Aerobic Fitness, B-Vitamins, and Weight Status Are Related to Selective Attention in Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. ASA24
2.3. Cardiorespiratory Fitness (VO2)
2.4. Weight Status Assessment
2.5. Inhibition Task
2.6. Statistical Analysis
3. Results
3.1. Correlations
3.2. Accuracy
3.2.1. Congruent Accuracy
3.2.2. Incongruent Accuracy
3.3. Mean RT
3.3.1. Congruent Mean RT
3.3.2. Incongruent Mean RT
3.4. SDRT
3.4.1. Congruent SDRT
3.4.2. Incongruent SDRT
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- CDC, Centers for Disease Control and Prevention. Child Development Basics; CDC: Atlanta, GA, USA, 2019; pp. 1–3. Available online: https://www.cdc.gov/ncbddd/childdevelopment/facts.html (accessed on 17 September 2021).
- Wang, L.; Martínez Steele, E.; Du, M.; Pomeranz, J.L.; O’Connor, L.E.; Herrick, K.A.; Luo, H.; Zhang, X.; Mozaffarian, D.; Zhang, F.F. Trends in consumption of ultraprocessed foods among US youths aged 2–19 years, 1999–2018. JAMA 2021, 326, 519. [Google Scholar] [CrossRef] [PubMed]
- Sauer, C.G.; Robson, J.; Turmelle, Y.P.; Cerezo, C.S.; Loomes, K.M.; Huang, J.S.; Quiros-Tejeira, R.E.; Benkov, K.J.; Narkewicz, M.R.; Leichtner, A.; et al. North American society for pediatric gastroenterology, hepatology, and nutrition position paper on entrustable professional activities: Development of pediatric gastroenterology, hepatology, and nutrition entrustable professional activities. J. Pediatr. Gastroenterol. Nutr. 2020, 71, 136–143. [Google Scholar] [CrossRef] [PubMed]
- CDC’s Division of Nutrition, Physical Activity, and Obesity. Making Healthy Living Easier. 2021. Available online: https://www.cdc.gov/nccdphp/dnpao/index.html (accessed on 9 November 2021).
- Correa-Burrows, P.; Burrows, R.; Blanco, E.; Reyes, M.; Gahagan, S. Nutritional quality of diet and academic performance in Chilean students. Bull. World Health Organ. 2016, 94, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Abarca-Gómez, L.; Abdeen, Z.A.; Hamid, Z.A.; Abu-Rmeileh, N.M.; Acosta-Cazares, B.; Acuin, C.; Adams, R.J.; Aekplakorn, W.; Afsana, K.; Aguilar-Salinas, C.A.; et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef] [Green Version]
- Ogden, C.L.; Fryar, C.D.; Martin, C.B.; Freedman, D.S.; Carroll, M.D.; Gu, Q.; Hales, C.M. Trends in obesity prevalence by race and Hispanic origin—1999–2000 to 2017–2018. JAMA 2020, 324, 1208. [Google Scholar] [CrossRef] [PubMed]
- Cserjési, R.; Luminet, O.; Poncelet, A.-S.; Lénárd, L. Altered executive function in obesity. Exploration of the role of affective states on cognitive abilities. Appetite 2009, 52, 535–539. [Google Scholar] [CrossRef]
- Cserjési, R.; Molnár, D.; Luminet, O.; Lénárd, L. Is there any relationship between obesity and mental flexibility in children? Appetite 2007, 49, 675–678. [Google Scholar] [CrossRef] [PubMed]
- Braet, C.; Claus, L.; Verbeken, S.; Van Vlierberghe, L. Impulsivity in overweight children. Eur. Child Adolesc. Psychiatry 2007, 16, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Nederkoorn, C.; Coelho, J.; Guerrieri, R.; Houben, K.; Jansen, A. Specificity of the failure to inhibit responses in overweight children. Appetite 2012, 59, 409–413. [Google Scholar] [CrossRef] [PubMed]
- Kamijo, K.; Pontifex, M.B.; Khan, N.A.; Raine, L.B.; Scudder, M.R.; Drollette, E.S.; Evans, E.M.; Castelli, D.M.; Hillman, C.H. The association of childhood obesity to neuroelectric indices of inhibition. Psychophysiology 2012, 49, 1361–1371. [Google Scholar] [CrossRef] [PubMed]
- Kamijo, K.; Pontifex, M.B.; Khan, N.A.; Raine, L.B.; Scudder, M.R.; Drollette, E.S.; Evans, E.M.; Castelli, D.M.; Hillman, C. The negative association of childhood obesity to cognitive control of action monitoring. Cereb. Cortex 2012, 24, 654–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reyes, S.; Peirano, P.; Peigneux, P.; Lozoff, B.; Algarin, C. Inhibitory control in otherwise healthy overweight 10-year-old children. Int. J. Obes. 2015, 39, 1230–1235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lokken, K.L.; Boeka, A.G.; Austin, H.M.; Gunstad, J.; Harmon, C.M. Evidence of executive dysfunction in extremely obese adolescents: A pilot study. Surg. Obes. Relat. Dis. 2009, 5, 547–552. [Google Scholar] [CrossRef]
- Falkner, N.H.; Neumark-Sztainer, D.; Story, M.; Jeffery, R.W.; Beuhring, T.; Resnick, M.D. Social, educational, and psychological correlates of weight status in adolescents. Obes. Res. 2001, 9, 32–42. [Google Scholar] [CrossRef]
- Datar, A.; Sturm, R. Childhood overweight and elementary school outcomes. Int. J. Obes. 2006, 30, 1449–1460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, J.; E Matheson, B.; Kaye, W.H.; Boutelle, K.N. Neurocognitive correlates of obesity and obesity-related behaviors in children and adolescents. Int. J. Obes. 2013, 38, 494–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grant-Guimaraes, J.; Feinstein, R.; Laber, E.; Kosoy, J. Childhood overweight and obesity. Gastroenterol. Clin. N. Am. 2016, 45, 715–728. [Google Scholar] [CrossRef]
