The Role of Zinc in the Pathogenesis of Lung Disease
Abstract
:1. Background
2. Regulation of Zinc Levels in the Lung
3. The Role of Zinc Dyshomeostasis in Lung Disease
3.1. Asthma
3.2. COPD
3.3. CF
3.4. IPF
3.5. ARDS
3.6. PH
4. Conclusions and Future Roadmap
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Read, S.A.; Obeid, S.; Ahlenstiel, C.; Ahlenstiel, G. The Role of Zinc in Antiviral Immunity. Adv. Nutr. Int. Rev. J. 2019, 10, 696–710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Phadke, M.; Packard, D.; Yadav, D.; Gorelick, F. Zinc: Roles in pancreatic physiology and disease. Pancreatology 2020, 20, 1413–1420. [Google Scholar] [CrossRef] [PubMed]
- Skalny, A.V.; Aschner, M.; Tinkov, A.A. Zinc. Adv. Food. Nutr. Res. 2021, 96, 251–310. [Google Scholar] [PubMed]
- Hara, T.; Takeda, T.-A.; Takagishi, T.; Fukue, K.; Kambe, T.; Fukada, T. Physiological roles of zinc transporters: Molecular and genetic importance in zinc homeostasis. J. Physiol. Sci. 2017, 67, 283–301. [Google Scholar] [CrossRef]
- Hojyo, S.; Fukada, T. Zinc transporters and signaling in physiology and pathogenesis. Arch. Biochem. Biophys. 2016, 611, 43–50. [Google Scholar] [CrossRef]
- Suzuki, M.; Suzuki, T.; Watanabe, M.; Hatakeyama, S.; Kimura, S.; Nakazono, A.; Honma, A.; Nakamaru, Y.; Vreugde, S.; Homma, A. Role of intracellular zinc in molecular and cellular function in allergic inflammatory diseases. Allergol. Int. 2020, 70, 190–200. [Google Scholar] [CrossRef]
- Valera, P.; Zavattari, P.; Sanna, A.; Pretti, S.; Marcello, A.; Mannu, C.; Targhetta, C.; Bruno, G.; Songini, M. Zinc and Other Metals Deficiencies and Risk of Type 1 Diabetes: An Ecological Study in the High Risk Sardinia Island. PLoS ONE 2015, 10, e0141262. [Google Scholar] [CrossRef] [Green Version]
- Wessels, I.; Maywald, M.; Rink, L. Zinc as a Gatekeeper of Immune Function. Nutrients 2017, 9, 1286. [Google Scholar] [CrossRef] [Green Version]
- Sanna, A.; Firinu, D.; Zavattari, P.; Valera, P. Zinc Status and Autoimmunity: A Systematic Review and Meta-Analysis. Nutrients 2018, 10, 68. [Google Scholar] [CrossRef] [Green Version]
- Thambiayya, K.; Kaynar, A.M.; Croix, C.M.S.; Pitt, B.R. Functional Role of Intracellular Labile Zinc in Pulmonary Endothelium. Pulm. Circ. 2012, 2, 443–451. [Google Scholar] [CrossRef] [Green Version]
- Pal, A.; Squitti, R.; Picozza, M.; Pawar, A.; Rongioletti, M.; Dutta, A.K.; Sahoo, S.; Goswami, K.; Sharma, P.; Prasad, R. Zinc and COVID-19: Basis of Current Clinical Trials. Biol. Trace Element Res. 2020, 199, 2882–2892. [Google Scholar] [CrossRef] [PubMed]
- Butters, D.; Whitehouse, M. COVID-19 and nutriceutical therapies, especially using zinc to supplement antimicrobials. Inflammopharmacology 2020, 29, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Joachimiak, M.P. Zinc against COVID-19? Symptom surveillance and deficiency risk groups. PLOS Neglected Trop. Dis. 2021, 15, e0008895. [Google Scholar] [CrossRef]
- Kumar, A.; Kubota, Y.; Chernov, M.; Kasuya, H. Potential role of zinc supplementation in prophylaxis and treatment of COVID-19. Med. Hypotheses 2020, 144, 109848. [Google Scholar] [CrossRef]
- Wessels, I.; Rolles, B.; Rink, L. The Potential Impact of Zinc Supplementation on COVID-19 Pathogenesis. Front. Immunol. 2020, 11, 1712. [Google Scholar] [CrossRef] [PubMed]
- Skalny, A.V.; Rink, L.; Ajsuvakova, O.P.; Aschner, M.; Gritsenko, V.A.; Alekseenko, S.I.; Svistunov, A.A.; Petrakis, D.; Spandidos, D.A.; Aaseth, J.; et al. Zinc and respiratory tract infections: Perspectives for COVID-19 (Review). Int. J. Mol. Med. 2020, 46, 17–26. [Google Scholar] [CrossRef] [Green Version]
- Hunter, J.; Arentz, S.; Goldenberg, J.; Yang, G.; Beardsley, J.; Myers, S.P.; Mertz, D.; Leeder, S. Zinc for the prevention or treatment of acute viral respiratory tract infections in adults: A rapid systematic review and meta-analysis of randomised controlled trials. BMJ Open 2021, 11, e047474. [Google Scholar] [CrossRef]
- Mohamed, N.A.; Rushdy, M.; Abdel-Rehim, A.S. The immunomodulatory role of zinc in asthmatic patients. Cytokine 2018, 110, 301–305. [Google Scholar] [CrossRef]
