Arterial Hypertension and the Hidden Disease of the Eye: Diagnostic Tools and Therapeutic Strategies
Abstract
:1. Introduction
2. Retinal Imaging Techniques
3. Retinal and Glomerular Vasculature: Two Sides of the Same Coin
4. Retinal and Coronary Microcirculation
5. Diabetic Retinopathy
6. Nutrition and Retinal Alterations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Forouzanfar, M.H.; Liu, P.; Roth, G.A.; Ng, M.; Biryukov, S.; Marczak, L.; Alexander, L.; Estep, K.; Hassen Abate, K.; Akinyemiju, T.F.; et al. Global Burden of Hypertension and Systolic Blood Pressure of at Least 110 to 115 Mm Hg, 1990–2015. JAMA 2017, 317, 165–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mensah, G.A.; Roth, G.A.; Fuster, V. The Global Burden of Cardiovascular Diseases and Risk Factors: 2020 and Beyond. J. Am. Coll. Cardiol. 2019, 74, 2529–2532. [Google Scholar] [CrossRef] [PubMed]
- Houben, A.J.H.M.; Martens, R.J.H.; Stehouwer, C.D.A. Assessing Microvascular Function in Humans from a Chronic Disease Perspective. J. Am. Soc. Nephrol. 2017, 28, 3461–3472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Struijker Boudier, H.A.; le Noble, J.L.; Messing, M.W.; Huijberts, M.S.; le Noble, F.A.; van Essen, H. The Microcirculation and Hypertension. J. Hypertens. Suppl. 1992, 10, S147–S156. [Google Scholar] [CrossRef] [PubMed]
- Rizzoni, D.; Porteri, E.; Boari, G.E.M.; De Ciuceis, C.; Sleiman, I.; Muiesan, M.L.; Castellano, M.; Miclini, M.; Agabiti-Rosei, E. Prognostic Significance of Small-Artery Structure in Hypertension. Circulation 2003, 108, 2230–2235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the Management of Arterial Hypertension: The Task Force for the Management of Arterial Hypertension of the European Society of Cardiology and the European Society of Hypertension: The Task Force for the Management of Arterial Hypertension of the European Society of Cardiology and the European Society of Hypertension. J. Hypertens. 2018, 36, 1953–2041. [Google Scholar] [PubMed] [Green Version]
- Rizzoni, D.; Agabiti Rosei, C.; De Ciuceis, C.; Semeraro, F.; Rizzoni, M.; Docchio, F. New Methods to Study the Microcirculation. Am. J. Hypertens. 2018, 31, 265–273. [Google Scholar] [CrossRef] [Green Version]
- Flammer, J.; Konieczka, K.; Bruno, R.M.; Virdis, A.; Flammer, A.J.; Taddei, S. The Eye and the Heart. Eur. Heart J. 2013, 34, 1270–1278. [Google Scholar] [CrossRef]
- Wong, T.Y.; Mitchell, P. Hypertensive Retinopathy. N. Engl. J. Med. 2004, 351, 2310–2317. [Google Scholar] [CrossRef]
- Bidani, A.K.; Griffin, K.A. Pathophysiology of Hypertensive Renal Damage: Implications for Therapy. Hypertension 2004, 44, 595–601. [Google Scholar] [CrossRef] [Green Version]
- Agabiti-Rosei, E.; Rizzoni, D. Microvascular Structure as a Prognostically Relevant Endpoint. J. Hypertens. 2017, 35, 914–921. [Google Scholar] [CrossRef]
- Peng, S.-Y.; Lee, Y.-C.; Wu, I.-W.E.N.; Lee, C.-C.; Sun, C.-C.; Ding, J.-J.; Liu, C.-F.; Yeung, L. Impact of Blood Pressure Control on Retinal Microvasculature in Patients with Chronic Kidney Disease. Sci. Rep. 2020, 10, 14275. [Google Scholar] [CrossRef]
- Rizzoni, D.; De Ciuceis, C.; Porteri, E.; Paiardi, S.; Boari, G.E.M.; Mortini, P.; Cornali, C.; Cenzato, M.; Rodella, L.F.; Borsani, E.; et al. Altered Structure of Small Cerebral Arteries in Patients with Essential Hypertension. J. Hypertens. 2009, 27, 838–845. [Google Scholar] [CrossRef]
