Association between Plasma Trimethylamine N-Oxide Levels and Type 2 Diabetes: A Case Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Clinical Data
2.3. Assessment of Physical Activity and Dietary Patterns
2.3.1. International Physical Activity Questionnaire Short Version
2.3.2. Food Frequency Questionnaire: Saudi Version
2.4. Laboratory Measurement
2.5. Quantification of Plasma Trimethylamine N-Oxide (TMAO) Levels
2.6. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Physical Activity and Dietary Patterns
3.3. TMAO Levels and Biochemical Parameters
3.3.1. Correlations between TMAO Levels and Markers of Metabolic Health
3.3.2. Plasma TMAO Levels and Type 2 Diabetes
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Z.; Klipfell, E.; Bennett, B.J.; Koeth, R.; Levison, B.S.; DuGar, B.; Feldstein, A.E.; Britt, E.B.; Fu, X.; Chung, Y.-M.; et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011, 472, 57–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, W.H.W.; Wang, Z.; Levison, B.S.; Koeth, R.A.; Britt, E.B.; Fu, X.; Wu, Y.; Hazen, S.L. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 2013, 368, 1575–1584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartiala, J.; Bennett, B.J.; Tang, W.W.; Wang, Z.; Stewart, A.F.; Roberts, R.; McPherson, R.; Lusis, A.J.; Hazen, S.L.; Allayee, H. Comparative genome-wide association studies in mice and humans for trimethylamine N-Oxide, a proatherogenic metabolite of choline and L-Carnitine. Arter. Thromb. Vasc. Biol. 2014, 34, 1307–1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kühn, T.; Rohrmann, S.; Sookthai, D.; Johnson, T.; Katzke, V.; Kaaks, R.; Von Eckardstein, A.; Mueller, D. Intra-individual variation of plasma trimethylamine-N-oxide (TMAO), betaine and choline over 1 year. Clin. Chem. Lab. Med. (CCLM) 2016, 55, 261–268. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Tang, W.H.W.; Buffa, J.A.; Fu, X.; Britt, E.B.; Koeth, R.A.; Levison, B.; Fan, Y.; Wu, Y.; Hazen, S.L. Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. Eur. Heart J. 2014, 35, 904–910. [Google Scholar] [CrossRef]
- Li, D.; Kirsop, J.; Tang, W.H.W. Listening to our gut: Contribution of gut microbiota and cardiovascular risk in diabetes pathogenesis. Curr. Diabetes Rep. 2015, 15, 63. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Keogh, J.; Clifton, P. A review of potential metabolic etiologies of the observed association between red meat consumption and development of type 2 diabetes mellitus. Metab. Clin. Exp. 2015, 64, 768–779. [Google Scholar] [CrossRef]
- Gao, X.; Liu, X.; Xu, J.; Xue, C.; Xue, Y.; Wang, Y. Dietary trimethylamine N-oxide exacerbates impaired glucose tolerance in mice fed a high fat diet. J. Biosci. Bioeng. 2014, 118, 476–481. [Google Scholar] [CrossRef]
- Dambrova, M.; Latkovskis, G.; Kuka, J.; Strele, I.; Konrade, I.; Grinberga, S.; Hartmane, D.; Pugovics, O.; Erglis, A.; Liepinsh, E. Diabetes is associated with higher trimethylamine N-oxide plasma levels. Exp. Clin. Endocrinol. Diabetes 2016, 124, 251–256. [Google Scholar] [CrossRef] [Green Version]
- Shan, Z.; Sun, T.; Huang, H.; Chen, S.; Chen, L.; Luo, C.; Yang, W.; Yang, X.; Yao, P.; Cheng, J.; et al. Association between microbiota-dependent metabolite trimethylamine-N-oxide and type 2 diabetes. Am. J. Clin. Nutr. 2017, 106, 888–894. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Alcoholado, L.; Castellano-Castillo, D.; Jordán-Martínez, L.; Moreno-Indias, I.; Cardila-Cruz, P.; Elena, D.; Muñoz-Garcia, A.J.; Queipo-Ortuño, M.I.; Navarro, M.F.J. Role of gut microbiota on cardio-metabolic parameters and immunity in coronary artery disease patients with and without type-2 diabetes mellitus. Front. Microbiol. 2017, 8, 1936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuang, R.; Ge, X.; Han, L.; Yu, P.; Gong, X.; Meng, Q.; Zhang, Y.; Fan, H.; Zheng, L.; Liu, Z.; et al. Gut microbe–generated metabolite trimethylamine N-oxide and the risk of diabetes: A systematic review and dose-response meta-analysis. Obes. Rev. 2019, 20, 883–894. [Google Scholar] [CrossRef] [PubMed]
