Differential Associations of Intakes of Whole Grains and Coarse Grains with Risks of Cardiometabolic Factors among Adults in China
Abstract
:1. Introduction
2. Subjects and Methods
2.1. Study Population
2.2. Dietary Data
2.3. Assessment of Intakes of Whole Grains
2.4. Assessment of Major CMFs
2.4.1. Obesity-Related Factors
2.4.2. Elevated BP
2.4.3. Lipid-Related Factors
2.4.4. Glucose-Related Factors
2.5. Assessment of Covariates
2.6. Statistical Analysis
3. Results
3.1. Basic Characteristics
3.2. Prevalence of Each CMFs across the Intake Levels of Whole Grains and Coarse Grains
3.3. Associations of Coarse Grains and Whole Grain Intake with Risk of Each CMF
3.4. Comparison of Nutrient Profiles of Coarse Grains and Whole Grains
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef]
- Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; et al. Heart Disease and Stroke Statistics—2019 Update: A Report From the American Heart Association. Circulation 2019, 139, e56–e528. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Status Report on Noncommunicable Diseases 2010; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Benatar, J.R.; Stewart, R.A.H. Cardiometabolic risk factors in vegans: A meta-analysis of observational studies. PLoS ONE 2018, 13, e0209086. [Google Scholar] [CrossRef] [Green Version]
- Cannon, C.R. Cardiovascular disease and modifiable cardiometabolic risk factors. Clin. Cornerstone 2007, 8, 11–28. [Google Scholar] [CrossRef]
- He, Y.; Li, Y.; Yang, X.; Hemler, E.C.; Fang, Y.; Zhao, L.; Zhang, J.; Yang, Z.; Wang, Z.; He, L.; et al. The dietary transition and its association with cardiometabolic mortality among Chinese adults, 1982–2012: A cross-sectional population-based study. Lancet Diabetes Endocrinol. 2019, 7, 540–548. [Google Scholar] [CrossRef]
- Sahyoun, N.R.; Jacques, P.F.; Zhang, X.L.; Juan, W.; McKeown, N.M. Whole-grain intake is inversely associated with the metabolic syndrome and mortality in older adults. Am. J. Clin. Nutr. 2006, 83, 124–131. [Google Scholar] [CrossRef] [Green Version]
- Esmaillzadeh, A.; Azadbakht, L. Whole-grain intake, metabolic syndrome, and mortality in older adults. Am. J. Clin. Nutr. 2006, 83, 1439–1440, author reply 1441–1432. [Google Scholar] [CrossRef]
- Kang, Y.; Lee, K.; Lee, J.; Kim, J. Grain Subtype and the Combination of Grains Consumed Are Associated with the Risk of Metabolic Syndrome, Analysis of a Community-Based Prospective Cohort. J. Nutr. 2020, 150, 118–127. [Google Scholar] [CrossRef]
- Radhika, G.; van Dam, R.M.; Sudha, V.; Ganesan, A.; Mohan, V. Refined grain consumption and the metabolic syndrome in urban Asian Indians (Chennai Urban Rural Epidemiology Study 57). Metabolism 2009, 58, 675–681. [Google Scholar] [CrossRef]
- Katcher, H.I.; Legro, R.S.; Kunselman, A.R.; Gillies, P.J.; Demers, L.M.; Bagshaw, D.M.; Kris-Etherton, P.M. The effects of a whole grain-enriched hypocaloric diet on cardiovascular disease risk factors in men and women with metabolic syndrome. Am. J. Clin. Nutr. 2008, 87, 79–90. [Google Scholar] [CrossRef]