- Mulè, G.; Vadalà, M.; Geraci, G.; Cottone, S. Retinal Vascular Imaging in Cardiovascular Medicine: New Tools for an Old Examination. Atherosclerosis 2018, 268, 188–190. [Google Scholar] [CrossRef] [PubMed]
- Keith, N.M.; Wagener, H.P.; Barker, N.W. Some Different Types of Essential Hypertension: Their Course and Prognosis. Am. J. Med. Sci. 1974, 268, 336–345. [Google Scholar] [CrossRef] [PubMed]
- Cerasola, G.; Mulè, G.; Nardi, E.; Cottone, S.; Andronico, G.; Mongiovì, R.; Mezzatesta, G. Usefulness of Microalbuminuria in Cardiovascular Risk Stratification of Essential Hypertensive Patients. Nephron Clin. Pract. 2004, 96, c123–c130. [Google Scholar] [CrossRef] [PubMed]
- Cuspidi, C.; Meani, S.; Salerno, M.; Fusi, V.; Severgnini, B.; Valerio, C.; Catini, E.; Esposito, A.; Magrini, F.; Zanchetti, A. Retinal Microvascular Changes and Target Organ Damage in Untreated Essential Hypertensives. J. Hypertens. 2004, 22, 2095–2102. [Google Scholar] [CrossRef]
- Cheung, C.Y.-L.; Ikram, M.K.; Sabanayagam, C.; Wong, T.Y. Retinal Microvasculature as a Model to Study the Manifestations of Hypertension. Hypertension 2012, 60, 1094–1103. [Google Scholar] [CrossRef] [Green Version]
- MacGillivray, T.J.; Trucco, E.; Cameron, J.R.; Dhillon, B.; Houston, J.G.; van Beek, E.J.R. Retinal Imaging as a Source of Biomarkers for Diagnosis, Characterization and Prognosis of Chronic Illness or Long-Term Conditions. Br. J. Radiol. 2014, 87, 20130832. [Google Scholar] [CrossRef] [Green Version]
- Forrester, J.V.; Dick, A.D.; McMenamin, P.G.; Roberts, F.; Pearlman, E. The Eye: Basic Sciences in Practice; Elsevier: Amsterdam, The Netherlands, 2021; ISBN 9780702079931. [Google Scholar]
- Wong, T.Y.; Klein, R.; Couper, D.J.; Cooper, L.S.; Shahar, E.; Hubbard, L.D.; Wofford, M.R.; Sharrett, A.R. Retinal Microvascular Abnormalities and Incident Stroke: The Atherosclerosis Risk in Communities Study. Lancet 2001, 358, 1134–1140. [Google Scholar] [CrossRef]
- Jiang, H.; Debuc, D.C.; Rundek, T.; Lam, B.L.; Wright, C.B.; Shen, M.; Tao, A.; Wang, J. Automated Segmentation and Fractal Analysis of High-Resolution Non-Invasive Capillary Perfusion Maps of the Human Retina. Microvasc. Res. 2013, 89, 172–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liew, G.; Mitchell, P.; Rochtchina, E.; Wong, T.Y.; Hsu, W.; Lee, M.L.; Wainwright, A.; Wang, J.J. Fractal Analysis of Retinal Microvasculature and Coronary Heart Disease Mortality. Eur. Heart J. 2011, 32, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Allon, R.; Aronov, M.; Belkin, M.; Maor, E.; Shechter, M.; Fabian, I.D. Retinal Microvascular Signs as Screening and Prognostic Factors for Cardiac Disease: A Systematic Review of Current Evidence. Am. J. Med. 2021, 134, 36–47.e7. [Google Scholar] [CrossRef] [PubMed]
- Aronov, M.; Allon, R.; Stave, D.; Belkin, M.; Margalit, E.; Fabian, I.D.; Rosenzweig, B. Retinal Vascular Signs as Screening and Prognostic Factors for Chronic Kidney Disease: A Systematic Review and Meta-Analysis of Current Evidence. J. Pers. Med. 2021, 11, 665. [Google Scholar] [CrossRef]
- Harazny, J.M.; Ritt, M.; Baleanu, D.; Ott, C.; Heckmann, J.; Schlaich, M.P.; Michelson, G.; Schmieder, R.E. Increased Wall:lumen Ratio of Retinal Arterioles in Male Patients with a History of a Cerebrovascular Event. Hypertension 2007, 50, 623–629. [Google Scholar] [CrossRef] [Green Version]
