo et al. (2010) [18] | 8 (5 M, 3 F) | Healthy individuals | 5.2 mmol NO3− twice daily for 15 consecutive days | Incremental cycling test (power in W) | ↓ Steady-state VO2 ↑ Peak power and work rate |
Larsen et al. (2010) [32] | 9 (7 M, 2 F) | Healthy and recreationally active (VO2max 3.72 ± 0.33 mL/kg/min) | 0.1 mmol NO3−/kg BM for 2 consecutive days | Incremental ergometer test (time in s) | ↔ Time to exhaustion |
Vanhatalo et al. (2011) [33] | 9 (7 M, 2 F) | Healthy and recreationally active | 9.3 mmol NO3− split into three doses taken 24, 12, and 2.5 h prior to testing | Knee extension (time in s) | ↑ Knee extension performance ↑ PCr recovery time constant |
Lansley et al. (2011) [22] | 9 (M) | Well-trained cyclists VO2peak 56 ± 5.7 mL/kg/min) | ≃6.2 mmol NO3− | 4 km and 16.1 km time trial (time in min and power in W) | ↑ Power output in both 4 km and 16.1 km trial ↑ Performance in both 4 km and 16.1 km trial |
Murphy et al. (2011) [23] | 11 (5 M, 6 F) | Healthy and recreationally active | 500 g beetroot (≃500 mg or 8 mmol NO3−) | 5 km running time trial (velocity in km/h) | ↔ Performance ↓ RPE |
Masschelein et al. (2012) [19] | 15 (M) | Healthy and recreationally active (VO2peak 61.7± 2.1 mL/kg/min) | 0.07 mmol NO3−/kg BM/day for 6 consecutive days | Incremental ergometer test (time in s) | ↓ VO2 and ↑ arterial O2 saturation during rest and exercise in hypoxic conditions |
Bescos et al. (2012) [34] | 13 (M) | Cyclists and triathlon competitors | 11.8 mmol NO3− | Incremental test (time in s and power in W) | ↔ Mean distance ↔ Power output |
Peacock et al. (2012) [30] | 10 (M) | Cross-country skiers (VO2max 69.6 ± 5.1 mL/kg/min) | 1 g KNO3 (9.9 mmol or 614 mg NO3−) | 5 km running time trial (time in s) | ↔ Time trail performance ↔ O2 cost |
Bond et al. (2012) [35] | 14 (M) | Rowers | 5 mmol NO3− for 6 consecutive days | 6 × 500 m ergometer test at high-intensity (time in s) | ↔ Rowing performance |
Cermak et al. (2012) [36] | 12 (M) | Cyclists and triathlon competitors (VO2peak = 58 ± 2 mL/kg/min; Wmax = 342 ± 10 W) | 8 mmol NO3− for 6 consecutive days | 10 km running time trial (time in s and power in W) | ↑ Time trial performance ↑ Power output |
Cermak et al. (2012) [25] | 20 (M) | Cyclists and triathlon competitors (VO2peak 60 ± 1 mL/kg/min; Wmax 398 ± 7.7 W) | 8.7 mmol NO3− | Cycling at 75 % Wmax to ≃1073 kJ (caloric-expenditure-based time trial) (time in min and power in W) | ↔ Time trial ↔ Power output ↔ HR |
Kelly et al. (2013) [37] | 9 (M) | Healthy and recreationally active (VO2max 54.5 ± 7.5 mL/kg/min) | 8.2 mmol NO3− for 5 consecutive days | Cyclic ergometry at 1) 60%, 2) 70%, 3) 80%, and 4) 100% Wmax (time in s) | ↑ Exercise tolerance at 60%, 70%, and 80% peak power ↔ At 100% peak power |
Breese et al. (2013) [38] | 9 (4 M, 5 F) | Healthy individuals | 8 mmol NO3− for 6 consecutive days | Incremental cycling test (time in s) | ↑ VO2 kinetics ↑ Time-to-task failure |
Wylie et al. (2013) [39] | 10 (M) | Healthy individuals | (1) 4.2 or (2) 8.4 or (3) 16.8 mmol NO3− | Cycling to complete exhaustion (time in s) | ↓ Steady-state O2 uptake during moderate-intensity exercise and ↑ time-to-task failure for 8.4 and 16.8 mmol NO3− |
Wylie et al. (2013) [40] | 14 (M) | Team sports athletes (VO2max 52 ± 7 mL/kg/min) | 4.1 mmol NO3− twice daily for 2 consecutive days | Yo-Yo test (distance in m) | ↑ Yo-Yo performance |