- Han, J.C.; Lawlor, D.A.; Kimm, S.Y. Childhood obesity. Lancet 2010, 375, 1737–1748. [Google Scholar] [CrossRef]
- Puder, J.J.; Munsch, S. Psychological correlates of childhood obesity. Int. J. Obes. 2010, 34, S37–S43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elmesmari, R.; Martin, A.; Reilly, J.J.; Paton, J.Y. Comparison of accelerometer measured levels of physical activity and sedentary time between obese and non-obese children and adolescents: A systematic review. BMC Pediatr. 2018, 18, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Bushman, B.A. Physical activity guidelines for Americans. ACSM’s Health Fit. J. 2019, 23, 5–9. [Google Scholar] [CrossRef]
- Troiano, R.P.; Berrigan, D.; Dodd, K.W.; Mâsse, L.C.; Tilert, T.; Mcdowell, M. Physical activity in the United States measured by accelerometer. Med. Sci. Sports Exerc. 2008, 40, 181–188. [Google Scholar] [CrossRef]
- Dentro, K.N.; Beals, K.; Crouter, S.E.; Eisenmann, J.C.; McKenzie, T.L.; Pate, R.R.; Saelens, B.; Sisson, S.B.; Spruijt-Metz, D.; Sothern, M.S.; et al. Results from the United States’ 2014 report card on physical activity for children and youth. J. Phys. Act. Health 2014, 11, S105–S112. [Google Scholar] [CrossRef] [PubMed]
- Ekelund, U.; Luan, J.; Sherar, L.B.; Esliger, D.W.; Griew, P.; Cooper, A. Moderate to Vigorous Physical Activity and Sedentary Time and Cardiometabolic Risk Factors in Children and Adolescents. JAMA 2012, 307, 704–712. [Google Scholar] [CrossRef] [Green Version]
- Janssen, I.; Katzmarzyk, P.; Boyce, W.F.; Vereecken, C.; Mulvihill, C.; Roberts, C.; Currie, C.; Pickett, W. Comparison of overweight and obesity prevalence in school-aged youth from 34 countries and their relationships with physical activity and dietary patterns. Obes. Rev. 2005, 6, 123–132. [Google Scholar] [CrossRef]
- Ortega, F.B.; Ruiz, J.R.; Castillo, M.J.; Sjöström, M. Physical fitness in childhood and adolescence: A powerful marker of health. Int. J. Obes. 2008, 32, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Lang, J.; Belanger, K.; Poitras, V.; Janssen, I.; Tomkinson, G.; Tremblay, M.S. Systematic review of the relationship between 20 m shuttle run performance and health indicators among children and youth. J. Sci. Med. Sport 2018, 21, 383–397. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J.D.; Servan-Schreiber, D.; McClelland, J.L. A parallel distributed processing approach to automaticity. Am. J. Psychol. 1992, 105, 239. [Google Scholar] [CrossRef] [PubMed]
- Kahneman, D.; Chajczyk, D. Tests of the automaticity of reading: Dilution of Stroop effects by color-irrelevant stimuli. J. Exp. Psychol. Hum. Percept. Perform. 1983, 9, 497–509. [Google Scholar] [CrossRef]
- Diamond, A. The early development of executive functions. In Lifespan Cognition: Mechanisms of Change; Bialystok, E., Craik, F.I.M., Eds.; Oxford University Press: New York, NY, USA, 2006; pp. 70–95. [Google Scholar] [CrossRef]
- Meyer, D.E.; Kieras, D.E. A Computational Theory of Executive Cognitive Processes and Human Multiple Task Per-formance: Part 2. Psychol. Rev. 1997, 104, 3–65. [Google Scholar] [CrossRef]
- Norman, D.A.; Shallice, T. Attention to Action. In Consciousness and Self-Regulation; Springer: Boston, MA, USA, 1986; pp. 1–18. [Google Scholar] [CrossRef]
- Miyake, A.; Friedman, N.P.; Emerson, M.J.; Witzki, A.H.; Howerter, A.; Wager, T.D. The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: A latent variable analysis. Cogn. Psychol. 2000, 41, 49–100. [Google Scholar] [CrossRef] [Green Version]
- Pontifex, M.B.; Raine, L.B.; Johnson, C.R.; Chaddock, L.; Voss, M.W.; Cohen, N.J.; Kramer, A.F.; Hillman, C.H. Cardiorespiratory fitness and the flexible modulation of cognitive control in preadolescent children. J. Cogn. Neurosci. 2011, 23, 1332–1345. [Google Scholar] [CrossRef] [PubMed]
- Voss, M.; Chaddock, L.; Kim, J.; VanPatter, M.; Pontifex, M.; Raine, L.; Cohen, N.; Hillman, C.; Kramer, A. Aerobic fitness is associated with greater efficiency of the network underlying cognitive control in preadolescent children. Neuroscience 2011, 199, 166–176. [Google Scholar] [CrossRef] [Green Version]
- Khan, N.A.; Raine, L.B.; Drollette, E.S.; Scudder, M.R.; Kramer, A.; Hillman, C. Dietary fiber is positively associated with cognitive control among prepubertal children. J. Nutr. 2014, 145, 143–149. [Google Scholar] [CrossRef] [Green Version]
- Khan, N.A.; Raine, L.B.; Drollette, E.S.; Scudder, M.R.; Hillman, C. The relation of saturated fats and dietary cholesterol to childhood cognitive flexibility. Appetite 2015, 93, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Baym, C.L.; Khan, N.A.; Monti, J.M.; Raine, L.B.; Drollette, E.S.; Moore, R.D.; Scudder, M.R.; Kramer, A.; Hillman, C.; Cohen, N.J. Dietary lipids are differentially associated with hippocampal-dependent relational memory in prepubescent children. Am. J. Clin. Nutr. 2014, 99, 1026–1032. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, D.O. B vitamins and the brain: Mechanisms, dose and efficacy—A review. Nutrients 2016, 8, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cockcroft, D.W.; Nair, P. Methacholine test and the diagnosis of asthma. J. Allergy Clin. Immunol. 2012, 130, 556–557. [Google Scholar] [CrossRef]