- Lever, M.; George, P.M.; Slow, S.; Bellamy, D.; Young, J.M.; Ho, M.; McEntyre, C.J.; Elmslie, J.L.; Atkinson, W.; Molyneux, S.L.; et al. Betaine and Trimethylamine-N-Oxide as predictors of cardiovascular outcomes show different patterns in diabetes mellitus: An observational study. PLoS ONE 2014, 9, e114969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obeid, R.; Awwad, H.M.; Rabagny, Y.; Graeber, S.; Herrmann, W.; Geisel, J. Plasma trimethylamine N-oxide concentration is associated with choline, phospholipids, and methyl metabolism. Am. J. Clin. Nutr. 2016, 103, 703–711. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.H.W.; Wang, Z.; Li, X.S.; Fan, Y.; Li, D.S.; Wu, Y.; Hazen, S.L. Increased trimethylamine N-Oxide portends high mortality risk independent of glycemic control in patients with type 2 diabetes mellitus. Clin. Chem. 2017, 63, 297–306. [Google Scholar] [CrossRef] [Green Version]
- Aljulifi, M.Z. Prevalence and reasons of increased type 2 diabetes in Gulf Cooperation Council Countries. Saudi Med. J. 2021, 42, 481–490. [Google Scholar] [CrossRef]
- Federation, I. IDF Diabetes Atlas, 9th ed.; International Diabetes Federation: Brussels, Belgium, 2019. [Google Scholar]
- Alqahtani, M.; Almutairi, F.E.; Albasseet, A.O.; Almutairi, K.E. Knowledge, attitude, and practice of diabetes mellitus among the Saudi population in Riyadh, Saudi Arabia: A quantitative study. Cureus 2020, 12, e6601. [Google Scholar] [CrossRef] [Green Version]
- Robert, A.A.; Al Dawish, M.A. The worrying trend of diabetes mellitus in Saudi Arabia: An urgent call to action. Curr. Diabetes Rev. 2020, 16, 204–210. [Google Scholar] [CrossRef]
- Davies, M.J.; D’Alessio, D.A.; Fradkin, J.; Kernan, W.N.; Mathieu, C.; Mingrone, G.; Rossing, P.; Tsapas, A.; Wexler, D.J.; Buse, J.B. Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American diabetes association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2018, 41, 2669–2701. [Google Scholar] [CrossRef] [Green Version]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.L.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [Green Version]
- Committee, I.R. Guidelines for Data Processing and Analysis of the International Physical Activity Questionnaire (IPAQ)-Short and Long Forms. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwj6mvreleb3AhUqq1YBHQuoBvcQFnoECAYQAQ&url=https%3A%2F%2Fwww.researchgate.net%2Ffile.PostFileLoader.html%3Fid%3D5641f4c36143250eac8b45b7%26assetKey%3DAS%253A294237418606593%25401447163075131&usg=AOvVaw1VbFDU-l6YTiZL4L5OXVm_ (accessed on 1 December 2021).
- Gosadi, I.M.; Alatar, A.A.; Otayf, M.M.; AlJahani, D.M.; Ghabbani, H.M.; AlRajban, W.A.; Alrsheed, A.M.; Al-Nasser, K.A. Development of a Saudi Food Frequency Questionnaire and testing its reliability and validity. Saudi Med. J. 2017, 38, 636–641. [Google Scholar] [CrossRef] [PubMed]
- Victoria, C.C.O. Dietary Questionnaire for Epidemiological Studies—Version 3.2 (DQES v3.2). 2020. Available online: https://www.cancervic.org.au/research/epidemiology/nutritional_assessment_services (accessed on 12 February 2022).