Muggeridge et al. (2013) [20] | 8 (M) | Kayak competitors (VO2max 49 ± 6.1 mL/kg/min) | 5.0 mmol NO3− | 15 min rowing at 60 % Wmax (power in W) | ↓ VO2 ↔ Peak power or time trial performance |
Christensen et al. (2013) [26] | 10 (M) | Cyclists (VO2max 72 ± 4 mL/kg/min) | 5.0 mmol NO3− 4 for 6 consecutive days | Repeated sprints (power in W) and time trial ≃1677 kJ (energy-expenditure-based time trial) (time in s and power in W) | ↔ Vo2 kinetics ↔ Exercise economy ↔ Time trial performance |
Hoon et al. (2014) [41] | 28 (M) | Cyclists | 4.1 mmol NO3− | 4 min time trial (power in W) | ↔ Time trial performance |
Boorsma et al. (2014) [42] | 8 (M) | Elite 1500 m runners (VO2max 80 ± 5 mL/kg/min) | 19.5 mmol NO3− | 1500 m running time trial (time in s) | ↔ VO2peak ↔ Time trial performance |
Martin et al. (2014) [43] | 16 (9 M, 7 F) | Team sports athletes (VO2max M: 57.4 ± 8 mL/kg/min; F: 47.2 ± 8 mL/kg/min) | 4.83 mmol NO3− | 8 s repeated sprints test on cyclic ergometer (number of sprints, work in kJ, power in W) | ↔ Mean power output ↓ Number of sprints ↓ Total work |
Peeling et al. (2015) [44] | 6 (M) | National-level kayak competitors (VO2peak 57.15 ± 2.8 mL/kg/min) | 5.5 mmol NO3− | 4 min maximal ergometer test (power in W and distance in m) | ↓ VO2 ↑ Exercise economy ↑ Time trial performance |
Porcelli et al. (2015) [21] | 21 (M) | 8 individuals with lower aerobic capacity (VO2peak 28.2–44.1 mL/kg/min), 7 individuals with medium aerobic capacity (VO2peak: 45.5–57.1 mL/kg/min), and 6 individuals with high aerobic capacity (VO2peak: 63.9–81.7 mL/kg/min) | 5.5 mmol NO3− for 5 consecutive days | 3 km running time trial | ↑ Time trial performance for lower and medium aerobic capacity ↔ Time trial performance for high aerobic capacity |
Wylie et al. (2015) [45] | 10 (M) | Healthy and recreationally active | 8.2 mmol NO3− 3, 4 or 5 consecutive days | 24 × 6 s sprints with 24 s rest; 7 × 30 s sprints with 240 s rest; 6 × 60 s sprints with 60 s rest (power in W) | ↑ Power output for condition 1 ↔ Power output for conditions 2 and 3 |
McQuillan et al. (2017a) [27] | 9 (M) | Cyclists (VO2peak: 68 ± 3 mL/kg/min) | 9 mmol NO3− 3 for 7 consecutive days | 1 km time trial at fourth and seventh day of investigation and 4 km time trial at third in sixth day of investigation (time in s and power in W) | ↔ Time trial ↔ Power output |
McQuillan et al. (2017b) [28] | 8 (M) | Cyclists (VO2peak = 63 ± 4 mL/kg/min) | ~4 mmol NO3− for 8 consecutive days | 4 km time trial (time in s in power in W) | ↔ Time trial ↔ Power output |
Christensen et al. (2017) [46] | 17 (M) | 8 recreationally active (VO2max 46 ± 3 mL/kg/min) and 9 well-trained cyclists (VO2max: 64 ± 3 mL/kg/min) | 9 mmol NO3− | Incremental test for cycling and arm cranking (power in W) | ↔VO2max ↑ Peak power for cycling ↔ Peak power for arm cranking |
Nyakayiru et al. (2017a) [29] | 17 (M) | Cyclists and triathlon competitors (65 ± 4 mL/kg/min, Wmax 411 ± 35 W) | 4 mmol NO3− for 6 consecutive days | 10 km time trial (time in s) | ↔VO2 ↔ Time trial |
Nyakayiru et al. (2017b) [24] | 32 (M) | Football players | 12.9 mmol NO3− for 6 consecutive days | Yo-Yo test (distance in m) | ↑ Covered distance |