- Villalpando, S. Discussion: Effects of folate and vitamin B12 deficiencies during pregnancy on fetal, infant, and child development. Food Nutr. Bull. 2008, 29, S112–S115. [Google Scholar] [CrossRef]
- Refsum, H. Folate, vitamin B12 and homocysteine in relation to birth defects and pregnancy outcome. Br. J. Nutr. 2001, 85, S109–S113. [Google Scholar] [CrossRef]
- US. Department of Health and Human Services, Food and Drug Administration. Food Standards: Amendment of Standards of Identity for Enriched Grain Products to Require Addition of Folic Acid, 1996. Fed. Regist. Available online: https://ci.nii.ac.jp/naid/10026114656 (accessed on 7 September 2021).
- Gewa, C.A.; Weiss, R.E.; Bwibo, N.O.; Whaley, S.; Sigman, M.; Murphy, S.P.; Harrison, G.; Neumann, C.G. Dietary micronutrients are associated with higher cognitive function gains among primary school children in rural Kenya. Br. J. Nutr. 2008, 101, 1378–1387. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.Y. Effect of B vitamins-fortified foods on primary school children in Beijing. Asia Pac. J. Public Health 2006, 18, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, C.T.; Gracely, E.J.; Lee, B.K. Serum folate but not vitamin B-12 concentrations are positively associated with cognitive test scores in children aged 6–16 years. J. Nutr. 2013, 143, 500–504. [Google Scholar] [CrossRef] [Green Version]
- Eilander, A.; Muthayya, S.; van der Knaap, H.; Srinivasan, K.; Thomas, T.; Kok, F.J.; Kurpad, A.V.; Osendarp, S.J.M. Undernutrition, fatty acid and micronutrient status in relation to cognitive performance in Indian school children: A cross-sectional study. Br. J. Nutr. 2009, 103, 1056–1064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eriksen, B.A.; Eriksen, C.W. Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept. Psychophys. 1974, 16, 143–149. [Google Scholar] [CrossRef] [Green Version]
- Diamond, A. Executive Functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Posner, M.; DiGirolamo, G. Executive attention: Conflict, target detection, and cognitive control. In The Attentive Brain; MIT Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Theeuwes, J. Top–down and bottom–up control of visual selection. Acta Psychol. 2010, 135, 77–99. [Google Scholar] [CrossRef] [PubMed]
- Ogden, C.L.; Carroll, M.D.; Kit, B.K.; Flegal, K.M. Prevalence of obesity and trends in body mass index among US children and adolescents, 1999–2010. JAMA J. Am. Med. Assoc. 2012, 307, 483–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohl, H.W.; Craig, C.L.; Lambert, E.V.; Inoue, S.; Alkandari, J.R.; Leetongin, G.; Kahlmeier, S.; Andersen, L.B.; Bauman, A.E.; Blair, S.N.; et al. The pandemic of physical inactivity: Global action for public health. Lancet 2012, 380, 294–305. [Google Scholar] [CrossRef] [Green Version]
- Taylor, S.J.; Whincup, P.; Hindmarsh, P.C.; Lampe, F.; Odoki, K.; Cook, D. Performance of a new pubertal self-assessment questionnaire: A preliminary study. Paediatr. Périnat. Epidemiol. 2001, 15, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Alan, P.; Kaufman, S.; Kaufman, N.L. Kaufman Test of Educational Achievement, 2nd ed.; Pearson: London, UK, 2004. [Google Scholar]
- Sharpe, I.; Kirkpatrick, S.I.; Smith, B.T.; Keown-Stoneman, C.D.G.; Omand, J.; Vanderhout, S.; Maguire, J.L.; Birken, C.S.; Anderson, L.N. Automated self-administered 24-H dietary assessment tool (ASA24) recalls for parent proxy-reporting of children’s intake (>4 years of age): A feasibility study. Pilot Feasibility Stud. 2021, 7, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Winsley, R.J.; Armstrong, N.; Middlebrooke, A.R.; Ramos-Ibanez, N.; Williams, C.A. Aerobic fitness and visceral adipose tissue in children. Acta Paediatr. 2006, 95, 1435–1438. [Google Scholar] [CrossRef] [PubMed]
- American College of Sports Medicine. American College of Sports Medicine’s Guidelines for Exercise Testing and Prescription/American College of Sports Medicine, 9th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2014. [Google Scholar]
- Utter, A.C.; Robertson, R.J.; Nieman, D.C.; Kang, J. Children’s OMNI scale of perceived exertion: Walking/running evaluation. Med. Sci. Sports Exerc. 2002, 34, 139–144. [Google Scholar] [CrossRef]
- Bar-Or, O. Pediatric Sports Medicine for the Practitioner: From Physiologic Principles to Clinical Applications; Springer Science & Business Media: New York, NY, USA, 1983; Available online: http://download.springer.com/static/pdf/491/bfm%3A978-1-4612-5593-2%2F1.pdf?originUrl=http://link.springer.com/book/bfm:978-1-4612-5593-2/1&token2=exp=1449331700~acl=/static/pdf/491/bfm%253A978-1-4612-5593-2%252F1.pdf?originUrl=http%3A%2F%2Flink.springer (accessed on 5 December 2021).