- Ritt, M.; Harazny, J.M.; Ott, C.; Schlaich, M.P.; Schneider, M.P.; Michelson, G.; Schmieder, R.E. Analysis of Retinal Arteriolar Structure in Never-Treated Patients with Essential Hypertension. J. Hypertens. 2008, 26, 1427–1434. [Google Scholar] [CrossRef]
- Harazny, J.M.; Raff, U.; Welzenbach, J.; Ott, C.; Ritt, M.; Lehmann, M.; Michelson, G.; Schmieder, R.E. New Software Analyses Increase the Reliability of Measurements of Retinal Arterioles Morphology by Scanning Laser Doppler Flowmetry in Humans. J. Hypertens. 2011, 29, 777–782. [Google Scholar] [CrossRef]
- DeBuc, D.C.; Rege, A.; Smiddy, W.E. Use of XyCAM RI for Noninvasive Visualization and Analysis of Retinal Blood Flow Dynamics During Clinical Investigations. Exp. Rev. Med. Devices 2021, 18, 225–237. [Google Scholar] [CrossRef]
- Ritt, M.; Harazny, J.M.; Ott, C.; Schneider, M.P.; Schlaich, M.P.; Michelson, G.; Schmieder, R.E. Wall-to-Lumen Ratio of Retinal Arterioles Is Related with Urinary Albumin Excretion and Altered Vascular Reactivity to Infusion of the Nitric Oxide Synthase Inhibitor N-Monomethyl-L-Arginine. J. Hypertens. 2009, 27, 2201–2208. [Google Scholar] [CrossRef]
- Harazny, J.M.; Ott, C.; Raff, U.; Welzenbach, J.; Kwella, N.; Michelson, G.; Schmieder, R.E. First Experience in Analysing Pulsatile Retinal Capillary Flow and Arteriolar Structural Parameters Measured Noninvasively in Hypertensive Patients. J. Hypertens. 2014, 32, 2246–2252; discussion 2252. [Google Scholar] [CrossRef]
- Michelson, G.; Schmauss, B. Two Dimensional Mapping of the Perfusion of the Retina and Optic Nerve Head. Br. J. Ophthalmol. 1995, 79, 1126–1132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michelson, G.; Patzelt, A.; Harazny, J. Flickering Light Increases Retinal Blood Flow. Retina 2002, 22, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Garhöfer, G.; Zawinka, C.; Resch, H.; Huemer, K.H.; Dorner, G.T.; Schmetterer, L. Diffuse Luminance Flicker Increases Blood Flow in Major Retinal Arteries and Veins. Vis. Res. 2004, 44, 833–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nägele, M.P.; Barthelmes, J.; Ludovici, V.; Cantatore, S.; von Eckardstein, A.; Enseleit, F.; Lüscher, T.F.; Ruschitzka, F.; Sudano, I.; Flammer, A.J. Retinal Microvascular Dysfunction in Heart Failure. Eur. Heart J. 2018, 39, 47–56. [Google Scholar] [CrossRef] [Green Version]
- De Ciuceis, C.; Agabiti Rosei, C.; Caletti, S.; Trapletti, V.; Coschignano, M.A.; Tiberio, G.A.M.; Duse, S.; Docchio, F.; Pasinetti, S.; Zambonardi, F.; et al. Comparison between Invasive and Noninvasive Techniques of Evaluation of Microvascular Structural Alterations. J. Hypertens. 2018, 36, 1154–1163. [Google Scholar] [CrossRef]
- Koch, E.; Rosenbaum, D.; Brolly, A.; Sahel, J.-A.; Chaumet-Riffaud, P.; Girerd, X.; Rossant, F.; Paques, M. Morphometric Analysis of Small Arteries in the Human Retina Using Adaptive Optics Imaging: Relationship with Blood Pressure and Focal Vascular Changes. J. Hypertens. 2014, 32, 890–898. [Google Scholar] [CrossRef] [Green Version]
- Rosenbaum, D.; Mattina, A.; Koch, E.; Rossant, F.; Gallo, A.; Kachenoura, N.; Paques, M.; Redheuil, A.; Girerd, X. Effects of Age, Blood Pressure and Antihypertensive Treatments on Retinal Arterioles Remodeling Assessed by Adaptive Optics. J. Hypertens. 2016, 34, 1115–1122. [Google Scholar] [CrossRef]