- Truong-Tran, A.Q.; Ruffin, R.E.; Foster, P.S.; Koskinen, A.M.; Coyle, P.; Philcox, J.C.; Rofe, A.M.; Zalewski, P.D. Altered Zinc Homeostasis and Caspase-3 Activity in Murine Allergic Airway Inflammation. Am. J. Respir. Cell Mol. Biol. 2002, 27, 286–296. [Google Scholar] [CrossRef]
- Rerksuppaphol, S.; Rerksuppaphol, L. Zinc Supplementation in Children with Asthma Exacerbation. Pediatr. Rep. 2016, 8, 63–67. [Google Scholar] [CrossRef] [Green Version]
- Knoell, D.L.; Smith, D.A.; Sapkota, M.; Heires, A.J.; Hanson, C.K.; Smith, L.M.; Poole, J.A.; Wyatt, T.A.; Romberger, D.J. Insufficient zinc intake enhances lung inflammation in response to agricultural organic dust exposure. J. Nutr. Biochem. 2019, 70, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Knoell, D.L.; Smith, D.; Bao, S.; Sapkota, M.; Wyatt, T.A.; Zweier, J.L.; Flury, J.; Borchers, M.T.; Knutson, M. Imbalance in zinc homeostasis enhances lung Tissue Loss following cigarette smoke exposure. J. Trace Elements Med. Biol. 2020, 60, 126483. [Google Scholar] [CrossRef] [PubMed]
- Hamon, R.; Homan, C.; Tran, H.B.; Mukaro, V.; Lester, S.E.; Roscioli, E.; Bosco, M.D.; Murgia, C.M.; Ackland, M.L.; Jersmann, H.P.; et al. Zinc and Zinc Transporters in Macrophages and Their Roles in Efferocytosis in COPD. PLoS ONE 2014, 9, e110056. [Google Scholar] [CrossRef] [Green Version]
- Roscioli, E.; Tran, H.B.; Jersmann, H.; Nguyen, P.T.; Hopkins, E.; Lester, S.E.; Farrow, N.; Zalewski, P.D.; Reynolds, P.N.; Hodge, S. The uncoupling of autophagy and zinc homeostasis in airway epithelial cells as a fundamental contributor to COPD. Am. J. Physiol. Cell. Mol. Physiol. 2017, 313, L453–L465. [Google Scholar] [CrossRef] [PubMed]
- Damphousse, V.; Mailhot, M.; Berthiaume, Y.; Rabasa-Lhoret, R.; Mailhot, G. Plasma zinc in adults with cystic fibrosis: Correlations with clinical outcomes. J. Trace Elements Med. Biol. 2014, 28, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Kamei, S.; Fujikawa, H.; Nohara, H.; Ueno-Shuto, K.; Maruta, K.; Nakashima, R.; Kawakami, T.; Matsumoto, C.; Sakaguchi, Y.; Ono, T.; et al. Zinc Deficiency via a Splice Switch in Zinc Importer ZIP2/SLC39A2 Causes Cystic Fibrosis-Associated MUC5AC Hypersecretion in Airway Epithelial Cells. EBioMedicine 2018, 27, 304–316. [Google Scholar] [CrossRef] [Green Version]
- Zsembery, A.; Fortenberry, J.A.; Liang, L.; Bebok, Z.; Tucker, T.A.; Boyce, A.T.; Braunstein, G.M.; Welty, E.; Bell, P.D.; Sorscher, E.J.; et al. Extracellular Zinc and ATP Restore Chloride Secretion across Cystic Fibrosis Airway Epithelia by Triggering Calcium Entry. J. Biol. Chem. 2004, 279, 10720–10729. [Google Scholar] [CrossRef] [Green Version]
- Boudreault, F.; Pinilla-Vera, M.; Englert, J.A.; Kho, A.T.; Isabelle, C.; Arciniegas, A.J.; Barragan-Bradford, D.; Quintana, C.; Amador-Munoz, D.; Guan, J.; et al. Zinc deficiency primes the lung for ventilator-induced injury. JCI Insight 2017, 2, e86507. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Bian, J.; Ge, Y. Zinc-deficient diet aggravates ventilation-induced lung injury in rats. J. Biomed. Res. 2012, 26, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Xue, Y.; Fu, Y.; Bao, B.; Guo, M.-Y. Zinc Deficiency Aggravates Oxidative Stress Leading to Inflammation and Fibrosis in Lung of Mice. Biol. Trace Element Res. 2021, 1–13. [Google Scholar] [CrossRef]
- Goncalves, T.J.M.; Gonçalves, S.E.A.B.; Guarnieri, A.; Risegato, R.C.; Guimarães, M.P.; de Freitas, D.C.; Razuk-Filho, A.; Junior, P.B.B.; Parrillo, E.F. Association Between Low Zinc Levels and Severity of Acute Respiratory Distress Syndrome by New Coronavirus SARS-CoV-2. Nutr. Clin. Pract. 2021, 36, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Skalny, A.V.; Skalnaya, M.G.; Grabeklis, A.R.; Skalnaya, A.A.; Tinkov, A.A. Zinc deficiency as a mediator of toxic effects of alcohol abuse. Eur. J. Nutr. 2017, 57, 2313–2322. [Google Scholar] [CrossRef] [PubMed]
- Knoell, D.L.; Julian, M.W.; Bao, S.; Besecker, B.; Macre, J.E.; Leikauf, G.; DiSilvestro, R.A.; Crouser, E.D. Zinc deficiency increases organ damage and mortality in a murine model of polymicrobial sepsis*. Crit. Care Med. 2009, 37, 1380–1388. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Oliver, E.; Maratou, K.; Atanur, S.S.; Dubois, O.D.; Cotroneo, E.; Chen, C.-N.; Wang, L.; Arce, C.; Chabosseau, P.L.; et al. The zinc transporter ZIP12 regulates the pulmonary vascular response to chronic hypoxia. Nature 2015, 524, 356–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, G.; Lian, G.; Wang, T.; Chen, W.; Zhuang, W.; Luo, L.; Wang, H.; Xie, L. Zinc-mediated activation of CREB pathway in proliferation of pulmonary artery smooth muscle cells in pulmonary hypertension. Cell Commun. Signal. 2021, 19, 1–16. [Google Scholar] [CrossRef]