- Shvartz, E.; Reibold, R.C. Aerobic fitness norms for males and females aged 6 to 75 years: A review. Aviat. Space Environ. Med. 1990, 61, 3–11. [Google Scholar] [PubMed]
- Centers for Disease Control and Prevention. BMI Percentile Calculator for Child and Teen. Available online: https://www.cdc.gov/healthyweight/bmi/calculator.html (accessed on 2 January 2021).
- Eriksen, C.W.; Schultz, D.W. Information processing in visual search: A continuous flow conception and experimental results. Percept. Psychophys. 1979, 25, 249–263. [Google Scholar] [CrossRef] [PubMed]
- Spencer, K.M.; Coles, M.G.H. The lateralized readiness potential: Relationship between human data and response activation in a connectionist model. Psychophysiology 1999, 36, 364–370. [Google Scholar] [CrossRef]
- Ng, S.W.; Popkin, B.M. Time use and physical activity: A shift away from movement across the globe. Obes. Rev. 2012, 13, 659–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ke, Z.-J.; Gibson, G.E. Selective response of various brain cell types during neurodegeneration induced by mild impairment of oxidative metabolism. Neurochem. Int. 2004, 45, 361–369. [Google Scholar] [CrossRef]
- Van De Rest, O.; Van Hooijdonk, L.W.A.; Doets, E.; Schiepers, O.J.G.; Eilander, A.; de Groot, L. B vitamins and n–3 fatty acids for brain development and function: Review of human studies. Ann. Nutr. Metab. 2012, 60, 272–292. [Google Scholar] [CrossRef] [PubMed]
- Tucker, K.L.; Qiao, N.; Scott, T.; Rosenberg, I.; Spiro, I.A. High homocysteine and low B vitamins predict cognitive decline in aging men: The veterans affairs normative aging study. Am. J. Clin. Nutr. 2005, 82, 627–635. [Google Scholar] [CrossRef]
- Reynolds, E. Vitamin B12, folic acid, and the nervous system. Lancet Neurol. 2006, 5, 949–960. [Google Scholar] [CrossRef]
- Suh, S.W.; Kim, H.S.; Han, J.H.; Bin Bae, J.; Oh, D.J.; Kim, K.W. Efficacy of vitamins on cognitive function of non-demented people: A systematic review and meta-analysis. Nutrients 2020, 12, 1168. [Google Scholar] [CrossRef] [Green Version]
- Pepersack, T.; Garbusinski, J.; Robberecht, J.; Beyer, I.; Willems, D.; Fuss, M. Clinical relevance of thiamine status amongst hospitalized elderly patients. Gerontology 1999, 45, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Gibson, G.E.; Hirsch, J.A.; Fonzetti, P.; Jordan, B.D.; Cirio, R.T.; Elder, J. Vitamin B1 (thiamine) and dementia. Ann. N. Y. Acad. Sci. 2016, 1367, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Bettendorff, L. Thiamin. In Present Knowledge Nutrition, 10th ed.; Erdman, J.W., Macdonald, I.A., Zeisel, S.H., Eds.; Wiley-Blackwell: Washington, DC, USA, 2012; pp. 261–279. [Google Scholar]
- Terasawa, M.; Nakahara, T.; Tsukada, N.; Sugawara, A.; Itokawa, Y. The relationship between thiamine deficiency and performance of a learning task in rats. Metab. Brain Dis. 1999, 14, 137–148. [Google Scholar] [CrossRef] [PubMed]
- Ciccia, R.M.; Langlais, P.J. An examination of the synergistic interaction of ethanol and thiamine deficiency in the development of neurological signs and long-term cognitive and memory impairments. Alcohol. Clin. Exp. Res. 2000, 24, 622–634. [Google Scholar] [CrossRef] [PubMed]
- Nakagawasai, O.; Tadano, T.; Hozumi, S.; Tan-No, K.; Niijima, F.; Kisara, K. Immunohistochemical estimation of brain choline acetyltransferase and somatostatin related to the impairment of avoidance learning induced by thiamine deficiency. Brain Res. Bull. 2000, 52, 189–196. [Google Scholar] [CrossRef]
- Langlais, P.J.; Savage, L.M. Thiamine deficiency in rats produces cognitive and memory deficits on spatial tasks that correlate with tissue loss in diencephalon, cortex and white matter. Behav. Brain Res. 1995, 68, 75–89. [Google Scholar] [CrossRef]