- Qin, J.; An, L. Optical Coherence Tomography for Ophthalmology Imaging. Advances in Experimental Medicine and Biology; Springer: Berlin, Germany, 2021; pp. 197–216. [Google Scholar]
- Akyol, E.; Hagag, A.M.; Sivaprasad, S.; Lotery, A.J. Adaptive Optics: Principles and Applications in Ophthalmology. Eye 2021, 35, 244–264. [Google Scholar] [CrossRef]
- Nickla, D.L.; Wallman, J. The Multifunctional Choroid. Prog. Retin. Eye Res. 2010, 29, 144–168. [Google Scholar] [CrossRef] [Green Version]
- Adhi, M.; Duker, J.S. Optical Coherence Tomography—Current and Future Applications. Curr. Opin. Ophthalmol. 2013, 24, 213–221. [Google Scholar] [CrossRef] [Green Version]
- Qin, J.; An, L. Optical Coherence Tomography for Ophthalmology Imaging. Adv. Exp. Med. Biol. 2021, 3233, 197–216. [Google Scholar] [PubMed]
- Spraul, C.W.; Lang, G.E.; Lang, G.K.; Grossniklaus, H.E. Morphometric Changes of the Choriocapillaris and the Choroidal Vasculature in Eyes with Advanced Glaucomatous Changes. Vis. Res. 2002, 42, 923–932. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; He, M.; Gong, X.; Wang, L.; Meng, J.; Li, Y.; Xiong, K.; Li, W.; Huang, W. Association of Renal Function with Retinal Vessel Density in Patients with Type 2 Diabetes by Using Swept-Source Optical Coherence Tomographic Angiography. Br. J. Ophthalmol. 2020, 104, 1768–1773. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Kılıç, K.; Erdener, S.E.; Boas, D.A.; Postnov, D.D. Choosing a Model for Laser Speckle Contrast Imaging. Biomed. Opt. Express 2021, 12, 3571–3583. [Google Scholar] [CrossRef]
- Spaide, R.F.; Fujimoto, J.G.; Waheed, N.K.; Sadda, S.R.; Staurenghi, G. Optical Coherence Tomography Angiography. Prog. Retin. Eye Res. 2018, 64, 1–55. [Google Scholar] [CrossRef]
- Donati, S.; Maresca, A.M.; Cattaneo, J.; Grossi, A.; Mazzola, M.; Caprani, S.M.; Premoli, L.; Docchio, F.; Rizzoni, D.; Guasti, L.; et al. Optical Coherence Tomography Angiography and Arterial Hypertension: A Role in Identifying Subclinical Microvascular Damage? Eur. J. Ophthalmol. 2021, 31, 158–165. [Google Scholar] [CrossRef]
- Szulc, U.; Dąbrowska, E.; Pieczyński, J.; Białkowski, P.; Narkiewicz, K.; Schmieder, R.E.; Harazny, J. How to Measure Retinal Microperfusion in Patients with Arterial Hypertension. Blood Press. 2021, 30, 4–19. [Google Scholar] [CrossRef]
- Ding, J.; Wai, K.L.; McGeechan, K.; Ikram, M.K.; Kawasaki, R.; Xie, J.; Klein, R.; Klein, B.B.K.; Cotch, M.F.; Wang, J.J.; et al. Retinal Vascular Caliber and the Development of Hypertension: A Meta-Analysis of Individual Participant Data. J. Hypertens. 2014, 32, 207–215. [Google Scholar] [CrossRef] [Green Version]
- Ting, D.S.W.; Tan, G.S.W.; Agrawal, R.; Yanagi, Y.; Sie, N.M.; Wong, C.W.; San Yeo, I.Y.; Lee, S.Y.; Cheung, C.M.G.; Wong, T.Y. Optical Coherence Tomographic Angiography in Type 2 Diabetes and Diabetic Retinopathy. JAMA Ophthalmol. 2017, 135, 306–312. [Google Scholar] [CrossRef]
- Chua, J.; Chin, C.W.L.; Hong, J.; Chee, M.L.; Le, T.-T.; Ting, D.S.W.; Wong, T.Y.; Schmetterer, L. Impact of Hypertension on Retinal Capillary Microvasculature Using Optical Coherence Tomographic Angiography. J. Hypertens. 2019, 37, 572–580. [Google Scholar] [CrossRef]
- Linsenmeier, R.A.; Padnick-Silver, L. Metabolic Dependence of Photoreceptors on the Choroid in the Normal and Detached Retina. Investig. Ophthalmol. Vis. Sci. 2000, 41, 3117–3123. [Google Scholar] [PubMed]