- De Munter, J.S.; Hu, F.B.; Spiegelman, D.; Franz, M.; van Dam, R.M. Whole grain, bran, and germ intake and risk of type 2 diabetes: A prospective cohort study and systematic review. PLoS Med. 2007, 4, e261. [Google Scholar] [CrossRef] [PubMed]
- McKeown, N.M.; Meigs, J.B.; Liu, S.; Saltzman, E.; Wilson, P.W.; Jacques, P.F. Carbohydrate nutrition, insulin resistance, and the prevalence of the metabolic syndrome in the Framingham Offspring Cohort. Diabetes Care 2004, 27, 538–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ampatzoglou, A.; Atwal, K.K.; Maidens, C.M.; Williams, C.L.; Ross, A.B.; Thielecke, F.; Jonnalagadda, S.S.; Kennedy, O.B.; Yaqoob, P. Increased whole grain consumption does not affect blood biochemistry, body composition, or gut microbiology in healthy, low-habitual whole grain consumers. J. Nutr. 2015, 145, 215–221. [Google Scholar] [CrossRef] [Green Version]
- Kissock, K.R.; Neale, E.P.; Beck, E.J. Whole Grain Food Definition Effects on Determining Associations of Whole Grain Intake and Body Weight Changes: A Systematic Review. Adv. Nutr. 2021, 12, 693–707. [Google Scholar] [CrossRef]
- Bahadoran, Z.; Mirmiran, P.; Delshad, H.; Azizi, F. White rice consumption is a risk factor for metabolic syndrome in Tehrani adults: A prospective approach in Tehran Lipid and Glucose Study. Arch. Iran. Med. 2014, 17, 435–440. [Google Scholar]
- Song, S.; Lee, J.E.; Song, W.O.; Paik, H.Y.; Song, Y. Carbohydrate intake and refined-grain consumption are associated with metabolic syndrome in the Korean adult population. J. Acad. Nutr. Diet. 2014, 114, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Mohan, V.; Spiegelman, D.; Sudha, V.; Gayathri, R.; Hong, B.; Praseena, K.; Anjana, R.M.; Wedick, N.M.; Arumugam, K.; Malik, V.; et al. Effect of brown rice, white rice, and brown rice with legumes on blood glucose and insulin responses in overweight Asian Indians: A randomized controlled trial. Diabetes Technol. Ther. 2014, 16, 317–325. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Wang, H.; Wang, Z.; Zhang, J.; Zhang, B.; Ding, G. Regional Disparities in the Association between Cereal Consumption and Metabolic Syndrome, Results from the China Health and Nutrition Survey. Nutrents 2019, 11, 764. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Zhai, F.Y.; Du, S.F.; Popkin, B.M. The China Health and Nutrition Survey, 1989–2011. Obes. Rev. 2014, 15 (Suppl. S1), 2–7. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.J.; Wang, Z.H.; Zhang, J.G.; Du, W.W.; Su, C.; Zhang, J.; Zhai, F.Y.; Zhang, B. Trends in dietary fiber intake in Chinese aged 45 years and above, 1991–2011. Eur. J. Clin. Nutr. 2014, 68, 619–622. [Google Scholar] [CrossRef] [Green Version]
- Zhai, F.; He, Y.; Hu, Y.; Wang, Z.; Yu, W.; Yang, X. The status of dietary fiber intake of Chinese people in 2001. Acta Nutr. Sin. 2005, 27, 444–447. [Google Scholar]