- Awwad, H.M.; Geisel, J.; Obeid, R. Determination of trimethylamine, trimethylamine N-oxide, and taurine in human plasma and urine by UHPLC–MS/MS technique. J. Chromatogr. B 2016, 1038, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Svingen, G.F.; Schartum-Hansen, H.; Pedersen, E.R.; Ueland, P.M.; Tell, G.S.; Mellgren, G.; Njølstad, P.R.; Seifert, R.; Strand, E.; Karlsson, T.; et al. Prospective associations of systemic and urinary choline metabolites with incident type 2 diabetes. Clin. Chem. 2016, 62, 755–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemaitre, R.N.; Jensen, P.N.; Wang, Z.; Fretts, A.M.; McKnight, B.; Nemet, I.; Biggs, M.L.; Sotoodehnia, N.; Otto, M.C.D.O.; Psaty, B.M.; et al. Association of Trimethylamine N-Oxide and Related Metabolites in Plasma and Incident Type 2 Diabetes: The Cardiovascular Health Study. JAMA Netw. Open 2021, 4, e2122844. [Google Scholar] [CrossRef] [PubMed]
- Papandreou, C.; Bulló, M.; Zheng, Y.; Ruiz-Canela, M.; Yu, E.; Guasch-Ferré, M.; Toledo, E.; Clish, C.; Corella, D.; Estruch, R.; et al. Plasma trimethylamine-N-oxide and related metabolites are associated with type 2 diabetes risk in the Prevención con Dieta Mediterránea (PREDIMED) trial. Am. J. Clin. Nutr. 2018, 108, 163–173. [Google Scholar] [CrossRef]
- Yamazaki, H.; Shimizu, M. Survey of variants of human flavin-containing monooxygenase 3 (FMO3) and their drug oxidation activities. Biochem. Pharmacol. 2013, 85, 1588–1593. [Google Scholar] [CrossRef]
- Roy, S.; Yuzefpolskaya, M.; Nandakumar, R.; Colombo, P.C.; Demmer, R. Plasma Trimethylamine-N-oxide and impaired glucose regulation: Results from The Oral Infections, Glucose Intolerance and Insulin Resistance Study (ORIGINS). PLoS ONE 2020, 15, e0227482. [Google Scholar] [CrossRef]
- Senthong, V.; Li, X.S.; Hudec, T.; Coughlin, J.; Wu, Y.; Levison, B.; Wang, Z.; Hazen, S.L.; Tang, W.W. Plasma Trimethylamine N-Oxide, a gut microbe–generated phosphatidylcholine metabolite, is associated with atherosclerotic burden. J. Am. Coll. Cardiol. 2016, 67, 2620–2628. [Google Scholar] [CrossRef]
- Yu, N.; Gu, N.; Wang, Y.; Zhou, B.; Lu, D.; Li, J.; Ma, X.; Zhang, J.; Guo, X. The Association of Plasma Trimethylamine N-Oxide with Coronary Atherosclerotic Burden in Patients with Type 2 Diabetes among a Chinese North Population. Diabetes Metab. Syndr. Obes. Targets Ther. 2022, 15, 69–78. [Google Scholar] [CrossRef]
- Rexidamu, M.; Li, H.; Jin, H.; Huang, J. Serum levels of Trimethylamine-N-oxide in patients with ischemic stroke. Biosci. Rep. 2019, 39, bsr20190515. [Google Scholar] [CrossRef] [Green Version]
- Mueller, D.; Allenspach, M.; Othman, A.; Saely, C.H.; Muendlein, A.; Vonbank, A.; Drexel, H.; von Eckardstein, A. Plasma levels of trimethylamine-N-oxide are confounded by impaired kidney function and poor metabolic control. Atherosclerosis 2015, 243, 638–644. [Google Scholar] [CrossRef]