- Farrah, T.E.; Dhillon, B.; Keane, P.A.; Webb, D.J.; Dhaun, N. The Eye, the Kidney, and Cardiovascular Disease: Old Concepts, Better Tools, and New Horizons. Kidney Int. 2020, 98, 323–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, K.-A.; Gupta, P.; Agarwal, A.; Chhablani, J.; Cheng, C.-Y.; Keane, P.A.; Agrawal, R. State of Science: Choroidal Thickness and Systemic Health. Surv. Ophthalmol. 2016, 61, 566–581. [Google Scholar] [CrossRef]
- Yeung, S.C.; You, Y.; Howe, K.L.; Yan, P. Choroidal Thickness in Patients with Cardiovascular Disease: A Review. Surv. Ophthalmol. 2020, 65, 473–486. [Google Scholar] [CrossRef]
- Wong, I.Y.; Wong, R.L.; Zhao, P.; Lai, W.W. Choroidal Thickness in Relation to Hypercholesterolemia on Enhanced Depth Imaging Optical Coherence Tomography. Retina 2013, 33, 423–428. [Google Scholar] [CrossRef]
- Sizmaz, S.; Küçükerdönmez, C.; Pinarci, E.Y.; Karalezli, A.; Canan, H.; Yilmaz, G. The Effect of Smoking on Choroidal Thickness Measured by Optical Coherence Tomography. Br. J. Ophthalmol. 2013, 97, 601–604. [Google Scholar] [CrossRef]
- Kim, D.Y.; Joe, S.G.; Lee, J.Y.; Kim, J.-G.; Yang, S.J. Choroidal Thickness in Eyes with Unilateral Ocular Ischemic Syndrome. J. Ophthalmol. 2015, 2015, 620372. [Google Scholar] [CrossRef] [Green Version]
- Altinkaynak, H.; Kara, N.; Sayın, N.; Güneş, H.; Avşar, S.; Yazıcı, A.T. Subfoveal Choroidal Thickness in Patients with Chronic Heart Failure Analyzed by Spectral-Domain Optical Coherence Tomography. Curr. Eye Res. 2014, 39, 1123–1128. [Google Scholar] [CrossRef]
- Ahmad, M.; Kaszubski, P.A.; Cobbs, L.; Reynolds, H.; Smith, R.T. Choroidal Thickness in Patients with Coronary Artery Disease. PLoS One 2017, 12, e0175691. [Google Scholar] [CrossRef] [Green Version]
- Esmaeelpour, M.; Považay, B.; Hermann, B.; Hofer, B.; Kajic, V.; Hale, S.L.; North, R.V.; Drexler, W.; Sheen, N.J.L. Mapping Choroidal and Retinal Thickness Variation in Type 2 Diabetes Using Three-Dimensional 1060-Nm Optical Coherence Tomography. Investig. Ophthalmol. Vis. Sci. 2011, 52, 5311–5316. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Xu, L.; Du, K.F.; Shao, L.; Chen, C.X.; Zhou, J.Q.; Wang, Y.X.; You, Q.S.; Jonas, J.B.; Wei, W.B. Subfoveal Choroidal Thickness in Diabetes and Diabetic Retinopathy. Ophthalmology 2013, 120, 2023–2028. [Google Scholar] [CrossRef] [PubMed]
- Sayin, N.; Kara, N.; Uzun, F.; Akturk, I.F. A Quantitative Evaluation of the Posterior Segment of the Eye Using Spectral-Domain Optical Coherence Tomography in Carotid Artery Stenosis: A Pilot Study. Ophthalmic Surg. Lasers Imaging Retina 2015, 46, 180–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akçay, B.İ.S.; Kardeş, E.; Maçin, S.; Ünlü, C.; Özgürhan, E.B.; Maçin, A.; Bozkurt, T.K.; Ergin, A.; Surmeli, R. Evaluation of Subfoveal Choroidal Thickness in Internal Carotid Artery Stenosis. J. Ophthalmol. 2016, 2016, 5296048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlaich, M.P.; Socratous, F.; Hennebry, S.; Eikelis, N.; Lambert, E.A.; Straznicky, N.; Esler, M.D.; Lambert, G.W. Sympathetic Activation in Chronic Renal Failure. J. Am. Soc. Nephrol. 2009, 20, 933–939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akay, F.; Gundogan, F.C.; Yolcu, U.; Toyran, S.; Uzun, S. Choroidal Thickness in Systemic Arterial Hypertension. Eur. J. Ophthalmol. 2016, 26, 152–157. [Google Scholar] [CrossRef]