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention. China Food Composition Tables Standard Edition Volume I, 6th ed.; Peking University Medical Press: Beijing, China, 2018. (In Chinese) [Google Scholar]
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention. China Food Composition Tables Standard Edition Volume II, 6th ed.; Peking University Medical Press: Beijing, China, 2019. (In Chinese) [Google Scholar]
- Mozaffarian, R.S.; Lee, R.M.; Kennedy, M.A.; Ludwig, D.S.; Mozaffarian, D.; Gortmaker, S.L. Identifying whole grain foods: A comparison of different approaches for selecting more healthful whole grain products. Public Health Nutr. 2013, 16, 2255–2264. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.S.; Lay, S.; Yu, H.N.; Shen, S.R. Dietary Guidelines for Chinese Residents (2016): Comments and comparisons. J. Zhejiang Univ. Sci. B 2016, 17, 649–656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.; Lu, F.C. The guidelines for prevention and control of overweight and obesity in Chinese adults. Biomed. Environ. Sci. BES 2004, 17, 1–36. [Google Scholar] [PubMed]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; James, W.P.T.; Loria, C.M.; Smith, S.C., Jr. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention, National Heart, Lung, and Blood Institute, American Heart Association, World Heart Federation, International Atherosclerosis Society, and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [PubMed] [Green Version]
- Wang, Z.; Adair, L.S.; Cai, J.; Gordon-Larsen, P.; Siega-Riz, A.M.; Zhang, B.; Popkin, B.M. Diet Quality Is Linked to Insulin Resistance among Adults in China. J. Nutr. 2017, 147, 2102–2108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, X.Y.; Yang, W.Y.; Yang, Z.J. The diagnostic significance of homeostasis model assessment of insulin resistance in metabolic syndrome among subjects with different glucose tolerance. Chin. J. Diabetes 2004, 3, 182–186. [Google Scholar]
- Jones-Smith, J.C.; Popkin, B.M. Understanding community context and adult health changes in China: Development of an urbanicity scale. Soc. Sci. Med. 2010, 71, 1436–1446. [Google Scholar] [CrossRef] [Green Version]
- Ainsworth, B.E.; Haskell, W.L.; Whitt, M.C.; Irwin, M.L.; Swartz, A.M.; Strath, S.J.; O’Brien, W.L.; Bassett, D.R., Jr.; Schmitz, K.H.; Emplaincourt, P.O.; et al. Compendium of physical activities: An update of activity codes and MET intensities. Med. Sci. Sports Exerc. 2000, 32 (Suppl. S9), S498–S504. [Google Scholar] [CrossRef] [Green Version]
- Steffen, L.M.; Jacobs, D.R., Jr.; Stevens, J.; Shahar, E.; Carithers, T.; Folsom, A.R. Associations of whole-grain, refined-grain, and fruit and vegetable consumption with risks of all-cause mortality and incident coronary artery disease and ischemic stroke: The Atherosclerosis Risk in Communities (ARIC) Study. Am. J. Clin. Nutr. 2003, 78, 383–390. [Google Scholar] [CrossRef]
