Bidirectional Influences of Cranberry on the Pharmacokinetics and Pharmacodynamics of Warfarin with Mechanism Elucidation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Characterization of Cranberry Juice (CJ)
2.3. Animals
2.4. Administrations of CJ and Warfarin, and Blood Collection
2.5. Quantitation of S- and R-Warfarin in Plasma
2.6. Measurement of INR in Rats
2.7. Cell Lines and Culture Conditions
2.8. Preparation of Cranberry Metabolites (CMs)
2.9. Effects of CJ and CMs on BCRP-Mediated Efflux
2.10. Effect of CMs on the Activities of CYP1A2, CYP2C9, and CYP3A4
2.11. Data Analysis
3. Results
3.1. Characterization of CJ
3.2. Effect of CJ on the Pharmacokinetics of S- and R-Warfarin in Rats
3.3. Influence of CJ on the Anticoagulation Effect of Warfarin in Rats
3.4. Effects of CJ and CMs on the Activity of the BCRP
3.5. Effect of CMs on the Activities of CYP1A2, CYP2C9, and CYP3A4
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, S.; Liu, H.; Gu, L. American cranberries and health benefits—An evolving story of 25 years. J. Sci. Food Agric. 2020, 100, 5111–5116. [Google Scholar] [CrossRef]
- Smith, T.; Kawa, K.; Eckl, V.; Morton, C.; Stredney, R. Herbal Supplement Sales in US Increase 8.5% in 2017, Topping $8 Billion. Strongest sales growth in more than 15 years bolstered by continued popularity of Ayurvedic herbs and new formulations of botanicals with general health and nutrition benefits. HerbalGram 2018, 119, 62–71. [Google Scholar]
- Arif, K.M.; Rahman, M.A. A review of warfarin dosing and monitoring. Faridpur Med. Coll. J. 2018, 13, 40–43. [Google Scholar] [CrossRef]
- Yang, M.S.; Yu, C.P.; Chao, P.L.; Lin, S.P.; Hou, Y.C. R- and S-Warfarin were transported by breast cancer resistance protein: From in vitro to pharmacokinetic-pharmacodynamic studies. J. Pharm. Sci. 2017, 106, 1419–1425. [Google Scholar] [CrossRef] [PubMed]
- Staud, F.; Pavek, P. Breast cancer resistance protein (BCRP/ABCG2). Int. J. Biochem. Cell Biol. 2005, 37, 720–725. [Google Scholar] [CrossRef]
- Breckenridge, A.; Orme, M.L. The plasma half lives and the pharmacological effect of the enantiomers of warfarin in rats. Life Sci. 1972, 11 Pt 2, 337–345. [Google Scholar] [CrossRef]
- Kaminsky, L.S.; Zhang, Z.Y. Human P450 metabolism of warfarin. Pharmacol. Ther. 1997, 73, 67–74. [Google Scholar] [CrossRef]
- Agbabiaka, T.B.; Spencer, N.H.; Khanom, S.; Goodman, C. Prevalence of drug-herb and drug-supplement interactions in older adults: A cross-sectional survey. Br. J. Gen. Pract. 2018, 68, e711–e717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asher, G.N.; Corbett, A.H.; Hawke, R.L. Common Herbal Dietary Supplement-Drug Interactions. Am. Fam. Physician 2017, 96, 101–107. [Google Scholar]
- Rindone, J.P.; Murphy, T.W. Warfarin-cranberry juice interaction resulting in profound hypoprothrombinemia and bleeding. Am. J. Ther. 2006, 13, 283–284. [Google Scholar] [CrossRef]
- Suvarna, R.; Pirmohamed, M.; Henderson, L. Possible interaction between warfarin and cranberry juice. BMJ 2003, 327, 1454. [Google Scholar] [CrossRef] [Green Version]
- Welch, J.M.; Forster, K. Probable elevation in international normalized ratio from cranberry juice. J. Pharm. Technol. 2007, 23, 104–107. [Google Scholar] [CrossRef]
- Kuruvilla, M.; Gurk-Turner, C. A review of warfarin dosing and monitoring. Proceedings 2001, 14, 305–306. [Google Scholar] [CrossRef]