- Zhu, T.; Wang, X.; Zheng, Z.; Quan, J.; Liu, Y.; Wang, Y.; Liu, T.; Liu, X.; Wang, M.; Zhang, Z. ZIP12 Contributes to Hypoxic Pulmonary Hypertension by Driving Phenotypic Switching of Pulmonary Artery Smooth Muscle Cells. J. Cardiovasc. Pharmacol. 2021, 79, 235–243. [Google Scholar] [CrossRef]
- Tran, H.B.; Maiolo, S.; Harper, R.; Zalewski, P.D.; Reynolds, P.N.; Hodge, S. Dysregulated zinc and sphingosine-1-phosphate signaling in pulmonary hypertension: Potential effects by targeting of bone morphogenetic protein receptor type 2 in pulmonary microvessels. Cell Biol. Int. 2021, 45, 2368–2379. [Google Scholar] [CrossRef]
- Truong-Tran, A.Q.; Carter, J.; Ruffin, R.; Zalewski, P.D. New insights into the role of zinc in the respiratory epithelium. Immunol. Cell Biol. 2001, 79, 170–177. [Google Scholar] [CrossRef]
- Bao, S.; Knoell, D.L. Zinc modulates cytokine-induced lung epithelial cell barrier permeability. Am. J. Physiol. Cell. Mol. Physiol. 2006, 291, L1132–L1141. [Google Scholar] [CrossRef] [Green Version]
- Stafford, S.L.; Bokil, N.J.; Achard, M.E.S.; Kapetanovic, R.; Schembri, M.A.; McEwan, A.G.; Sweet, M.J. Metal ions in macrophage antimicrobial pathways: Emerging roles for zinc and copper. Biosci. Rep. 2013, 33, e00049. [Google Scholar] [CrossRef]
- Liu, M.J.; Bao, S.; Gálvez-Peralta, M.; Pyle, C.J.; Rudawsky, A.C.; Pavlovicz, R.E.; Killilea, D.W.; Li, C.; Nebert, D.W.; Wewers, M.D.; et al. ZIP8 regulates host defense through zinc-mediated inhibition of NF-κB. Cell Rep. 2013, 3, 386–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, J.K.; Harris, F.L.; Ping, X.-D.; Gauthier, T.W.; Brown, L.A.S. Role of zinc insufficiency in fetal alveolar macrophage dysfunction and RSV exacerbation associated with fetal ethanol exposure. Alcohol 2018, 80, 5–16. [Google Scholar] [CrossRef] [PubMed]
- Mehta, A.J.; Yeligar, S.M.; Elon, L.; Brown, L.A.; Guidot, D.M. Alcoholism Causes Alveolar Macrophage Zinc Deficiency and Immune Dysfunction. Am. J. Respir. Crit. Care Med. 2013, 188, 716–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, M.K.; Kim, R.Y.; Karim, R.; Mayall, J.R.; Martin, K.L.; Shahandeh, A.; Abbasian, F.; Starkey, M.R.; Loustaud-Ratti, V.; Johnstone, D.; et al. Role of iron in the pathogenesis of respiratory disease. Int. J. Biochem. Cell Biol. 2017, 88, 181–195. [Google Scholar] [CrossRef]
- Guo, C.H.; Liu, P.J.; Hsia, S.; Chuang, C.J.; Chen, P.C. Role of certain trace minerals in oxidative stress, inflammation, CD4/CD8 lymphocyte ratios and lung function in asthmatic patients. Ann. Clin. Biochem. 2011, 48, 344–351. [Google Scholar] [CrossRef]
- Ariaee, N.; Farid, R.; Shabestari, F.; Shabestari, M.; Azad, F.J. Trace Elements Status in Sera of Patients with Allergic Asthma. Rep. Biochem. Mol. Biol. 2016, 5, 20–25. [Google Scholar]
- Kuti, B.P.; Kuti, D.K.; Smith, O.S. Serum Zinc, Selenium and Total Antioxidant Contents of Nigerian Children with Asthma: Association with Disease Severity and Symptoms Control. J. Trop. Pediatr. 2019, 66, 395–402. [Google Scholar] [CrossRef]
- Chen, M.; Sun, Y.; Wu, Y. Lower circulating zinc and selenium levels are associated with an increased risk of asthma: Evidence from a meta-analysis. Public Health Nutr. 2019, 23, 1555–1562. [Google Scholar] [CrossRef]
- Andino, D.; Moy, J.; Gaynes, B.I. Serum vitamin A, zinc and visual function in children with moderate to severe persistent asthma. J. Asthma 2018, 56, 1198–1203. [Google Scholar] [CrossRef]
- Khanbabaee, G.; Omidian, A.; Imanzadeh, F.; Adibeshgh, F.; Ashayeripanah, M.; Rezaei, N. Serum level of zinc in asthmatic patients: A case–control study. Allergol. Immunopathol. 2014, 42, 19–21. [Google Scholar] [CrossRef]
- Vural, H.; Uzun, K.; Uz, E.; Koçyigit, A.; Çigli, A.; Akyol, Ö. Concentrations of copper, zinc and various elements in serum of patients with bronchial asthma. J. Trace Elements Med. Biol. 2000, 14, 88–91. [Google Scholar] [CrossRef]