- Kaur, K.D.; Jha, A.; Sabikhi, L.; Singh, A.K. Significance of coarse grains in health and nutrition: A review. J. Food Sci. Technol. 2014, 51, 1429–1441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, F.; Howard, A.G.; Herring, A.H.; Popkin, B.M.; Gordon-Larsen, P. White Rice Intake Varies in Its Association with Metabolic Markers of Diabetes and Dyslipidemia Across Region among Chinese Adults. Ann. Nutr. Metab. 2015, 66, 209–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, H.J.; Cho, E.; Lee, H.-J.; Fung, T.T.; Rimm, E.; Rosner, B.; Manson, J.E.; Wheelan, K.; Hu, F.B. Instant Noodle Intake and Dietary Patterns Are Associated with Distinct Cardiometabolic Risk Factors in Korea. J. Nutr. 2014, 144, 1247–1255. [Google Scholar] [CrossRef]
- Shi, Z.; Taylor, A.W.; Hu, G.; Gill, T.; Wittert, G.A. Rice intake, weight change and risk of the metabolic syndrome development among Chinese adults: The Jiangsu Nutrition Study (JIN). Asia Pac. J. Clin. Nutr. 2012, 21, 35–43. [Google Scholar]
- Sawada, K.; Takemi, Y.; Murayama, N.; Ishida, H. Relationship between rice consumption and body weight gain in Japanese workers: White versus brown rice/multigrain rice. Appl. Physiol. Nutr. Metab. 2019, 44, 528–532. [Google Scholar] [CrossRef] [PubMed]
- Kokubo, Y.; Watanabe, M.; Kobayashi, T.; Miyamoto, Y. Are Japanese Traditional Staple Foods, Rice and Udon Noodle, Increased Risks of Incident Metabolic Syndrome. J. Am. Coll. Cardiol. 2014, 63, 1145–1155. [Google Scholar] [CrossRef] [Green Version]
- Paeratakul, S.; Popkin, B.M.; Kohlmeier, L.; Hertz-Picciotto, I.; Guo, X.; Edwards, L.J. Measurement error in dietary data: Implications for the epidemiologic study of the diet-disease relationship. Eur. J. Clin. Nutr. 1998, 52, 722–727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Total (n = 4706) | Non-Consumer (n = 3979) | T1 (n = 240) | T2 (n = 245) | T3 (n = 242) | pd | |
---|---|---|---|---|---|---|
Whole grains (g/day) | - | - | 16.67(10.00,17.86) | 33.33(33.33,33.33) | 80.00(63.33,115.38) | <0.001 |
Gender, n(%) b | 0.044 | |||||
Men | 2108(44.79) | 1800(45.24) | 98(40.83) | 105(42.86) | 105(43.39) | |
Women | 2598(55.21) | 2179(54.76) | 142(59.17) | 140(57.14) | 137(56.61) | |
Age, n(%) b | 0.279 | |||||
18–44 years | 1648(35.02) | 1408(35.39) | 87(36.25) | 89(36.33) | 64(26.45) | |
45–64 years | 2407(51.15) | 2034(51.12) | 116(48.33) | 126(51.43) | 131(54.13) | |
≥65 years | 651(13.83) | 537(13.50) | 37(15.42) | 30(12.24) | 47(19.42) | |
Income level, n(%) b | 0.484 | |||||
Low | 1568(33.32) | 1320(33.17) | 82(34.17) | 82(33.47) | 84(34.71) | |
Medium | 1569(33.34) | 1345(33.80) | 81(33.75) | 65(26.53) | 78(32.23) | |
High | 1569(33.34) | 1314(33.02) | 77(32.08) | 98(40.00) | 80(33.06) | |
Education, n(%) b | 0.008 | |||||
<Primary school | 1808(38.42) | 1530(38.45) | 77(32.08) | 88(35.92) | 113(46.69) | |
Primary school | 1568(33.32) | 1312(32.97) | 83(34.58) | 96(39.18) | 77(31.82) | |
>Primary school | 1330(28.26) | 1137(28.58) | 80(33.33) | 61(24.90) | 52(21.49) | |
Urbanicity index, n(%) b | <0.001 | |||||