- Rath, S.; Rox, K.; Bardenhorst, S.K.; Schminke, U.; Dörr, M.; Mayerle, J.; Frost, F.; Lerch, M.M.; Karch, A.; Brönstrup, M.; et al. Higher Trimethylamine-N-Oxide Plasma Levels with Increasing Age Are Mediated by Diet and Trimethylamine-Forming Bacteria. mSystems 2021, 6, e00945-21. [Google Scholar] [CrossRef] [PubMed]
- Koeth, R.A.; Wang, Z.; Levison, B.S.; Buffa, J.A.; Org, E.; Sheehy, B.T.; Britt, E.B.; Fu, X.; Wu, Y.; Li, L.; et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 2013, 19, 576–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Wang, D.D.; Chiuve, S.E.; Manson, J.E.; Willett, W.C.; Hu, F.B.; Qi, L. Dietary phosphatidylcholine intake and type 2 diabetes in men and women. Diabetes Care 2015, 38, e13–e14. [Google Scholar] [CrossRef] [Green Version]
- Ley, S.H.; Sun, Q.; Willett, W.C.; Eliassen, A.H.; Wu, K.; Pan, A.; Grodstein, F.; Hu, F.B. Associations between red meat intake and biomarkers of inflammation and glucose metabolism in women. Am. J. Clin. Nutr. 2013, 99, 352–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boutagy, N.E.; Neilson, A.P.; Osterberg, K.L.; Smithson, A.T.; Englund, T.R.; Davy, B.M.; Hulver, M.W.; Davy, K.P. Short-term high-fat diet increases postprandial trimethylamine-N-oxide in humans. Nutr. Res. 2015, 35, 858–864. [Google Scholar] [CrossRef]
- Yazdekhasti, N.; Brandsch, C.; Schmidt, N.; Schloesser, A.; Huebbe, P.; Rimbach, G.; Stangl, G.I. Fish protein increases circulating levels of trimethylamine-N -oxide and accelerates aortic lesion formation in apoE null mice. Mol. Nutr. Food Res. 2015, 60, 358–368. [Google Scholar] [CrossRef]
- Cho, C.E.; Taesuwan, S.; Malysheva, O.V.; Bender, E.; Tulchinsky, N.F.; Yan, J.; Sutter, J.L.; Caudill, M.A. Trimethylamine-N-oxide (TMAO) response to animal source foods varies among healthy young men and is influenced by their gut microbiota composition: A randomized controlled trial. Mol. Nutr. Food Res. 2016, 61, 1600324. [Google Scholar] [CrossRef]
- Moradi-Lakeh, M.; El Bcheraoui, C.; Afshin, A.; Daoud, F.; AlMazroa, M.A.; Al Saeedi, M.; Basulaiman, M.; Memish, Z.A.; Al Rabeeah, A.A.; Mokdad, A.H. Diet in Saudi Arabia: Findings from a nationally representative survey. Public Health Nutr. 2017, 20, 1075–1081. [Google Scholar] [CrossRef] [Green Version]
- Burcelin, R.; Serino, M.; Chabo, C.; Blasco-Baque, V.; Amar, J. Gut microbiota and diabetes: From pathogenesis to therapeutic perspective. Acta Diabetol. 2011, 48, 257–273. [Google Scholar] [CrossRef] [Green Version]
- Romano, K.A.; Vivas, E.I.; Amador-Noguez, D.; Rey, F.E. Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite Trimethylamine-N-Oxide. mBio 2015, 6, e02481-14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, S.J.; Rim, J.H.; Ji, D.; Lee, S.; Yoo, H.S.; Jung, J.H.; Baik, K.; Choi, Y.; Ye, B.S.; Sohn, Y.H.; et al. Gut microbiota-derived metabolite trimethylamine N-oxide as a biomarker in early Parkinson’s disease. Nutrition 2020, 83, 111090. [Google Scholar] [CrossRef]