Vasconcellos et al. (2017) [47] | 25 (14 M, 11 F) | Runners (M: VO2peak 64.31 ± 4.71 mL/kg/min−1; F: VO2peak 52.79 ± 4.57 mL/kg/min | 9.92 NO3− ± 1,97 mmol | High-intensity running (time in s) | ↔ Time to fatigue ↔ VO2max ↓ Blood glucose ↔ Systolic and diastolic blood pressures ↔ Serum cortisol, ↔ Blood lactate |
Shannon et al. (2017) [48] | 8 (M) | Runners in triathlon competitors (VO2max: 62.3 ± 8.1 mL/kg/min) | ~12.5 mmol NO3− | Running for 1500 m and 10 000 m (time in s) | ↔ Resting blood pressure ↑ Blood lactate for 1500 m time trial ↔ Blood lactate for 10,000 m time trial ↑ Time trial performance for 1500 m ↔ Time trial performance for 10,000 m |
De Castro et al. (2018) [49] | 14 (M) | Healthy and recreationally active runners (VO2max: 45.4 ± 5.9 mL/kg/min) | 8.4 mmol NO3− for 3 consecutive days | 10 km running time trial (time in min and velocity in km/h) | ↔ Time trial performance ↔ Mean velocity |
Cuenca et al. (2018) [50] | 15 (M) | Healthy and recreationally active | 6.4 mmol NO3− | WAnT and CMJ (power in W, time to Wpeak) | ↑ Peak and mean power output ↓ Time taken to reach Wpeak |
Oskarsson et al. (2018) [51] | 9 (M 7, F 2) | (M: VO2max 59.0 ± 2.9 mL/kg/min; F: VO2max 53.1 ± 11.4 mL/kg/min) | 6.4 mmol NO3 | 1 km running time trial (time in s) | ↔ Relative oxygen uptake, running economy, respiratory exchange ratio, HR, or RPE at submaximal intensities ↔ Performance, maximum HR, peak blood lactate concentration, or RPE during the maximal-intensity time trial |
Jo et al. (2019) [52] | 29 (M 15, F 14) | Healthy and recreationally active | 8 mmol NO3− for 15 consecutive days | 8 km time trial (time in s, power in W, velocity in km/h) | Multiday NO3− supplementation: ↑ Time trial performance ↑ Average power ↑ Velocity Single serving NO3−: ↔ Time trial performance ↔Average power ↔ Velocity |
Rokkedal-Lausch et al. (2019) [53] | 12 (M) | Cyclists (VO2max 66.4 ± 5.3 mL/min/kg) | 12.4 mmol NO3− for 7 consecutive days | 10 km time trial in normoxic and hypoxic conditions (time in s and power in W) | ↑ Time trial performance in normoxic and hypoxic conditions ↔ HR ↔ Oxygen saturation ↔ Muscle oxygenation |
Esen et al. (2019) [54] | 10 (5 M, 5 F) | Swimmers with a minimum of 10 years training experience and minimum of 5 years competing experience | ~800 mg NO3− for 3 consecutive days | 100 in 200 m swimming for time (time in s) | ↔ Time trial performance for 100 and 200 m ↓ Systolic blood pressure |
Wickham et al. (2019) [55] | 12 (F) | Healthy and recreationally active (VO2peak: 40.7 ± 4.3 mL/kg/min) | Acute and chronic supplementation (~26 mmol) of NO3− for either 1 or 8 consecutive days | 10 min time trial at 50 and 70 % VO2max (time in s) | ↔ MVC voluntary activation ↔ Peak twitch torque, ↔ time to peak torque, ↔ half relaxation time ↔ Time trial performance ↔ VO2 |
Kent et al. (2019) [56] | 12 (M) | Team sports athletes (VO2peak 53.1 ± 8.7 mL/kg/min) | 12.9 mmol NO3− | Four cycling sprints at sea and 3000 m altitude | ↔ Peak and mean power |
Mosher et al. (2019) [57] | 11 (M) | Cyclists (VO2max: 60.8 ± 7.4 mL/kg/min) | 12.8 mmol NO3− for 3 consecutive days | 40 km time trial (time in s) | ↔ Time trial performance ↔ VO2 ↔ Blood lactate ↔ RPE |
Ranchal-Sanchez et al. (2020) [58] | 12 (M) | Healthy and recreationally active | 6.4 mmol NO3− | Incremental test at 60, 70, and 80% maximal power for bench press and squat (number of repetitions, power in W, and velocity in m/s) | ↑ NOR for 60 and 70% 1 RM ↔ NOR for 80% 1 RM ↑ NOR for squat ↔ NOR for bench press ↔ Power ↔ Velocity |