Low | 1556(33.06) | 1312(32.97) | 58(24.17) | 71(28.98) | 115(47.52) | |
Medium | 1584(33.66) | 1381(34.71) | 72(30.00) | 72(29.39) | 59(24.38) | |
High | 1566(33.28) | 1286(32.32) | 110(45.83) | 102(41.63) | 68(28.10) | |
Smoking, n(%) b | 1400(29.75) | 1192(29.96) | 63(26.25) | 70(28.57) | 75(30.99) | 0.608 |
Drinking, n(%) b | 1616(34.34) | 1366(34.33) | 93(38.75) | 74(30.20) | 83(34.30) | 0.269 |
Physical activity (MET hours/week) c | 221.06 ± 16.38 | 223.28 ± 2.99 | 186.92 ± 12.19 | 207.95 ± 12.07 | 231.75 ± 12.15 | 0.016 |
Dietary intake | ||||||
Total grains (g/day) c | 395.89 ± 17.96 | 393.77 ± 2.85 | 366.65 ± 11.61 | 394.70 ± 11.49 | 460.96 ± 11.59 | <0.001 |
Refined grains (g/day) c | 377.14 ± 16.91 | 383.51 ± 2.68 | 338.80 ± 10.93 | 347.85 ± 10.81 | 340.19 ± 10.91 | <0.001 |
Tuber (g/day) c | 30.82 ± 5.97 | 31.19 ± 0.95 | 27.07 ± 3.86 | 29.21 ± 3.82 | 30.13 ± 3.85 | 0.727 |
Red meat (g/day) c | 95.43 ± 7.72 | 97.17 ± 1.23 | 99.99 ± 4.99 | 88.86 ± 4.94 | 69.01 ± 4.98 | <0.001 |
Poultry (g/day) c | 19.33 ± 3.99 | 19.55 ± 0.63 | 21.88 ± 2.58 | 18.48 ± 2.55 | 13.94 ± 2.57 | 0.134 |
Fish (g/day) c | 33.12 ± 5.42 | 33.17 ± 0.86 | 30.57 ± 3.50 | 33.47 ± 3.47 | 34.49 ± 3.50 | 0.874 |
Vegetables and fruits (g/day) c | 394.15 ± 20.32 | 397.43 ± 3.22 | 385.56 ± 13.13 | 380.87 ± 13.00 | 362.24 ± 13.11 | 0.038 |
Cooking oil (g/day) c | 42.90 ± 3.06 | 43.43 ± 0.49 | 44.93 ± 1.98 | 39.86 ± 1.96 | 35.26 ± 1.98 | <0.001 |
Sodium (mg/day) c | 5542.00 ± 919.38 | 5633.49 ± 145.86 | 5212.99 ± 594.26 | 5190.31 ± 588.02 | 4720.02 ± 593.15 | 0.395 |
Total energy (kcal/day) c | 2119.00 ± 62.47 | 2108.62 ± 11.42 | 1999.11 ± 46.49 | 2211.06 ± 46.02 | 2315.39 ± 46.35 | <0.001 |
Total (n = 4706) | Non-Consumer (n = 3979) | Consumers | p-Trend a | |||
---|---|---|---|---|---|---|
T1 (n = 240) | T2 (n = 245) | T3 (n = 242) | ||||
CMF cluster, n(%) | 3629(78.43) | 3065(78.21) | 184(81.78) | 195(80.91) | 185(76.45) | 0.819 |
Abdominal obesity, n(%) | 2307(49.86) | 1913(48.81) | 124(55.11) | 133(55.19) | 137(56.61) | 0.001 * |
Overweight, n(%) | 2167(46.83) | 1821(46.47) | 114(50.67) | 126(52.28) | 106(43.80) | 0.633 |
Elevated BP, n(%) | 2226(48.11) | 1887(48.15) | 99(44.00) | 115(47.72) | 125(51.65) | 0.589 |
Elevated FBG, n(%) | 1385(29.93) | 1180(30.11) | 74(32.89) | 65(26.97) | 66(27.27) | 0.277 |
Insulin resistance, n(%) | 653(14.11) | 541(13.80) | 41(18.22) | 39(16.18) | 32(13.22) | 0.498 |
LR factors, n(%) | 2782(60.13) | 2360(60.22) | 143(63.56) | 146(60.58) | 133(54.96) | 0.297 |
Elevated TG, n(%) | 1112(24.03) | 953(24.32) | 59(26.22) | 54(22.41) | 46(19.01) | 0.088 |
Reduced HDL-C, n(%) | 1682(36.35) | 1394(35.57) | 89(39.56) | 104(43.15) | 95(39.26) | 0.019 * |
Elevated LDL-C, n(%) | 1644(35.53) | 1408(35.93) | 88(39.11) | 82(34.02) | 66(27.27) | 0.022 * |
Abdominal Obesity | Overweight and Obesity | LR Factors | Elevated BP | Elevated FBG | Insulin Resistance | Elevated TG | Reduced HDL-C | Elevated LDL-C | |
---|---|---|---|---|---|---|---|---|---|