- Borrell, L.N.; Dallo, F.J.; White, K. Education and diabetes in a racially and ethnically diverse population. Am. J. Public Health 2006, 96, 1637–1642. [Google Scholar] [CrossRef]
- Tang, M.; Chen, Y.; Krewski, D. Gender-related differences in the association between socioeconomic status and self-reported diabetes. Int. J. Epidemiol. 2003, 32, 381–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorpe, M.G.; Milte, C.M.; Crawford, D.; McNaughton, S.A. Education and lifestyle predict change in dietary patterns and diet quality of adults 55 years and over. Nutr. J. 2019, 18, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, W.W.; Kitai, T.; Hazen, S.L. Gut Microbiota in Cardiovascular Health and Disease. Circ. Res. 2017, 120, 1183–1196. [Google Scholar] [CrossRef] [Green Version]
Type 2 Diabetes | |||
---|---|---|---|
No (n = 164) | Yes (n = 133) | p-Value d | |
Demographics | |||
Age (years) a | 37 (33–45) | 55 (50–62) | <0.001 |
Gender, No. (%) | <0.001 | ||
Male | 11 (6.7) | 27 (20.3) | |
Female | 153 (93.3) | 106 (79.7) | |
Level of Education, No. (%) | <0.001 | ||
Primary | 5 (3) | 38 (28.6) | |
Secondary | 28 (17.1) | 42 (31.6) | |
Tertiary | 131 (79.9) | 53 (39.8) | |
BMI (kg/m2) a | 28.04 (24.68–31.31) | 30.98 (28.31–35.10) | <0.001 |
Smoking (yes), No. (%) | 11(6.7) | 12(9) | NS |
Diabetes duration (years) | 0 | 12 (7–20) | <0.001 |
Cardiovascular disease, (yes), No. (%) | 0 | 10 (7.5) | <0.001 |
Gastrointestinal disease, (yes), No. (%) | 5 (3) | 5 (3.8) | NS |
Medication use (yes), No. (%) | |||
Antihyperglycemic | 8 (4.9) | 133 (100) | <0.001 |
Antihyperlipidemic | 16 (9.8) | 104 (79.4) | <0.001 |
Antacids | 13 (8) | 50 (37.6) | <0.001 |
Supplement use, No. (%) | 0.003 | ||
0–3 | 154 (93.9) | 130 (97.8) | |
>4 | 10 (6.1) | 3 (2.3) | |
Laboratory Parameters | |||
FPG, mmol/L a | 4.78 (4.44–5.14) | 8.00 (6.12–10.12) | <0.001 |
HbA1c, % a | 5.45 (5.20–5.80) | 8.30 (7.30–9.50) | <0.001 |
Total Cholesterol, mmol/L b | 5.15 ± 0.95 | 4.42 ± 1.19 | <0.001 |
LDL-C, mmol/L a | 2.84 (2.34–3.39) | 2.31 (1.87–2.93) | <0.001 |
HDL-C, mmol/L a | 1.53 (1.32–1.83) | 1.26 (1.12–1.51) | <0.001 |
Triglycerides, mmol/L a | 1.00 (0.75–1.42) | 1.34 (0.97–1.90) | <0.001 |
hs-CRP, mg/L a | 1.82 (1.11–6.20) | 3.40 (1.21–7.77) | NS |
Physical Activitya | |||
Total MET-Score (MET-min/wk.) | 443.3 (0–1017.3) | 297.0 (49.5–742.0) | 0.008 |
Vigorous MET-min/wk. | 0 (0–4800) c | 0 (0–3840) | 0.001 |
Moderate MET-min/wk. | 0 (0–2400) c | 0 (0–2400) | 0.001 |
Walking MET-min/wk. | 255.8 (0–594.0) | 247.5 (0–544.5) | NS |
Total MET-Category, No. (%) | 0.025 | ||
Low | 91 (55.5) | 89 (66.9) | |