- Langlais, P.J.; Mandel, R.J.; Mair, R.G. Diencephalic lesions, learning impairments, and intact retrograde memory following acute thiamine deficiency in the rat. Behav. Brain Res. 1992, 48, 177–185. [Google Scholar] [CrossRef]
- Carvalho, F.M.; Pereira, S.R.C.; Pires, R.G.W.; Ferraz, V.P.; Romano-Silva, M.; Oliveira-Silva, I.F.; Ribeiro, A.M. Thiamine deficiency decreases glutamate uptake in the prefrontal cortex and impairs spatial memory performance in a water maze test. Pharmacol. Biochem. Behav. 2006, 83, 481–489. [Google Scholar] [CrossRef]
- Crider, K.S.; Bailey, L.B.; Berry, R.J. Folic acid food fortification—Its history, effect, concerns, and future directions. Nutrients 2011, 3, 370–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Wals, P.; Tairou, F.; Van Allen, M.I.; Uh, S.-H.; Lowry, R.B.; Sibbald, B.; Evans, J.A.; Van den Hof, M.C.; Zimmer, P.; Crowley, M.; et al. Reduction in neural-tube defects after folic acid fortification in Canada. N. Engl. J. Med. 2007, 357, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Berry, R.; Li, Z.; Erickson, J.D.; Li, S.; Moore, C.A.; Wang, H.; Mulinare, J.; Zhao, P.; Wong, L.-Y.C.; Gindler, J.; et al. Prevention of neural-tube defects with folic acid in China. N. Engl. J. Med. 1999, 341, 1485–1490. [Google Scholar] [CrossRef] [PubMed]
- Horvat, P.; Gardiner, J.; Kubinova, R.; Pajak, A.; Tamosiunas, A.; Schöttker, B.; Pikhart, H.; Peasey, A.; Jansen, E.; Bobak, M. Serum folate, vitamin B-12 and cognitive function in middle and older age: The HAPIEE study. Exp. Gerontol. 2016, 76, 33–38. [Google Scholar] [CrossRef] [Green Version]
- Agnew-Blais, J.C.; Wassertheil-Smoller, S.; Kang, J.H.; Hogan, P.E.; Coker, L.H.; Snetselaar, L.G.; Smoller, J.W. Folate, Vitamin B-6, and vitamin B-12 intake and mild cognitive impairment and probable dementia in the women’s health initiative memory study. J. Acad. Nutr. Diet. 2014, 115, 231–241. [Google Scholar] [CrossRef] [Green Version]
- Jernerén, F.; Elshorbagy, A.; Oulhaj, A.; Smith, S.M.; Refsum, H.; Smith, D. Brain atrophy in cognitively impaired elderly: The importance of long-chain ω-3 fatty acids and B vitamin status in a randomized controlled trial. Am. J. Clin. Nutr. 2015, 102, 215–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.-T.; Pontifex, M.B.; Raine, L.B.; Chaddock, L.; Voss, M.W.; Kramer, A.F.; Hillman, C.H. Aerobic fitness and response variability in preadolescent children performing a cognitive control task. Neuropsychology 2011, 25, 333–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kao, S.-C.; Drollette, E.S.; Scudder, M.R.; Raine, L.B.; Westfall, D.R.; Pontifex, M.B.; Hillman, C.H. Aerobic fitness is associated with cognitive control strategy in preadolescent children. J. Mot. Behav. 2016, 49, 150–162. [Google Scholar] [CrossRef] [PubMed]
- Chaddock, L.; Erickson, K.I.; Prakash, R.S.; VanPatter, M.; Voss, M.W.; Pontifex, M.; Raine, L.B.; Hillman, C.; Kramer, A. Basal ganglia volume is associated with aerobic fitness in preadolescent children. Dev. Neurosci. 2010, 32, 249–256. [Google Scholar] [CrossRef] [Green Version]
- Scudder, M.R.; Lambourne, K.; Drollette, E.S.; Herrmann, S.D.; Washburn, R.A.; Donnelly, J.E.; Hillman, C.H. Aerobic capacity and cognitive control in elementary school-age children. Med. Sci. Sports Exerc. 2014, 46, 1025–1035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McAuley, T.; Yap, M.; Christ, S.E.; White, D.A. Revisiting inhibitory control across the life span: Insights from the ex-gaussian distribution. Dev. Neuropsychol. 2006, 29, 447–458. [Google Scholar] [CrossRef]
- Williams, B.R.; Hultsch, D.F.; Strauss, E.H.; Hunter, M.A.; Tannock, R. Inconsistency in reaction time across the life span. Neuropsychology 2005, 19, 88–96. [Google Scholar] [CrossRef]