- Mulè, G.; Vadalà, M.; La Blasca, T.; Gaetani, R.; Virone, G.; Guarneri, M.; Castellucci, M.; Guarrasi, G.; Terrasi, M.; Cottone, S. Association between Early-Stage Chronic Kidney Disease and Reduced Choroidal Thickness in Essential Hypertensive Patients. Hypertens. Res. 2019, 42, 990–1000. [Google Scholar] [CrossRef]
- Vadalà, M.; Castellucci, M.; Guarrasi, G.; Terrasi, M.; La Blasca, T.; Mulè, G. Retinal and Choroidal Vasculature Changes Associated with Chronic Kidney Disease. Graefes Arch. Clin. Exp. Ophthalmol. 2019, 257, 1687–1698. [Google Scholar] [CrossRef]
- Balmforth, C.; van Bragt, J.J.; Ruijs, T.; Cameron, J.R.; Kimmitt, R.; Moorhouse, R.; Czopek, A.; Hu, M.K.; Gallacher, P.J.; Dear, J.W.; et al. Chorioretinal Thinning in Chronic Kidney Disease Links to Inflammation and Endothelial Dysfunction. JCI Insight 2016, 1, e89173. [Google Scholar] [CrossRef] [Green Version]
- Gök, M.; Karabas, V.L.; Emre, E.; Aksar, A.T.; Aslan, M.S.; Ural, D. Evaluation of Choroidal Thickness via Enhanced Depth-Imaging Optical Coherence Tomography in Patients with Systemic Hypertension. Indian J. Ophthalmol. 2015, 63, 239–243. [Google Scholar] [CrossRef]
- Liu, S.; Wang, W.; Tan, Y.; He, M.; Wang, L.; Li, Y.; Huang, W. Relationship Between Renal Function and Choroidal Thickness in Type 2 Diabetic Patients Detected by Swept-Source Optical Coherence Tomography. Transl. Vis. Sci. Technol. 2020, 9, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geraci, G.; Mulè, G.; Mogavero, M.; Geraci, C.; D’Ignoti, D.; Guglielmo, C.; Cottone, S. Renal Haemodynamics and Severity of Carotid Atherosclerosis in Hypertensive Patients with and without Impaired Renal Function. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Mulè, G.; Geraci, G.; Geraci, C.; Morreale, M.; Cottone, S. The Renal Resistive Index: Is It a Misnomer? Intern. Emerg. Med. 2015, 10, 889–891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geraci, G.; Mulè, G.; Geraci, C.; Mogavero, M.; D’Ignoto, F.; Morreale, M.; Foraci, A.C.; Cottone, S. Association of Renal Resistive Index with Aortic Pulse Wave Velocity in Hypertensive Patients. Eur. J. Prev. Cardiol. 2015, 22, 415–422. [Google Scholar] [CrossRef]
- Mulè, G.; Vadalà, M.; Sinatra, N.; Mancia, E.; Sorce, A.; Geraci, G.; Carollo, C.; Montalbano, K.; Castellucci, M.; Guarrasi, G.; et al. Relationship of Choroidal Thickness with Pulsatile Hemodynamics in Essential Hypertensive Patients. J. Clin. Hypertens. 2021, 23, 1030–1038. [Google Scholar] [CrossRef] [PubMed]
- Michelson, E.L.; Morganroth, J.; Nichols, C.W.; MacVaugh, H., 3rd. Retinal Arteriolar Changes as an Indicator of Coronary Artery Disease. Arch. Intern. Med. 1979, 139, 1139–1141. [Google Scholar] [CrossRef]
- Tedeschi-Reiner, E.; Strozzi, M.; Skoric, B.; Reiner, Z. Relation of Atherosclerotic Changes in Retinal Arteries to the Extent of Coronary Artery Disease. Am. J. Cardiol. 2005, 96, 1107–1109. [Google Scholar] [CrossRef] [PubMed]
- Aldiwani, H.; Mahdai, S.; Alhatemi, G.; Bairey Merz, C.N. Microvascular Angina: Diagnosis and Management. Eur. Cardiol. 2021, 16, e46. [Google Scholar] [CrossRef]
- Del Buono, M.G.; Montone, R.A.; Camilli, M.; Carbone, S.; Narula, J.; Lavie, C.J.; Niccoli, G.; Crea, F. Coronary Microvascular Dysfunction Across the Spectrum of Cardiovascular Diseases: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2021, 78, 1352–1371. [Google Scholar] [CrossRef]