- Kadrabová, J.; Mad’Arić, A.; Podivínsky, F.; Gazdík, F.; Ginter, E. Plasma Zinc, copper and copper/zinc ratio in intrinsic asthma. J. Trace Elements Med. Biol. 1996, 10, 50–53. [Google Scholar] [CrossRef]
- Urushidate, S.; Matsuzaka, M.; Okubo, N.; Iwasaki, H.; Hasebe, T.; Tsuya, R.; Iwane, K.; Inoue, R.; Yamai, K.; Danjo, K.; et al. Association between concentration of trace elements in serum and bronchial asthma among Japanese general population. J. Trace Elements Med. Biol. 2010, 24, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Kocyigit, A.; Armutcu, F.; Gurel, A.; Ermis, B. Alterations in Plasma Essential Trace Elements Selenium, Manganese, Zinc, Copper, and Iron Concentrations and the Possible Role of these Elements on Oxidative Status in Patients with Childhood Asthma. Biol. Trace Element Res. 2004, 97, 31–42. [Google Scholar] [CrossRef]
- Picado, C.; Deulofeu, R.; Lleonart, R.; Agusti, M.; Mullol, J.; Torra, M.; Quintó, L. Dietary micronutrients/antioxidants and their relationship with bronchial asthma severity. Allergy 2001, 56, 43–49. [Google Scholar] [CrossRef] [PubMed]
- AbdulWahab, A.; Zeidan, A.; Avades, T.; Chandra, P.; Soliman, A. Serum Zinc Level in Asthmatic and Non-Asthmatic School Children. Children 2018, 5, 42. [Google Scholar] [CrossRef] [Green Version]
- Mao, S.; Wu, L.; Shi, W. Association between trace elements levels and asthma susceptibility. Respir. Med. 2018, 145, 110–119. [Google Scholar] [CrossRef]
- Gray, R.D.; Duncan, A.; Noble, D.; Imrie, M.; O’Reilly, D.S.J.; Innes, J.A.; Porteous, D.; Greening, A.P.; Boyd, A.C. Sputum Trace Metals Are Biomarkers of Inflammatory and Suppurative Lung Disease. Chest 2010, 137, 635–641. [Google Scholar] [CrossRef] [Green Version]
- Jayaram, L.; Chunilal, S.; Pickering, S.; Ruffin, R.E.; Zalewski, P.D. Sputum zinc concentration and clinical outcome in older asthmatics. Respirology 2011, 16, 459–466. [Google Scholar] [CrossRef]
- Carneiro, M.F.H.; Rhoden, C.R.; Amantéa, S.L.; Barbosa, F.; Jr, F.B. Low Concentrations of Selenium and Zinc in Nails are Associated with Childhood Asthma. Biol. Trace Element Res. 2011, 144, 244–252. [Google Scholar] [CrossRef]
- Yilmaz, E.A.; Ozmen, S.; Bostanci, I.; Misirlioglu, E.D.; Ertan, U. Erythrocyte zinc levels in children with bronchial asthma. Pediatr. Pulmonol. 2011, 46, 1189–1193. [Google Scholar] [CrossRef] [PubMed]
- Uysalol, M.; Uysalol, E.P.; Yilmaz, Y.; Parlakgul, G.; Ozden, T.A.; Ertem, H.V.; Omer, B.; Uzel, N. Serum level of vitamin D and trace elements in children with recurrent wheezing: A cross-sectional study. BMC Pediatr. 2014, 14, 270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribeiro-Silva, R.D.C.; Fiaccone, R.L.; Barreto, M.L.; da Silva, L.A.; Santos, L.F.P.; Alcantara-Neves, N.M. The prevalence of wheezing and its association with serum zinc concentration in children and adolescents in Brazil. J. Trace Elements Med. Biol. 2014, 28, 293–297. [Google Scholar] [CrossRef] [PubMed]
- Razi, C.H.; Akelma, A.Z.; Akin, O.; Kocak, M.; Ozdemir, O.; Celik, A.; Kislal, F.M. Hair zinc and selenium levels in children with recurrent wheezing. Pediatr. Pulmonol. 2012, 47, 1185–1191. [Google Scholar] [CrossRef] [PubMed]
- Richter, M.; Bonneau, R.; Girard, M.-A.; Beaulieu, C.; Larivée, P. Zinc status modulates bronchopulmonary eosinophil infiltration in a murine model of allergic inflammation. Chest 2003, 123, 446S. [Google Scholar] [CrossRef]
- Beckhaus, A.A.; Garcia-Marcos, L.; Forno, E.; Pacheco-Gonzalez, R.M.; Celedon, J.C.; Castro-Rodriguez, J.A. Maternal nutrition during pregnancy and risk of asthma, wheeze, and atopic diseases during childhood: A systematic review and meta-analysis. Allergy 2015, 70, 1588–1604. [Google Scholar] [CrossRef]
- Huang, K.-L.; Lee, Y.-H.; Chen, H.-I.; Liao, H.-S.; Chiang, B.-L.; Cheng, T.-J. Zinc oxide nanoparticles induce eosinophilic airway inflammation in mice. J. Hazard. Mater. 2015, 297, 304–312. [Google Scholar] [CrossRef]
- Huang, K.-L.; Chang, H.-L.; Tsai, F.-M.; Lee, Y.-H.; Wang, C.-H.; Cheng, T.-J. The effect of the inhalation of and topical exposure to zinc oxide nanoparticles on airway inflammation in mice. Toxicol. Appl. Pharmacol. 2019, 384, 114787. [Google Scholar] [CrossRef]