- Kofler, M.J.; Rapport, M.D.; Sarver, D.E.; Raiker, J.; Orban, S.A.; Friedman, L.M.; Kolomeyer, E.G. Reaction time variability in ADHD: A meta-analytic review of 319 studies. Clin. Psychol. Rev. 2013, 33, 795–811. [Google Scholar] [CrossRef] [PubMed]
- Moore, R.D.; Wu, C.-T.; Pontifex, M.B.; O’Leary, K.C.; Scudder, M.R.; Raine, L.B.; Johnson, C.R.; Hillman, C.H. Aerobic fitness and intra-individual variability of neurocognition in preadolescent children. Brain Cogn. 2013, 82, 43–57. [Google Scholar] [CrossRef] [Green Version]
- Raine, L.B.; Kao, S.-C.; Pindus, D.; Westfall, D.R.; Shigeta, T.T.; Logan, N.; Cadenas-Sanchez, C.; Li, J.; Drollette, E.S.; Pontifex, M.B.; et al. A large-scale reanalysis of childhood fitness and inhibitory control. J. Cogn. Enhanc. 2018, 2, 170–192. [Google Scholar] [CrossRef]
- Tamnes, C.K.; Fjell, A.M.; Westlye, L.T.; Østby, Y.; Walhovd, K.B. Becoming consistent: Developmental reductions in intraindividual variability in reaction time are related to white matter integrity. J. Neurosci. 2012, 32, 972–982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yau, P.L.; Kang, E.H.; Javier, D.C.; Convit, A. Preliminary evidence of cognitive and brain abnormalities in uncomplicated adolescent obesity. Obesity 2014, 22, 1865–1871. [Google Scholar] [CrossRef] [Green Version]
- Alarcón, G.; Ray, S.; Nagel, B.J. Lower working memory performance in overweight and obese adolescents is mediated by white matter microstructure. J. Int. Neuropsychol. Soc. 2015, 22, 281–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alosco, M.L.; Stanek, K.M.; Galioto, R.; Korgaonkar, M.; Grieve, S.; Brickman, A.M.; Spitznagel, M.B.; Gunstad, J. Body mass index and brain structure in healthy children and adolescents. Int. J. Neurosci. 2013, 124, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Ou, X.; Andres, A.; Pivik, R.; Cleves, M.A.; Badger, T.M. Brain gray and white matter differences in healthy normal weight and obese children. J. Magn. Reson. Imaging 2015, 42, 1205–1213. [Google Scholar] [CrossRef]
- Graziano, P.A.; Calkins, S.D.; Keane, S.P. Toddler self-regulation skills predict risk for pediatric obesity. Int. J. Obes. 2010, 34, 633–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallace, A.; Kirkpatrick, S.I.; Darlington, G.; Haines, J. Accuracy of parental reporting of preschoolers’ dietary intake using an online self-administered 24-h recall. Nutrients 2018, 10, 987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banfield, E.C.; Liu, Y.; Davis, J.S.; Chang, S.; Frazier-Wood, A.C. Poor adherence to US dietary guidelines for children and adolescents in the National health and nutrition examination survey population. J. Acad. Nutr. Diet. 2015, 116, 21–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brage, S.; Wedderkopp, N.; Ekelund, U.; Franks, P.W.; Wareham, N.J.; Andersen, L.B.; Froberg, K. Features of the metabolic syndrome are associated with objectively measured physical activity and fitness in Danish children: The European youth heart study (EYHS). Diabetes Care 2004, 27, 2141–2148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, R.D.; Drollette, E.S.; Scudder, M.R.; Ebharij, A.; Hillman, C.H. The influence of cardiorespiratory fitness on strategic, behavioral, and electrophysiological indices of arithmetic cognition in preadolescent children. Front. Hum. Neurosci. 2014, 8, 258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaddock-Heyman, L.; Erickson, K.I.; Kienzler, C.; King, M.; Pontifex, M.B.; Raine, L.B.; Hillman, C.; Kramer, A. The role of aerobic fitness in cortical thickness and mathematics achievement in preadolescent children. PLoS ONE 2015, 10, e0134115. [Google Scholar] [CrossRef]