Whole grains a | |||||||||
Non-consumers | Reference | Reference | Reference | Reference | Reference | Reference | Reference | Reference | Reference |
T1 | 1.09(0.82, 1.45) | 1.09(0.83, 1.43) | 1.05(0.79, 1.40) | 0.84(0.64, 1.12) | 1.15(0.86, 1.53) | 1.28(0.89, 1.83) | 1.08(0.79, 1.48) | 1.06(0.80, 1.42) | 1.10(0.83, 1.46) |
T2 | 1.13(0.85, 1.49) | 1.17(0.90, 1.53) | 0.96(0.73, 1.27) | 0.92(0.70, 1.21) | 0.84(0.62, 1.13) | 1.14(0.79, 1.64) | 0.92(0.66, 1.26) | 1.35(1.02, 1.78) * | 0.88(0.67, 1.17) |
T3 | 1.08(0.79, 1.47) | 0.78(0.58, 1.05) | 0.81(0.60, 1.09) | 0.90(0.66, 1.22) | 0.83(0.60, 1.15) | 0.90(0.59, 1.40) | 0.77(0.53, 1.13) | 1.22(0.89, 1.68) | 0.64(0.46, 0.88) * |
p-trend b | 0.478 | 0.291 | 0.291 | 0.342 | 0.204 | 0.967 | 0.189 | 0.074 | 0.009 |
Coarse grains c | |||||||||
Non-consumers | Reference | Reference | Reference | Reference | Reference | Reference | Reference | Reference | Reference |
T1 | 0.98(0.74, 1.30) | 1.01(0.79, 1.28) | 0.94(0.72, 1.23) | 0.97(0.79, 1.20) | 0.88(0.70, 1.10) | 1.00(0.80, 1.26) | 0.89(0.66, 1.21) | 0.81(0.63, 1.05) | 0.84(0.68, 1.05) |
T2 | 0.96(0.67, 1.36) | 1.16(0.86, 1.56) | 0.83(0.60, 1.15) | 1.15(0.88, 1.49) | 0.95(0.72, 1.25) | 0.98(0.74, 1.29) | 0.97(0.67, 1.41) | 0.94(0.69, 1.29) | 0.91(0.70, 1.18) |
T3 | 0.76(0.44, 1.31) | 1.33(0.85, 2.08) | 1.22(0.75, 1.99) | 0.93(0.64, 1.36) | 0.91(0.60, 1.37) | 0.93(0.61, 1.40) | 1.11(0.64, 1.91) | 0.84(0.52, 1.36) | 0.83(0.56, 1.23) |
p-trend b | 0.363 | 0.189 | 0.673 | 0.920 | 0.617 | 0.722 | 0.772 | 0.483 | 0.328 |
Subgroups | Abdominal Obesity | Overweight and Obesity | LR Factors | Elevated BP | Elevated FG | Insulin Resistance | Elevated TG | Reduced HDL-C | Elevated LDL-C |
---|---|---|---|---|---|---|---|---|---|
Whole grains a | |||||||||
Non-consumers | Reference | Reference | Reference | Reference | Reference | Reference | Reference | Reference | Reference |
0.01–≤50.00 g/day | 1.15(0.94, 1.40) | 1.16(0.95, 1.42) | 1.01(0.82, 1.23) | 0.90(0.74, 1.11) | 1.00(0.80, 1.24) | 1.23(0.94, 1.61) | 0.99(0.78, 1.25) | 1.18(0.97, 1.45) | 1.15(0.94, 1.40) |
50.01–≤150.00 g/day | 1.04(0.77, 1.41) | 0.73(0.54, 0.99) * | 0.86(0.64, 1.17) | 1.02(0.75, 1.38) | 0.90(0.65, 1.26) | 0.89(0.57, 1.39) | 0.77(0.53, 1.12) | 1.22(0.90, 1.65) | 1.04(0.77, 1.41) |
>150.00 g/day | 1.19(0.62, 2.30) | 1.01(0.53, 1.93) | 0.54(0.29, 1.03) | 0.80(0.42, 1.52) | 0.58(0.27, 1.25) | 0.86(0.33, 2.19) | 0.68(0.29, 1.57) | 0.73(0.37, 1.43) | 1.19(0.62, 2.30) |
p-trend c | 0.400 | 0.625 | 0.069 | 0.476 | 0.183 | 0.935 | 0.190 | 0.796 | 0.400 |
Ciarse grains b | |||||||||
Non-consumers | Reference | Reference | Reference | Reference | Reference | Reference | Reference | Reference | Reference |
0.01–≤50.00 g/day | 1.08(0.87, 1.36) | 0.89(0.69, 1.14) | 1.00(0.82, 1.21) | 0.91(0.74, 1.11) | 0.95(0.77, 1.18) | 0.91(0.69, 1.20) | 0.90(0.71, 1.14) | 0.88(0.72, 1.07) | 1.08(0.87, 1.36) |