- Murray, C.J.; Lopez, A.D. Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study. Lancet 1997, 349, 1498–1504. [Google Scholar] [CrossRef]
- Wewers, M.E.; Bailey, W.C.; Carlsen, K.-H.; Eisner, M.D.; Folan, P.; Heath, J.; Klinnert, M.D.; Kovesi, T.; Pien, G.W.; Reichart, V.C.; et al. An Official American Thoracic Society Workshop Report: Tobacco Control Initiatives within the American Thoracic Society. Proc. Am. Thorac. Soc. 2010, 7, 1–7. [Google Scholar] [CrossRef]
- Eisner, M.D.; Anthonisen, N.; Coultas, D.; Künzli, N.; Perez-Padilla, R.; Postma, D.; Romieu, I.; Silverman, E.K.; Balmes, J.R. An Official American Thoracic Society Public Policy Statement: Novel Risk Factors and the Global Burden of Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2010, 182, 693–718. [Google Scholar] [CrossRef] [PubMed]
- Pauwels, R.A.; Löfdahl, C.-G.; Laitinen, L.A.; Schouten, J.P.; Postma, D.S.; Pride, N.B.; Ohlsson, S.V. Long-Term Treatment with Inhaled Budesonide in Persons with Mild Chronic Obstructive Pulmonary Disease Who Continue Smoking. New Engl. J. Med. 1999, 340, 1948–1953. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-S.; Caffrey, J.L.; Chang, M.-H.; Dowling, N.; Lin, J.-W. Cigarette smoking, cadmium exposure, and zinc intake on obstructive lung disorder. Respir. Res. 2010, 11, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raguso, C.A.; Luthy, C. Nutritional status in chronic obstructive pulmonary disease: Role of hypoxia. Nutrition 2011, 27, 138–143. [Google Scholar] [CrossRef]
- Herzog, R.; Cunningham-Rundles, S. Immunologic impact of nutrient depletion in chronic obstructive pulmonary disease. Curr Drug Targets 2011, 12, 489–500. [Google Scholar] [CrossRef]
- Karadag, F.; Cildag, O.; Altinisik, M.; Kozaci, L.D.; Kiter, G.; Altun, C. Trace elements as a component of oxidative stress in COPD. Respirology 2004, 9, 33–37. [Google Scholar] [CrossRef]
- Shevcova, V.I.; Zujkova, A.A.; Pashkov, A.N.; Kotova, J.A.; Shevcov, A.N. Verification of zinc role in pathophysiology of chronic obstructive pulmonary disease. Ter. Arkhiv 2018, 90, 33–37. [Google Scholar] [CrossRef]
- El-Attar, M.; Said, M.; El-Assal, G.; Sabry, N.; Omar, E.; Ashour, L. Serum trace element levels in COPD patient: The relation between trace element supplementation and period of mechanical ventilation in a randomized controlled trial. Respirology 2009, 14, 1180–1187. [Google Scholar] [CrossRef]
- Anetor, J.I.; Ajose, F.; Anetor, G.O.; Iyanda, A.A.; Babalola, B.B.; Adeniyi, F.A.A. High cadmium/zinc ratio in cigarette smokers: Potential implications as a biomarker of risk of prostate cancer. Niger. J. Physiol. Sci. 2008, 23, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Kazi, T.G.; Wadhwa, S.K.; Afridi, H.I.; Kazi, N.; Kandhro, G.A.; Baig, J.A.; Shah, A.Q.; Kolachi, N.F.; Khan, S. Evaluation of cadmium and zinc in biological samples of tobacco and alcohol user male mouth cancer patients. Hum. Exp. Toxicol. 2010, 29, 221–230. [Google Scholar] [CrossRef]
- Kırkıl, G.; Muz, M.H.; Seçkin, D.; Şahin, K.; Küçük, O. Antioxidant effect of zinc picolinate in patients with chronic obstructive pulmonary disease. Respir. Med. 2008, 102, 840–844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macdonald, R.S. The Role of Zinc in Growth and Cell Proliferation. J. Nutr. 2000, 130, 1500S–1508S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahabir, S.; Spitz, M.R.; Barrera, S.L.; Beaver, S.H.; Etzel, C.; Forman, M.R. Dietary zinc, copper and selenium, and risk of lung cancer. Int. J. Cancer 2007, 120, 1108–1115. [Google Scholar] [CrossRef] [PubMed]
- Collins, P.F.; Stratton, R.J.; Elia, M. Nutritional support in chronic obstructive pulmonary disease: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2012, 95, 1385–1395. [Google Scholar] [CrossRef] [Green Version]
- Collins, P.; Elia, M.; Stratton, R.J. Nutritional support and functional capacity in chronic obstructive pulmonary disease: A systematic review and meta-analysis. Respirology 2013, 18, 616–629. [Google Scholar] [CrossRef]
- Bauer, S.E.; Lai, H.J.; McDonald, C.M.; Asfour, F.; Slaven, J.E.; Ren, C.L. Zinc status and growth in infants and young children with cystic fibrosis. Pediatr. Pulmonol. 2021, 56, 3768–3776. [Google Scholar] [CrossRef]