- Mead, E.; Brown, T.; Rees, K.; Azevedo, L.B.; Whittaker, V.; Jones, D.; Olajide, J.; Mainardi, G.M.; Corpeleijn, E.; O’Malley, C.; et al. Diet, physical activity and behavioural interventions for the treatment of overweight or obese children from the age of 6 to 11 years. Cochrane Database Syst. Rev. 2017, 2017, CD012651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristic | |
---|---|
N, % female | 85, 44% |
Age (years) | 9.93 ± 0.08 |
Household Income | Less than $100,000/year = 38% $100,000 or more/year = 62% |
Highest Level of Mother’s Education | Less than advanced degree = 45% Advanced degree or more = 55% |
Highest Level of Father’s Education | Less than advanced degree = 53% Advanced degree or more = 47% |
IQ | 115.23 ± 1.47 |
Pubertal Status | 1.46 ± 0.06 |
VO2 relative (kg/mL/min) | 43.44 ± 0.77 |
VO2 percentile | 31.81 ± 3.28 |
BMI (kg/m2) | 17.94 ± 0.34 |
BMI% | 56.34 ± 3.36 (27% overweight or obese) |
Congruent Accuracy (% correct) | 81.90 ± 1.41 |
Incongruent Accuracy (% correct) | 66.28 ± 1.92 |
Accuracy Interference (% correct) | 15.63 ± 1.54 |
Congruent RT (ms) | 563.52 ± 9.47 |
Incongruent RT (ms) | 627.11 ± 11.23 |
RT Interference (ms) | 63.58 ± 5.25 |
Congruent SDRT | 140.51 ± 4.49 |
Incongruent SDRT | 158.05 ± 5.95 |
SDRT Interference | 17.54 ± 4.01 |
Energy (kcal) | 1774.47 ± 64.80 |
Thiamin (B-1) (mg) | 1.49 ± 0.06 |
Riboflavin (B-2) (mg) | 1.76 ± 0.09 |
Niacin (B-3) (mg) | 19.32 ± 1.17 |
Pyridoxine (B-6) (mg) | 1.64 ± 0.11 |
Folate (mcg) | 378.96 ± 20.44 |
Folic Acid (mcg) | 202.42 ± 17.81 |
Cobalamin (B-12) (mcg) | 4.25 ± 0.29 |
Age | Sex | Pubertal Timing | IQ | Mother Education | Father Education | Household Income | |
---|---|---|---|---|---|---|---|
Congruent Accuracy | 0.22 * | 0.10 | −0.03 | 0.20 | 0.13 | 0.17 | 0.01 |
Incongruent Accuracy | 0.26 * | 0.17 | −0.13 | 0.22 * | 0.09 | 0.17 | 0.02 |
Accuracy Interference | −0.12 | −0.12 | 0.13 | −0.10 | 0.02 | −0.05 | −0.01 |
Congruent RT | −0.32 ** | −0.17 | −0.17 | −0.02 | 0.05 | −0.10 | 0.01 |
Incongruent RT | −0.25 * | −0.21 | −0.13 | 0.02 | 0.06 | −0.07 | −0.03 |
RT Interference | 0.04 | −0.16 | 0.03 | 0.09 | 0.04 | 0.02 | −0.09 |
Congruent SDRT | −0.43 ** | 0.001 | −0.01 | −0.08 | −0.10 | −0.18 | −0.12 |
Incongruent SDRT | −0.43 ** | −0.05 | −0.004 | 0.05 | 0.03 | −0.16 | 0.02 |
SDRT Interference | −0.16 | −0.07 | 0.01 | 0.016 | 0.15 | −0.03 | 0.16 |
Congruent Accuracy | ANOVA F | ANOVA P | ∆R2 | t | β | |
---|---|---|---|---|---|---|
Step1 | Age | 4.37 | 0.04 | 0.05 * | 2.09 | 0.224 |
Step 2 | BMI | 2.31 | 0.11 | 0.003 | 0.54 | 0.06 |
Step 2 | VO2 max | 2.44 | 0.09 | 0.01 | 0.73 | 0.08 |
Step 2 | Thiamin (B-1) | 2.47 | 0.09 | 0.01 | 0.77 | 0.08 |
Step 2 | Riboflavin (B-2) | 2.70 | 0.07 | 0.01 | 1.02 | 0.11 |
Step 2 | Niacin (B-3) | 2.65 | 0.08 | 0.01 | −0.97 | −0.10 |
Step 2 | Pyridoxine (B-6) | 2.53 | 0.09 | 0.01 | −0.84 | −0.09 |
Step 2 | Folate | 2.64 | 0.08 | 0.01 | 0.96 | 0.10 |
Step 2 | Folic Acid | 2.24 | 0.11 | 0.002 | 0.40 | 0.04 |
Step 2 | Cobalamin (B-12) | 2.16 | 0.12 | 0.00 | 0.10 | 0.01 |
Incongruent Accuracy | ANOVA F | ANOVA P | ∆R2 | t | β | |
---|---|---|---|---|---|---|
Step1 | Age | 6.392 | 0.003 | 0.14 * | 2.83 | 0.29 |
IQ | 2.49 | 0.26 | ||||
Step 2 | BMI | 4.24 | 0.008 | 0.001 | −0.26 | −0.03 |
Step 2 | VO2 max | 6.06 | 0.001 | 0.05 * | 2.20 | 0.22 |
Step 2 | Thiamin (B-1) | 4.52 | 0.006 | 0.01 | 0.89 | 0.09 |
Step 2 | Riboflavin (B-2) | 4.34 | 0.007 | 0.004 | 0.59 | 0.06 |
Step 2 | Niacin (B-3) | 4.23 | 0.008 | 0.001 | −0.25 | −0.03 |
Step 2 | Pyridoxine (B-6) | 4.33 | 0.007 | 0.003 | −0.56 | −0.06 |
Step 2 | Folate FOLA | 4.33 | 0.005 | 0.01 | 0.92 | 0.10 |
Step 2 | Folic Acid FA | 4.21 | 0.008 | 0.000 | −0.10 | −0.01 |
Step 2 | Cobalamin (B-12) | 4.26 | 0.008 | 0.001 | −0.36 | −0.04 |
Congruent RT | ANOVA F | ANOVA P | ∆R2 | t | β | |
---|---|---|---|---|---|---|