- Wang, L.; Wong, T.Y.; Sharrett, A.R.; Klein, R.; Folsom, A.R.; Jerosch-Herold, M. Relationship between Retinal Arteriolar Narrowing and Myocardial Perfusion: Multi-Ethnic Study of Atherosclerosis. Hypertension 2008, 51, 119–126. [Google Scholar] [CrossRef] [Green Version]
- Wong, T.Y.; Cheung, N.; Islam, F.M.A.; Klein, R.; Criqui, M.H.; Cotch, M.F.; Carr, J.J.; Klein, B.E.K.; Sharrett, A.R. Relation of Retinopathy to Coronary Artery Calcification: The Multi-Ethnic Study of Atherosclerosis. Am. J. Epidemiol. 2008, 167, 51–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzoni, D.; Palombo, C.; Porteri, E.; Muiesan, M.L.; Kozàkovà, M.; La Canna, G.; Nardi, M.; Guelfi, D.; Salvetti, M.; Morizzo, C.; et al. Relationships between Coronary Flow Vasodilator Capacity and Small Artery Remodelling in Hypertensive Patients. J. Hypertens. 2003, 21, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Masi, S.; Rizzoni, D.; Taddei, S.; Widmer, R.J.; Montezano, A.C.; Lüscher, T.F.; Schiffrin, E.L.; Touyz, R.M.; Paneni, F.; Lerman, A.; et al. Assessment and Pathophysiology of Microvascular Disease: Recent Progress and Clinical Implications. Eur. Heart J. 2021, 42, 2590–2604. [Google Scholar] [CrossRef] [PubMed]
- Cheung, N.; Mitchell, P.; Wong, T.Y. Diabetic Retinopathy. Lancet 2010, 376, 124–136. [Google Scholar] [CrossRef]
- Gardiner, T.A.; Archer, D.B.; Curtis, T.M.; Stitt, A.W. Arteriolar Involvement in the Microvascular Lesions of Diabetic Retinopathy: Implications for Pathogenesis. Microcirculation 2007, 14, 25–38. [Google Scholar] [CrossRef]
- Simó, R.; Hernández, C.; European Consortium for the Early Treatment of Diabetic Retinopathy (EUROCONDOR). Neurodegeneration in the Diabetic Eye: New Insights and Therapeutic Perspectives. Trends Endocrinol. Metab. 2014, 25, 23–33. [Google Scholar] [CrossRef]
- Antonetti, D.A.; Barber, A.J.; Bronson, S.K.; Freeman, W.M.; Gardner, T.W.; Jefferson, L.S.; Kester, M.; Kimball, S.R.; Krady, J.K.; LaNoue, K.F.; et al. Diabetic Retinopathy: Seeing beyond Glucose-Induced Microvascular Disease. Diabetes 2006, 55, 2401–2411. [Google Scholar] [CrossRef] [Green Version]
- Solomon, S.D.; Chew, E.; Duh, E.J.; Sobrin, L.; Sun, J.K.; VanderBeek, B.L.; Wykoff, C.C.; Gardner, T.W. Diabetic Retinopathy: A Position Statement by the American Diabetes Association. Diabetes Care 2017, 40, 412–418. [Google Scholar] [CrossRef] [Green Version]
- Misfeldt, M.W.; Pedersen, S.M.M.; Bek, T. Perivascular Cells with Pericyte Characteristics Are Involved in ATP- and PGE(2)-Induced Relaxation of Porcine Retinal Arterioles in Vitro. Investig. Ophthalmol. Vis. Sci. 2013, 54, 3258–3264. [Google Scholar] [CrossRef] [Green Version]
- Lombardo, M.; Parravano, M.; Serrao, S.; Ducoli, P.; Stirpe, M.; Lombardo, G. Analysis of Retinal Capillaries in Patients with Type 1 Diabetes and Nonproliferative Diabetic Retinopathy Using Adaptive Optics Imaging. Retina 2013, 33, 1630–1639. [Google Scholar] [CrossRef] [Green Version]
- Lombardo, M.; Parravano, M.; Serrao, S.; Ziccardi, L.; Giannini, D.; Lombardo, G. Investigation of Adaptive Optics Imaging Biomarkers for Detecting Pathological Changes of the Cone Mosaic in Patients with Type 1 Diabetes Mellitus. PLoS One 2016, 11, e0151380. [Google Scholar] [CrossRef] [PubMed]