- Akanli, L.; Lowenthal, D.B.; Gjonaj, S.; Dozor, A.J. Plasma and red blood cell zinc in cystic fibrosis. Pediatr. Pulmonol. 2002, 35, 2–7. [Google Scholar] [CrossRef]
- Wahab, A.A.; Abu-Shahin, A.; Allangawi, M.; Rahman, M.; Chandra, P. 206 Serum zinc concentration in cystic fibrosis patients with CFTR I1234V mutation associated with pancreatic sufficiency. J. Cyst. Fibros. 2014, 13, S99. [Google Scholar] [CrossRef] [Green Version]
- Van Biervliet, S.; Van Biervliet, J.P.; Vande Velde, S.; Robberecht, E. Serum zinc concentrations in cystic fibrosis patients aged above 4 years: A cross-sectional evaluation. Biol. Trace Elem. Res. 2007, 119, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Krebs, N.F.; Westcott, J.E.; Arnold, T.D.; Kluger, B.M.; Accurso, F.J.; Miller, L.V.; Hambidge, K.M. Abnormalities in Zinc Homeostasis in Young Infants with Cystic Fibrosis. Pediatr. Res. 2000, 48, 256–261. [Google Scholar] [CrossRef] [Green Version]
- Abdulhamid, I.; Beck, F.; Millard, S.; Chen, X.; Prasad, A. Effect of zinc supplementation on respiratory tract infections in children with cystic fibrosis. Pediatr. Pulmonol. 2008, 43, 281–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, G.K.; Lodha, R.; Shastri, S.; Saini, S.; Kapil, A.; Singla, M.; Mukherjee, A.; Jat, K.R.; Kabra, M.; Kabra, S.K. Zinc Supplementation for One Year Among Children with Cystic Fibrosis Does Not Decrease Pulmonary Infection. Respir. Care 2015, 61, 78–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McBride, K.; Slotnick, B.; Margolis, F.L. Does intranasal application of zinc sulfate produce anosmia in the mouse? An olfactometric and anatomical study. Chem. Sens. 2003, 28, 659–670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuortes, L.; Schenck, D. Marked elevation of urinary zinc levels and pleural-friction rub in metal fume fever. Vet. Hum. Toxicol. 2000, 42, 164–165. [Google Scholar]
- Pagan, I.; Costa, D.L.; McGee, J.K.; Richards, J.H.; Dye, J.A.; Dykstra, M.J. Metals Mimic Airway Epithelial Injury Induced by in Vitro Exposure to Utah Valley Ambient Particulate Matter Extracts. J. Toxicol. Environ. Health Part A 2003, 66, 1087–1112. [Google Scholar] [CrossRef]
- Gavett, S.H.; Haykal-Coates, N.; Copeland, L.B.; Heinrich, J.; Gilmour, M.I. Metal composition of ambient PM2.5 influences severity of allergic airways disease in mice. Environ. Health Perspect. 2003, 111, 1471–1477. [Google Scholar] [CrossRef] [Green Version]
- Adamson, I.; Prieditis, H.; Hedgecock, C.; Vincent, R. Zinc Is the Toxic Factor in the Lung Response to an Atmospheric Particulate Sample. Toxicol. Appl. Pharmacol. 2000, 166, 111–119. [Google Scholar] [CrossRef]
- Noble, P.W.; Barkauskas, C.E.; Jiang, D. Pulmonary fibrosis: Patterns and perpetrators. J. Clin. Investig. 2012, 122, 2756–2762. [Google Scholar] [CrossRef] [Green Version]
- Spagnolo, P.; Kropski, J.A.; Jones, M.G.; Lee, J.S.; Rossi, G.; Karampitsakos, T.; Maher, T.M.; Tzouvelekis, A.; Ryerson, C.J. Idiopathic pulmonary fibrosis: Disease mechanisms and drug development. Pharmacol. Ther. 2020, 222, 107798. [Google Scholar] [CrossRef]
- Raghu, G.; Remy-Jardin, M.; Myers, J.L.; Richeldi, L.; Ryerson, C.J.; Lederer, D.J.; Behr, J.; Cottin, V.; Danoff, S.K.; Morell, F.; et al. Diagnosis of Idiopathic Pulmonary Fibrosis. An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline. Am. J. Respir. Crit. Care Med. 2018, 198, e44–e68. [Google Scholar] [CrossRef]
- Raghu, G.; Weycker, D.; Edelsberg, J.; Bradford, W.Z.; Oster, G. Incidence and Prevalence of Idiopathic Pulmonary Fibrosis. Am. J. Respir. Crit. Care Med. 2006, 174, 810–816. [Google Scholar] [CrossRef] [PubMed]
- Raghu, G.; Collard, H.R.; Egan, J.J.; Martinez, F.J.; Behr, J.; Brown, K.K.; Colby, T.V.; Cordier, J.-F.; Flaherty, K.R.; Lasky, J.A.; et al. An Official ATS/ERS/JRS/ALAT Statement: Idiopathic Pulmonary Fibrosis: Evidence-based Guidelines for Diagnosis and Management. Am. J. Respir. Crit. Care Med. 2011, 183, 788–824. [Google Scholar] [CrossRef] [PubMed]