50.01–≤150.00 g/day | 1.18(0.81, 1.72) | 0.91(0.60, 1.37) | 1.06(0.77, 1.47) | 1.06(0.76, 1.47) | 0.95(0.67, 1.34) | 0.94(0.59, 1.48) | 0.92(0.61, 1.38) | 0.81(0.58, 1.14) | 1.18(0.81, 1.72) |
>150.00 g/day | 1.53(0.62, 3.79) | 0.80(0.30, 2.13) | 0.88(0.41, 1.91) | 1.30(0.59, 2.85) | 0.71(0.31, 1.63) | 0.84(0.28, 2.49) | 1.42(0.55, 3.64) | 0.83(0.38, 1.81) | 1.53(0.62, 3.79) |
p-trend c | 0.316 | 0.540 | 0.988 | 0.743 | 0.527 | 0.670 | 0.971 | 0.300 | 0.316 |
Nutrients | Coarse Grains | Whole Grains | pb |
---|---|---|---|
Energy (kcal/100.00 g) a | 207.42 ± 2.59 | 280.40 ± 3.28 | <0.001 |
Protein (g/100.00 g) a | 5.26 ± 0.10 | 9.78 ± 0.12 | <0.001 |
Fat (g/100.00 g) a | 1.89 ± 0.03 | 2.70 ± 0.04 | <0.001 |
Carbohydrate (g/100.00 g) a | 42.31 ± 0.54 | 54.19 ± 0.69 | <0.001 |
Fiber (g/100.00 g) a | 1.18 ± 0.04 | 6.07 ± 0.05 | <0.001 |
Thiamin (mg/100.00 g) a | 0.15 ± 0.01 | 0.41 ± 0.01 | <0.001 |
Riboflav (mg/100.00 g) a | 0.08 ± 0.00 | 0.13 ± 0.00 | <0.001 |
Niacin (mg/100.00 g) a | 1.10 ± 0.01 | 2.59 ± 0.02 | <0.001 |
Vitamin E (mg/100.00 g) a | 1.59 ± 0.06 | 3.65 ± 0.07 | <0.001 |
Potassium (mg/100.00 g) a | 144.52 ± 3.68 | 291.38 ± 4.67 | <0.001 |
Sodium (mg/100.00 g) a | 3.46 ± 0.12 | 3.99 ± 0.15 | 0.006 |
Calcium (mg/100.00 g) a | 25.59 ± 0.40 | 26.71 ± 0.51 | 0.083 |
Phosphorus (mg/100.00 g) a | 121.77 ± 2.85 | 255.17 ± 3.62 | <0.001 |
Magnesium (mg/100.00 g) a | 68.67 ± 0.98 | 74.35 ± 1.25 | <0.001 |
Iron (mg/100.00 g) a | 2.73 ± 0.04 | 3.04 ± 0.05 | <0.001 |
Manganese (mg/100.00 g) a | 0.45 ± 0.04 | 1.62 ± 0.05 | <0.001 |
Zinc (mg/100.00 g) a | 1.08 ± 0.05 | 2.66 ± 0.07 | <0.001 |
Cuprum (mg/100.00 g) a | 0.27 ± 0.02 | 0.50 ± 0.02 | <0.001 |
Selenium (μg/100.00 g) a | 2.56 ± 0.15 | 5.76 ± 0.19 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Q.; Hao, L.; Wang, L.; Jiang, H.; Li, W.; Wang, S.; Jia, X.; Huang, F.; Wang, H.; Zhang, B.; et al. Differential Associations of Intakes of Whole Grains and Coarse Grains with Risks of Cardiometabolic Factors among Adults in China. Nutrients 2022, 14, 2109. https://doi.org/10.3390/nu14102109
Huang Q, Hao L, Wang L, Jiang H, Li W, Wang S, Jia X, Huang F, Wang H, Zhang B, et al. Differential Associations of Intakes of Whole Grains and Coarse Grains with Risks of Cardiometabolic Factors among Adults in China. Nutrients. 2022; 14(10):2109. https://doi.org/10.3390/nu14102109
Chicago/Turabian StyleHuang, Qiumin, Lixin Hao, Liusen Wang, Hongru Jiang, Weiyi Li, Shaoshunzi Wang, Xiaofang Jia, Feifei Huang, Huijun Wang, Bing Zhang, and et al. 2022. "Differential Associations of Intakes of Whole Grains and Coarse Grains with Risks of Cardiometabolic Factors among Adults in China" Nutrients 14, no. 10: 2109. https://doi.org/10.3390/nu14102109
APA StyleHuang, Q., Hao, L., Wang, L., Jiang, H., Li, W., Wang, S., Jia, X., Huang, F., Wang, H., Zhang, B., Ding, G., & Wang, Z. (2022). Differential Associations of Intakes of Whole Grains and Coarse Grains with Risks of Cardiometabolic Factors among Adults in China. Nutrients, 14(10), 2109. https://doi.org/10.3390/nu14102109