Step1 | Age | 9.14 | 0.003 | 0.10 * | −3.02 | −0.23 |
Step 2 | BMI | 5.21 | 0.007 | 0.01 | −1.12 | −0.12 |
Step 2 | VO2 max | 7.41 | 0.001 | 0.05 * | 2.28 | 0.22 |
Step 2 | Thiamin (B-1) | 7.66 | 0.001 | 0.06 * | −2.38 | −0.30 |
Step 2 | Riboflavin (B-2) | 5.19 | 0.008 | 0.01 | −1.10 | −0.11 |
Step 2 | Niacin (B-3) | 5.24 | 0.007 | 0.01 | −1.14 | −0.12 |
Step 2 | Pyridoxine (B-6) | 4.75 | 0.01 | 0.005 | −0.65 | −0.07 |
Step 2 | Folate | 5.81 | 0.004 | 0.03 | −1.53 | −0.16 |
Step 2 | Folic Acid | 8.71 | 0.00 | 0.08 * | −2.75 | −0.28 |
Step 2 | Cobalamin (B-12) | 4.86 | 0.01 | 0.01 | −0.79 | −0.08 |
Incongruent RT | ANOVA F | ANOVA P | ∆R2 | t | β | |
---|---|---|---|---|---|---|
Step1 | Age | 5.30 | 0.02 | 0.06 * | −2.30 | −0.24 |
Step 2 | BMI | 2.71 | 0.07 | 0.002 | −0.42 | −0.05 |
Step 2 | VO2 max | 4.09 | 0.02 | 0.03 | 1.66 | 0.18 |
Step 2 | Thiamin (B-1) | 6.50 | 0.002 | 0.08 * | −2.70 | −0.28 |
Step 2 | Riboflavin (B-2) | 3.42 | 0.04 | 0.02 | −1.22 | −0.13 |
Step 2 | Niacin (B-3) | 4.36 | 0.02 | 0.04 | −1.81 | −0.19 |
Step 2 | Pyridoxine (B-6) | 4.25 | 0.02 | 0.03 | −1.75 | −0.18 |
Step 2 | Folate | 3.71 | 0.03 | 0.02 | −1.43 | −0.15 |
Step 2 | Folic Acid | 6.61 | 0.002 | 0.08 * | −2.74 | −0.28 |
Step 2 | Cobalamin (B-12) | 3.49 | 0.04 | 0.2 | −1.28 | −0.14 |
Congruent SDRT | ANOVA F | ANOVA P | ∆R2 | t | β | |
---|---|---|---|---|---|---|
Step1 | Age | 19.05 | 0.000 | 0.19 * | −4.36 | −0.43 |
Step 2 | BMI | 14.49 | 0.000 | 0.07 * | 2.87 | 0.28 |
Step 2 | VO2 max | 10.77 | 0.000 | 0.021 | −1.48 | −0.15 |
Step 2 | Thiamin (B-1) | 9.88 | 0.000 | 0.007 | 0.87 | −0.09 |
Step 2 | Riboflavin (B-2) | 9.73 | 0.000 | 0.005 | 0.72 | 0.07 |
Step 2 | Niacin (B-3) | 9.49 | 0.000 | 0.001 | 0.35 | 0.04 |
Step 2 | Pyridoxine (B-6) | 10.29 | 0.000 | 0.01 | 1.20 | 0.12 |
Step 2 | Folate | 10.09 | 0.000 | 0.01 | −1.05 | −0.10 |
Step 2 | Folic Acid | 9.84 | 0.000 | 0.007 | −0.84 | −0.08 |
Step 2 | Cobalamin (B-12) | 10.17 | 0.000 | 0.01 | 1.11 | 0.11 |
Incongruent SDRT | ANOVA F | ANOVA P | ∆R2 | t | β | |
---|---|---|---|---|---|---|
Step 1 | Age | 19.38 | 0.000 | 0.19 * | −4.40 | −0.44 |
Step 2 | BMI | 11.88 | 0.000 | 0.035 † | 1.93 | 0.19 |
Step 2 | VO2 max | 11.61 | 0.000 | 0.03 | −1.82 | −0.18 |
Step 2 | Thiamin (B-1) | 9.67 | 0.000 | 0.001 | −0.38 | −0.04 |
Step 2 | Riboflavin (B-2) | 9.56 | 0.000 | 0.000 | 0.14 | 0.01 |
Step 2 | Niacin (B-3) | 9.58 | 0.000 | 0.000 | 0.09 | 0.01 |
Step 2 | Pyridoxine (B-6) | 9.58 | 0.000 | 0.000 | −0.02 | −0.002 |
Step 2 | Folate | 11.35 | 0.000 | 0.03 | −1.69 | −0.17 |
Step 2 | Folic Acid | 10.45 | 0.000 | 0.014 | −1.19 | −0.12 |
Step 2 | Cobalamin (B-12) | 9.66 | 0.000 | 0.001 | 0.37 | 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raine, L.B.; Watrous, J.N.H.; McDonald, K.; Logan, N.E.; Khan, N.A.; Kramer, A.F.; Hillman, C.H. Aerobic Fitness, B-Vitamins, and Weight Status Are Related to Selective Attention in Children. Nutrients 2022, 14, 201. https://doi.org/10.3390/nu14010201
Raine LB, Watrous JNH, McDonald K, Logan NE, Khan NA, Kramer AF, Hillman CH. Aerobic Fitness, B-Vitamins, and Weight Status Are Related to Selective Attention in Children. Nutrients. 2022; 14(1):201. https://doi.org/10.3390/nu14010201
Chicago/Turabian StyleRaine, Lauren B., Jennifer N. H. Watrous, Katherine McDonald, Nicole E. Logan, Naiman A. Khan, Arthur F. Kramer, and Charles H. Hillman. 2022. "Aerobic Fitness, B-Vitamins, and Weight Status Are Related to Selective Attention in Children" Nutrients 14, no. 1: 201. https://doi.org/10.3390/nu14010201
APA StyleRaine, L. B., Watrous, J. N. H., McDonald, K., Logan, N. E., Khan, N. A., Kramer, A. F., & Hillman, C. H. (2022). Aerobic Fitness, B-Vitamins, and Weight Status Are Related to Selective Attention in Children. Nutrients, 14(1), 201. https://doi.org/10.3390/nu14010201