- An, G.; Gallegos, J.; Morris, M.E. The bioflavonoid kaempferol is an Abcg2 substrate and inhibits Abcg2-mediated quercetin efflux. Drug Metab. Dispos. 2011, 39, 426–432. [Google Scholar] [CrossRef] [Green Version]
- Dreiseitel, A.; Oosterhuis, B.; Vukman, K.V.; Schreier, P.; Oehme, A.; Locher, S.; Hajak, G.; Sand, P.G. Berry anthocyanins and anthocyanidins exhibit distinct affinities for the efflux transporters BCRP and MDR1. Br. J. Pharmacol. 2009, 158, 1942–1950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Paxton, J.W. Oral bioavailability and disposition of phytochemicals. In Phytochemicals-Bioactivities and Impact on Health; InTechOpen: London, UK, 2011. [Google Scholar]
- Lin, S.P.; Hou, Y.C.; Tsai, S.Y.; Wang, M.J.; Chao, P.D. Tissue distribution of naringenin conjugated metabolites following repeated dosing of naringin to rats. Biomedicine 2014, 4, 16. [Google Scholar] [CrossRef] [PubMed]
- Greenblatt, D.J.; von Moltke, L.L.; Perloff, E.S.; Luo, Y.; Harmatz, J.S.; Zinny, M.A. Interaction of flurbiprofen with cranberry juice, grape juice, tea, and fluconazole: In vitro and clinical studies. Clin. Pharmacol. Ther. 2006, 79, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Kimura, Y.; Ito, H.; Ohnishi, R.; Hatano, T. Inhibitory effects of polyphenols on human cytochrome P450 3A4 and 2C9 activity. Food Chem. Toxicol. 2010, 48, 429–435. [Google Scholar] [CrossRef]
- Ngo, N.; Yan, Z.; Graf, T.N.; Carrizosa, D.R.; Kashuba, A.D.; Dees, E.C.; Oberlies, N.H.; Paine, M.F. Identification of a cranberry juice product that inhibits enteric CYP3A-mediated first-pass metabolism in humans. Drug Metab. Dispos. 2009, 37, 514–522. [Google Scholar] [CrossRef]
- Uesawa, Y.; Mohri, K. Effects of cranberry juice on nifedipine pharmacokinetics in rats. J. Pharm. Pharmacol. 2006, 58, 1067–1072. [Google Scholar] [CrossRef]
- Ansell, J.; McDonough, M.; Zhao, Y.; Harmatz, J.S.; Greenblatt, D.J. The absence of an interaction between warfarin and cranberry juice: A randomized, double-blind trial. J. Clin. Pharmacol. 2009, 49, 824–830. [Google Scholar] [CrossRef] [Green Version]
- Lilja, J.J.; Backman, J.T.; Neuvonen, P.J. Effects of daily ingestion of cranberry juice on the pharmacokinetics of warfarin, tizanidine, and midazolam--probes of CYP2C9, CYP1A2, and CYP3A4. Clin. Pharmacol. Ther. 2007, 81, 833–839. [Google Scholar] [CrossRef]
- Hsu, P.W.; Shia, C.S.; Lin, S.P.; Chao, P.D.; Juang, S.H.; Hou, Y.C. Potential risk of mulberry-drug interaction: Modulation on P-glycoprotein and cytochrome P450 3A. J. Agric. Food Chem. 2013, 61, 4464–4469. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.P.; Hsieh, Y.C.; Shia, C.S.; Hsu, P.W.; Chen, J.Y.; Hou, Y.C.; Hsieh, Y.W. Increased systemic exposure of methotrexate by a polyphenol-rich herb via modulation on efflux transporters multidrug resistance-associated protein 2 and breast cancer resistance protein. J. Pharm. Sci. 2016, 105, 343–349. [Google Scholar] [CrossRef]
- Yu, C.P.; Huang, C.Y.; Lin, S.P.; Hou, Y.C. Activation of P-glycoprotein and CYP 3A by Coptidis Rhizoma in vivo: Using cyclosporine as a probe substrate in rats. J. Food Drug Anal. 2018, 26, S125–S132. [Google Scholar] [CrossRef]
- Huang, T.Y.; Yu, C.P.; Hsieh, Y.W.; Lin, S.P.; Hou, Y.C. Resveratrol stereoselectively affected (+/−)warfarin pharmacokinetics and enhanced the anticoagulation effect. Sci. Rep. 2020, 10, 15910. [Google Scholar] [CrossRef] [PubMed]