- Lederer, D.J.; Martinez, F.J. Idiopathic pulmonary fibrosis. New Engl. J. Med. 2018, 378, 1811–1823. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, J.P.; Fogarty, A.; Hubbard, R.B.; McKeever, T. Global incidence and mortality of idiopathic pulmonary fibrosis: A systematic review. Eur. Respir. J. 2015, 46, 795–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sauleda, J.; Núñez, B.; Sala, E.; Soriano, J.B. Idiopathic Pulmonary Fibrosis: Epidemiology, Natural History, Phenotypes. Med Sci. 2018, 6, 110. [Google Scholar] [CrossRef] [Green Version]
- He, C.; Ryan, A.J.; Murthy, S.; Carter, A.B. Accelerated Development of Pulmonary Fibrosis via Cu,Zn-superoxide Dismutase-induced Alternative Activation of Macrophages. J. Biol. Chem. 2013, 288, 20745–20757. [Google Scholar] [CrossRef] [Green Version]
- Biaggio, V.S.; Salvetti, N.R.; Chaca, M.V.P.; Valdez, S.R.; Ortega, H.H.; Gimenez, M.S.; Gomez, N.N. Alterations of the extracellular matrix of lung during zinc deficiency. Br. J. Nutr. 2011, 108, 62–70. [Google Scholar] [CrossRef] [Green Version]
- Cho, W.-S.; Duffin, R.; Howie, S.E.; Scotton, C.J.; Wallace, W.A.; MacNee, W.; Bradley, M.; Megson, I.L.; Donaldson, K. Progressive severe lung injury by zinc oxide nanoparticles; the role of Zn2+ dissolution inside lysosomes. Part. Fibre Toxicol. 2011, 8, 27. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Li, H.; Liu, Z.; Zhou, J.; Zhang, T. Acute toxicological effects of zinc oxide nanoparticles in mice after intratracheal instillation. Int. J. Occup. Environ. Health 2017, 23, 11–19. [Google Scholar] [CrossRef]
- Cander, B.; Dundar, Z.D.; Gul, M.; Girisgin, S. Prognostic value of serum zinc levels in critically ill patients. J. Crit. Care 2011, 26, 42–46. [Google Scholar] [CrossRef] [Green Version]
- Gomez, N.N.; Ojeda, M.S.; Gimenez, M.S. Lung lipid composition in zinc-deficient rats. Lipids 2002, 37, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Ghaffari, J.; Khalilian, A.; Salehifar, E.; Khorasani, E.; Rezaii, M. Effect of zinc supplementation in children with asthma: A randomized, placebo-controlled trial in northern Islamic Republic of Iran. East. Mediterr. Health J. 2014, 20, 391–396. [Google Scholar] [CrossRef] [PubMed]
Disease | Zinc Status | Primary outcome | Mechanism | Reference |
---|---|---|---|---|
Asthma | Low serum zinc levels | Serum zinc levels correlated with total IgE levels and forced expiratory volume in the first second (FEV1). | Zinc triggered IFN-γ and inhibited IL-10 production in PBMCs of asthmatics | [18] |
Low zinc diet | Mice fed with a low zinc diet had greater levels of airway hyper-responsiveness (AHR), eosinophilia, and mucus cell hyperplasia, increased active caspase-3 and apoptosis | - | [19] | |
Zinc supplementation | Zinc supplementations improved asthma symptoms in asthma patients. | - | [20] | |
COPD | Zinc deficient diet | Zinc-deficient mice showed more severe airway inflammation in response to repeated agriculture dust exposure. | - | [21] |
Zinc deficient diet, ZIP8 KO | Mice fed a restricted zinc diet had significantly increased CS-induced emphysema and ROS formation in the lung; Zip8 KO depletion or overexpression showed worse lung damage in mice exposed to chronic CS exposure. | - | [22] | |
Low zinc levels in bronchoalveolar lavage fluid (BALF) of COPD patients.Zinc chelator | Zinc levels in BALF positively correlated with alveolar macrophage efferocytosis. TPEN significantly decreased efferocytosis in macrophages. Zinc transporters ZIP1 and ZIP2 differently responded to zinc-deficiency. | - | [23] | |
- | Uncoupling role of zinc trafficking and autophagy in airway epithelial cells | - | [24] | |
CF | Low plasma zinc in adult CF patients | Low zinc level was linked with worse clinical outcomes. | - | [25] |
Low zinc levels due to ZIP2 splicing switch | Zinc deficiency contributed to CF-associated MUC5AC hypersecretion in airway epithelial cells. | - | [26] | |
Extracellular zinc supplementation | Extracellular zinc and ATP restored impaired chloride secretion in CF airway epithelium. | Through stimulating calcium-dependent chloride channels | [27] | |
IPF | Low zinc diet | Zinc deficiency exacerbated ventilation-induced lung damage in mice and rats. | - | [28,29] |
Low zinc diet | Mice fed a zinc-deficient diet had increased oxidative stress and inflammation, reduced activity of antioxidant enzymes, and subsequently induced fibrosis in the lung | - | [30] | |