Moderate | 56 (34.1) | 37 (27.8) | |
High | 17 (10.4) | 7 (5.2) |
Quartiles of TMAO | ||||||
---|---|---|---|---|---|---|
n | Q1 (n = 75) | Q2 (n = 73) | Q3 (n = 74) | Q4 (n = 75) | p-Value c | |
TMAO, µmol/L | 297 | <2.37 | 2.38–3.58 | 3.59–6.39 | >6.40 | |
Demographics | ||||||
Age (years) a | 297 | 40 (33–49) | 41 (35–53) | 49 (37–55) 4 | 55 (47–63) 1,2,3 | <0.001 |
Gender, No. (%) | 0.025 | |||||
Male | 38 | 4 (10.5) | 12 (31.6) | 7 (18.4) | 15 (39.5) | |
Female | 259 | 71 (27.4) | 61 (23.6) | 67 (25.9) | 60 (23.2) | |
Level of Education, No. (%) | 0.037 | |||||
Primary | 43 | 6 (14) | 8 (18.6) | 10 (23.3) | 19 (44.2) | |
Secondary | 70 | 18 (25.7) | 13 (18.6) | 20 (28.6) | 19 (27.1) | |
Tertiary | 184 | 51 (27.7) | 52 (28.3) | 44 (23.9) | 37 (20.1) 1 | |
BMI (kg/m2) a | 297 | 29.57 (25–32.54) | 28.63 (25.26–33.78) | 29.31 (27.18–34.16) 4 | 30.06 (25.85–33.98) 1 | NS |
Smoking (yes), No. (%) | 23 | 5 (21.7) | 7 (30.4) | 5 (21.7) | 6 (26.1) | NS |
Type 2 Diabetes Mellitus, No. (%) | <0.001 | |||||
No | 164 | 53 (32.3) | 46 (28) | 44 (26.8) | 21 (12.8) | |
Yes | 133 | 22 (16.5) | 27 (20.3) | 30 (22.6) | 54 (40.6) | |
Cardiovascular disease, No. (%) | NS | |||||
No | 287 | 74 (25.8) | 70 (24.4) | 73 (25.4) | 70 (24.4) | |
Yes | 10 | 1 (10) | 3 (30) | 1 (10) | 5 (50) | |
Gastrointestinal disease, No. (%) | NS | |||||
No | 287 | 74 (25.8) | 71 (24.7) | 73 (25.4) | 69 (24) | |
Yes | 10 | 1 (10) | 2 (20) | 1 (10) | 6 (60) | |
Medication use, No. (%) | ||||||
Antihyperglycemic, (yes) | 141 | 23 (16.3) | 30 (21.3) | 31 (22) | 57 (40.4) | <0.001 |
Antihyperlipidemic, (yes) | 120 | 20 (16.7) | 24 (20) | 31 (25.8) | 45 (37.5) | <0.001 |
Antacids, (yes) | 63 | 7 (11.1) | 11 (17.5) | 22 (34.9) | 23 (36.5) | <0.001 |
Supplement use, No. (%) | NS | |||||
0–3 | 284 | 72 (25.4) | 72 (25.4) | 68 (23.9) | 72 (25.4) | |
>4 | 13 | 3 (23.1) | 1 (7.7) | 6 (46.2) | 3 (23.1) | |
Laboratory Parameters | ||||||
FPG, mmol/L a | 297 | 4.92 (4.50–7.72) | 5.17 (4.76–6.79) | 5.26 (4.62–8) | 6.04 (4.68–9.08) | NS |
HBA1c, % a | 5.70 (5.30–7.40) | 5.70 (5.40–7.20) | 6 (5.50–8.10) | 7.30 (6–8.90) 1,2,3 | <0.001 | |
Total Cholesterol, mmol/L b | 4.72 ± 0.93 | 4.74 ±1.05 | 4.75 ± 0.93 | 4.81± 1.02 | NS | |
LDL-C, mmol/L a | 2.63 (2.23–3.33) | 2.61 (2.19–3.30) | 2.49 (2.12–3.18) | 2.45 (2.05—3.24) | NS | |
HDL-C, mmol/L a | 1.40 (1.18–1.69) | 1.47 (119–1.72) | 1.46 (1.21–1.73) | 1.44 (1.19–1.72) | NS | |
Triglycerides, mmol/L a | 1.07 (1.53–0.8) | 1.08 (0.80–1.46) | 1.16 (0.86–1.66) | 1.29 (0.87–1.86) | NS | |
hs-CRP, mg/L a | 2.63 (1.30–6) | 2.49 (0.93–7.77) | 2.10 (1.05–6.34) | 3.24 (0.95–8.80) | NS | |
Physical activity (MET-min/wk.) a | 297 | |||||
MET-score, Total | 396 (0–900) | 396 (99–1215) | 396 (66–792) | 297 (0–792) | NS | |
Vigorous activity d | 0 (0–2880) | 0 (0–2520) | 0 (0–4800) | 0 (0–3840) | NS | |