- Maddison, J.; Somogyi, A.A.; Jensen, B.P.; James, H.M.; Gentgall, M.; Rolan, P.E. The pharmacokinetics and pharmacodynamics of single dose (R)- and (S)-warfarin administered separately and together: Relationship to VKORC1 genotype. Br. J. Clin. Pharmacol. 2013, 75, 208–216. [Google Scholar] [CrossRef] [Green Version]
- Aston, J.L.; Lodolce, A.E.; Shapiro, N.L. Interaction between warfarin and cranberry juice. Pharmacotherapy 2006, 26, 1314–1319. [Google Scholar] [CrossRef]
- O’Reilly, R.A. The stereoselective interaction of warfarin and metronidazole in man. N. Engl. J. Med. 1976, 295, 354–357. [Google Scholar] [CrossRef]
- Choonara, I.A.; Cholerton, S.; Haynes, B.P.; Breckenridge, A.M.; Park, B.K. Stereoselective interaction between the R enantiomer of warfarin and cimetidine. Br. J. Clin. Pharmacol. 1986, 21, 271–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamann, G.L.; Campbell, J.D.; George, C.M. Warfarin-cranberry juice interaction. Ann. Pharmacother. 2011, 45, e17. [Google Scholar] [CrossRef] [PubMed]
- Haber, S.L.; Cauthon, K.A.; Raney, E.C. Cranberry and warfarin interaction: A case report and review of the literature. Consult. Pharm. 2012, 27, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Sun, R.; Zhang, Q.; Luo, Q.; Zeng, S.; Li, X.; Gong, X.; Li, Y.; Lu, L.; Hu, M.; et al. An update on polyphenol disposition via coupled metabolic pathways. Expert Opin. Drug Metab. Toxicol. 2019, 15, 151–165. [Google Scholar] [CrossRef] [PubMed]
Compound | Parameters | Warfarin Alone | Warfarin + CJ (0.5 h before Warfarin) | Warfarin + CJ (10 h after Warfarin) |
---|---|---|---|---|
S-warfarin | Cmax | 418.2 ± 69.4 a | 216.3 ± 18.1 b | 542.0 ± 59.4 a |
(−48%) | ||||
AUC0–t | 9459.1 ± 1659.6 a | 6286.7 ± 456.3 b | 11,555.0 ± 613.6 a | |
(−34%) | ||||
AUC0–10 | 3267.7 ± 423.2 a | 1561.8 ± 217.3 b | 3846.6 ± 260.8 a | |
(−52%) | ||||
AUC48–96 | 1126.6 ± 434.5 a | 1041.3 ± 296.5 a | 2547.9 ± 339.5 b | |
(+126%) | ||||
t1/2 | 15.5 ± 2.4 a | 19.1 ± 3.2 a | 56.9 ± 8.0 b | |
(+267%) | ||||
R-warfarin | Cmax | 341.1 ± 56.6 a | 168.6 ± 17.2 b | 402.8 ± 33.6 a |
(−51%) | ||||
AUC0–t | 6209.2 ± 1253.4 a | 3007.6 ± 230.0 b | 4739.3 ± 255.0 ab | |
(−52%) | ||||
AUC0–10 | 2848.9 ± 395.0 a | 1310.8 ± 169.6 b | 2943.7 ± 185.7 a | |
(−54%) | ||||
AUC48–96 | 222.0 ± 125.3 | 90.4 ± 58.2 | 0.0 | |
t1/2 | 10.0 ± 1.3 ab | 12.6 ± 2.2 a | 6.7 ± 0.3 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, C.-P.; Yang, M.-S.; Hsu, P.-W.; Lin, S.-P.; Hou, Y.-C. Bidirectional Influences of Cranberry on the Pharmacokinetics and Pharmacodynamics of Warfarin with Mechanism Elucidation. Nutrients 2021, 13, 3219. https://doi.org/10.3390/nu13093219
Yu C-P, Yang M-S, Hsu P-W, Lin S-P, Hou Y-C. Bidirectional Influences of Cranberry on the Pharmacokinetics and Pharmacodynamics of Warfarin with Mechanism Elucidation. Nutrients. 2021; 13(9):3219. https://doi.org/10.3390/nu13093219
Chicago/Turabian StyleYu, Chung-Ping, Meng-Syuan Yang, Pei-Wen Hsu, Shiuan-Pey Lin, and Yu-Chi Hou. 2021. "Bidirectional Influences of Cranberry on the Pharmacokinetics and Pharmacodynamics of Warfarin with Mechanism Elucidation" Nutrients 13, no. 9: 3219. https://doi.org/10.3390/nu13093219
APA StyleYu, C.-P., Yang, M.-S., Hsu, P.-W., Lin, S.-P., & Hou, Y.-C. (2021). Bidirectional Influences of Cranberry on the Pharmacokinetics and Pharmacodynamics of Warfarin with Mechanism Elucidation. Nutrients, 13(9), 3219. https://doi.org/10.3390/nu13093219