López-Samanes et al. (2020) [59] | 13 (M) | Professional tennis players | 300 mg NO3− | Serving speed, CMJ, IHS, 5-0-5 agility test, and 10 m sprints test | ↔ Serve velocity ↔ CMJ ↔ IHS ↔ 5-0-5 agility test ↔ Sprint performance |
Liubertas et al. (2020) [60] | 13 (M) | Healthy individuals | Acute and chronic intake (for 6 consecutive days) of 400 mg NO3− | Incremental cycling test first, third, and sixth day of investigation (power in W and VO2max) | ↑ Peak power ↑ VO2max |
Rodríguez-Fernández et al. (2020) [61] | 18 (M) | Healthy and recreationally active | 800 mg NO3− | Four sets of eight all-out half-squats with each set completed at different moment intertia (power in W) | ↑ Mean and peak power output in the concentric and eccentric movement phases |
Jonvik et al. (2021) [62] | 15 (M) | Recreationally active | 985 mg NO3− for 6 consecutive days | CMJ, upper leg voluntary isometric (30° and 60° angle) and isokinetic contractions (60, 120, 180, and 300°s−1) and test of 30 reciprocal isokinetic voluntary contractions at 180°s−1 | ↔ CMJ ↔ Maximal isometric knee extensor strength and isokinetic knee extension power ↔ Muscular endurance |
Dumar et al. (2021) [63] | 10 (M) | National Collegiate Athletic Association sprinters | 400 mg NO3− 2 h prior to exercise | 3 × 15 s WAnT with 2 min rest in the AM and PM (power in W and anaerobic capacity in Wkg−1) | NO3− attenuated the decrease in AM exercise performance ↔ RPE ↓ HR |
Marshall et al. (2021) [64] | 22 (12 M, 10 W) | Healthy adults | ~12.5 mmol NO3− for 20 consecutive days | Harvard Step Test fitness at baseline (44 m altitude), 2350 m (day 9), 3400 m (day 12), and 4800 m (day 17) | NO3− attenuated the decline in fitness scores with altitude ↑ HR recovery ↔ RPE ↔ High-altitude illness occurrence |
Fowler et al. (2021) [65] | 11 (M) | Healthy adults (VO2max: 41.1 ± 3.6 mL/kg/min) | ∼9.2 mmol NO3− for 5 consecutive days | Cycling exercise tolerance test in hot and dry conditions (35 °C, 28% relative humidity) | ↔ Performance ↓ Arterial pressure ↔ Sweat rate ↔ Heart rate ↔ Oxygen consumption and carbon dioxide production ↔ Thermal sensation |
Townsend et al. (2021) [66] | 16 (M) | Division I baseball athletes | 180 mg NO3− daily for 11 weeks | 1 RM bench press, WAnT, body composition analysis via a 4-compartment model | ↔Perfromance (1 RM bench press and WAnT; observed trend for improved peak power in the WAnT) ↔ Body composition and muscle thickness ↔ HR and blood pressure |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macuh, M.; Knap, B. Effects of Nitrate Supplementation on Exercise Performance in Humans: A Narrative Review. Nutrients 2021, 13, 3183. https://doi.org/10.3390/nu13093183
Macuh M, Knap B. Effects of Nitrate Supplementation on Exercise Performance in Humans: A Narrative Review. Nutrients. 2021; 13(9):3183. https://doi.org/10.3390/nu13093183
Chicago/Turabian StyleMacuh, Matjaž, and Bojan Knap. 2021. "Effects of Nitrate Supplementation on Exercise Performance in Humans: A Narrative Review" Nutrients 13, no. 9: 3183. https://doi.org/10.3390/nu13093183
APA StyleMacuh, M., & Knap, B. (2021). Effects of Nitrate Supplementation on Exercise Performance in Humans: A Narrative Review. Nutrients, 13(9), 3183. https://doi.org/10.3390/nu13093183