Moderate Activity d | 0 (0–2160) | 0 (0–1680) | 0 (0–2400) | 0 (0–1440) | NS | |
Walking Activity | 148.50 (0–495) | 396 (99–792) | 272.25 (0–594) | 165 (0–495) | 0.067 | |
Food consumption score a | 297 | |||||
Total Meat Score | 8.80 (5.25–14.90) | 11.45 (6.25–17.70) | 11.60 (6.45–15.90) | 13 (6.6–20.45) | NS | |
Red Meat | 3.45 (1.45–5.90) | 4 (1.35–8) | 3.35 (1.45–6.35) | 5.25 (2.80–9.35) 1,3 | 0.014 | |
White meat | 5.45 (3.45–10.75) | 6.35 (4.15–10.35) | 6.80 (3.45–10.25) | 6 (3.80–11) | NS | |
Seafood | 1.35 (0.45–2.45) | 1.35 (0.45–2) | 1.00 (0.45–3) | 1.35 (0.45–2.35) | NS | |
Fibre score | 25.4 (10.35–42.35) | 22.95 (12.95–38) | 26.73 (18–41.90) | 25.50 (13.80–40) | NS | |
Dairy score | 11.9 (6.45–39.25) | 15 (7.35–37.30) | 26.5 (8–46) | 17.75 (8.35–37) | NS | |
Egg score | 2.00 (1.35–6) | 2.35 (1–6) | 4.00 (1.35–6.45) | 4 (1.8–6) | NS |
Variables | R | p Value b |
---|---|---|
Age | 0.322 | <0.001 |
BMI | 0.054 | NS |
FPG | 0.131 | 0.024 |
HbA1c | 0.227 | <0.001 |
Cholesterol | 0.029 | NS |
LDL-C | −0.054 | NS |
HDL-C | 0.018 | NS |
Triglyceride | 0.115 | 0.048 |
Hs-CRP | 0.030 | NS |
Model 1 | Model 2 | Model 3 | |||||||
---|---|---|---|---|---|---|---|---|---|
Outcome—Type 2 Diabetes | OR | p Value | 95% CI | OR | p Value | 95% CI | OR | p Value | 95% CI |
Continuous TMAO | 1.11 | <0.001 * | 1.05, 1.17 | 0.06 | 0.04 * | 1.00, 1.14 | 1.05 | 0.20 | 0.98, 1.13 |
Quartiles of TMAO | |||||||||
Q1 (<2.37) | 1 (Reference) | 1 (Reference) | 1 (Reference) | ||||||
Q2 (2.38–3.58) | 1.41 | 0.32 | 0.71, 2.81 | 0.98 | 0.96 | 0.39, 2.43 | 1.14 | 0.79 | 0.44, 2.93 |
Q3 (3.59–6.39) | 1.64 | 0.15 | 0.83, 3.24 | 0.89 | 0.80 | 0.37, 2.16 | 0.96 | 0.92 | 0.39, 2.37 |
Q4 (>6.40) | 6.19 | <0.001 * | 3.05,12.57 | 2.81 | 0.03 * | 1.09, 7.27 | 3.36 | 0.02 * | 1.26, 9.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalagi, N.A.; Thota, R.N.; Stojanovski, E.; Alburikan, K.A.; Garg, M.L. Association between Plasma Trimethylamine N-Oxide Levels and Type 2 Diabetes: A Case Control Study. Nutrients 2022, 14, 2093. https://doi.org/10.3390/nu14102093
Kalagi NA, Thota RN, Stojanovski E, Alburikan KA, Garg ML. Association between Plasma Trimethylamine N-Oxide Levels and Type 2 Diabetes: A Case Control Study. Nutrients. 2022; 14(10):2093. https://doi.org/10.3390/nu14102093
Chicago/Turabian StyleKalagi, Nora A., Rohith N. Thota, Elizabeth Stojanovski, Khalid A. Alburikan, and Manohar L. Garg. 2022. "Association between Plasma Trimethylamine N-Oxide Levels and Type 2 Diabetes: A Case Control Study" Nutrients 14, no. 10: 2093. https://doi.org/10.3390/nu14102093
APA StyleKalagi, N. A., Thota, R. N., Stojanovski, E., Alburikan, K. A., & Garg, M. L. (2022). Association between Plasma Trimethylamine N-Oxide Levels and Type 2 Diabetes: A Case Control Study. Nutrients, 14(10), 2093. https://doi.org/10.3390/nu14102093