ZIP8 KO, low zinc diet | AEC2-specific deletion of Zip8 in mice and mice fed a low zinc content diet has exacerbated bleomycin-induced lung fibrosis. | - | - | |
ARDS | Low serum zinc of ARDS patients | low serum levels and a high prevalence of low serum zinc levels were associated with severe ARDS | - | [31]. |
zinc deficiency | Zinc deficiency in alveolar macrophages and lung epitheliums decreased lung barrier function, leading to ARDS | - | [32]. | |
Zinc deficiency | zinc deficiency induced lung and other organ damage | - | [33] | |
Zinc fume inhalation | Zinc fume developed ARDS in mice | - | ||
PH | ZIP12 upregulation in lung of IPAH patients, animal models | ZIP12 knockdown diminished hypoxia-induced increases in intracellular labile Zinc contents and proliferation of PASMC. Zip12 KO inhibited hypoxia-induced PH in rats, as evidenced by a significant decrease in pulmonary arterial pressure, right heart hypertrophy, and muscularization. | [34] | |
High intracellular zinc, ZIP12 upregulation | Increased intracellular labile zinc, possibly from ZIP12, was linked with reduced phosphatases, increased transcription factor CREB-mediated activity, and PASMC proliferation | [35] | ||
ZIP12 upregulation | ZIP12 contributed to hypoxia induced PASMCs phenotypic switch and promoted PH. | HIF-1/ZIP12/pERK signaling axis could facilitate hypoxia-induced phenotypic switching in PASMCs | [36] | |
Altered zinc homeostasis | Altered levels of zinc homeostasis (ZIP12, MT3), S1P signaling (S1PRs, SPNS2), and vascular remodeling (αSMA, FI, RVSP) were associated with each other in the monocrotaline-induced PH rat model | - | [37] |
Disease | Clinicaltrial.gov ID | Study Design | Participants | Study Duration | Intervention Nutrient with Dosage | Primary Outcome | Key Findings | Ref |
---|---|---|---|---|---|---|---|---|
Asthma | TCTR20141212001 | Double blinded RCT | 42 | 12 months | zinc bis-glycinate (30 mg elemental zinc/day) | Pediatric respiratory assessment measure (PRAM) | PRAM score decreased at 24 and 48 h | [20] |
- | Double-blind, randomized, placebo-controlled clinical trial | 284 | 8 weeks | Zinc supplements (50 mg/day) | Zinc balance and asthma clinical symptoms | Significantly improved zinc levels; clinical symptoms such as cough, wheezing, and dyspnoea; and lung function parameters (FVC, FEV1 and FEV1/FVC. | [112] | |
CF | NCT00104494 | Randomized, Parallel Assignment | 30 | 8 weeks | Zinc acetate (20 mg/day) | Zinc balance | - | - |
- | Double blind placebo-controlled pilot study | 26 | 12 months | Zinc (30 mg/day) | Rate of respiratory tract infections, antibiotics use, plasma cytokines | Reduced the number of days of oral antibiotics used to treat RTIs in children with CF | [91] | |
CTRI/2011/12/002230 | Double-blind randomized placebo-controlled trial | 40 | 12 months | Zinc tablets (30 mg/day) | A reduction in the average days of systemic antibiotics | Zinc supplementation did not reduce lung infection in children with CF | [92] | |
COPD | - | Randomized controlled trial | 30 | 8 weeks | Zinc picolinate (22 mg/day) | Oxidant stress, and pulmonary function | Favorable effects on oxidant–antioxidant balance | [81] |
- | Double blinded RCT | 120 | - | Sodium (100 mg/day); zinc (2 mg/day); and manganese (0.4 mg/day) | Effect of trace elements (Na, Mg, Zn) supplementation on the period the COPD patients spend on mechanical ventilation | The nutrition supplementation significantly reduced the period the patients with COPD spent on the mechanical ventilation | [78] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Ali, M.K.; Dua, K.; Xu, R. The Role of Zinc in the Pathogenesis of Lung Disease. Nutrients 2022, 14, 2115. https://doi.org/10.3390/nu14102115
Liu X, Ali MK, Dua K, Xu R. The Role of Zinc in the Pathogenesis of Lung Disease. Nutrients. 2022; 14(10):2115. https://doi.org/10.3390/nu14102115
Chicago/Turabian StyleLiu, Xiaoying, Md Khadem Ali, Kamal Dua, and Ran Xu. 2022. "The Role of Zinc in the Pathogenesis of Lung Disease" Nutrients 14, no. 10: 2115. https://doi.org/10.3390/nu14102115
APA StyleLiu, X., Ali, M. K., Dua, K., & Xu, R. (2022). The Role of Zinc in the Pathogenesis of Lung Disease. Nutrients, 14(10), 2115. https://doi.org/10.3390/nu14102115