- Zaleska-Żmijewska, A.; Wawrzyniak, Z.M.; Dąbrowska, A.; Szaflik, J.P. Adaptive Optics (rtx1) High-Resolution Imaging of Photoreceptors and Retinal Arteries in Patients with Diabetic Retinopathy. J. Diabetes Res. 2019, 2019, 9548324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ritt, M.; Schmieder, R.E. Wall-to-Lumen Ratio of Retinal Arterioles as a Tool to Assess Vascular Changes. Hypertension 2009, 54, 384–387. [Google Scholar] [CrossRef]
- Kristinsson, J.K.; Gottfredsdóttir, M.S.; Stefánsson, E. Retinal Vessel Dilatation and Elongation Precedes Diabetic Macular Oedema. Br. J. Ophthalmol. 1997, 81, 274–278. [Google Scholar] [CrossRef] [PubMed]
- Moss, S.E.; Klein, R.; Klein, B.E.K.; Wong, T.Y. Retinal Vascular Changes and 20-Year Incidence of Lower Extremity Amputations in a Cohort with Diabetes. Arch. Intern. Med. 2003, 163, 2505–2510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGeechan, K.; Liew, G.; Macaskill, P.; Irwig, L.; Klein, R.; Klein, B.E.K.; Wang, J.J.; Mitchell, P.; Vingerling, J.R.; de Jong, P.T.V.M.; et al. Prediction of Incident Stroke Events Based on Retinal Vessel Caliber: A Systematic Review and Individual-Participant Meta-Analysis. Am. J. Epidemiol. 2009, 170, 1323–1332. [Google Scholar] [CrossRef] [PubMed]
- Seidelmann, S.B.; Claggett, B.; Bravo, P.E.; Gupta, A.; Farhad, H.; Klein, B.E.; Klein, R.; Di Carli, M.; Solomon, S.D. Retinal Vessel Calibers in Predicting Long-Term Cardiovascular Outcomes: The Atherosclerosis Risk in Communities Study. Circulation 2016, 134, 1328–1338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, R.; Klein, B.E.K.; Moss, S.E.; Wong, T.Y. Retinal Vessel Caliber and Microvascular and Macrovascular Disease in Type 2 Diabetes: XXI: The Wisconsin Epidemiologic Study of Diabetic Retinopathy. Ophthalmology 2007, 114, 1884–1892. [Google Scholar] [CrossRef]
- Klein, R.; Knudtson, M.D.; Klein, B.E.K.; Zinman, B.; Gardiner, R.; Suissa, S.; Sinaiko, A.R.; Donnelly, S.M.; Goodyer, P.; Strand, T.; et al. The Relationship of Retinal Vessel Diameter to Changes in Diabetic Nephropathy Structural Variables in Patients with Type 1 Diabetes. Diabetologia 2010, 53, 1638–1646. [Google Scholar] [CrossRef] [Green Version]
- Hubbard, L.D.; Brothers, R.J.; King, W.N.; Clegg, L.X.; Klein, R.; Cooper, L.S.; Sharrett, A.R.; Davis, M.D.; Cai, J. Methods for Evaluation of Retinal Microvascular Abnormalities Associated with Hypertension/sclerosis in the Atherosclerosis Risk in Communities Study. Ophthalmology 1999, 106, 2269–2280. [Google Scholar] [CrossRef]
- Rizzoni, D.; Porteri, E.; Guelfi, D.; Muiesan, M.L.; Valentini, U.; Cimino, A.; Girelli, A.; Rodella, L.; Bianchi, R.; Sleiman, I.; et al. Structural Alterations in Subcutaneous Small Arteries of Normotensive and Hypertensive Patients with Non-Insulin-Dependent Diabetes Mellitus. Circulation 2001, 103, 1238–1244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schofield, I.; Malik, R.; Izzard, A.; Austin, C.; Heagerty, A. Vascular Structural and Functional Changes in Type 2 Diabetes Mellitus: Evidence for the Roles of Abnormal Myogenic Responsiveness and Dyslipidemia. Circulation 2002, 106, 3037–3043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, T.T.; Kawasaki, R.; Kreis, A.J.; Wang, J.J.; Shaw, J.; Vilser, W.; Wong, T.Y. Correlation of Light-Flicker-Induced Retinal Vasodilation and Retinal Vascular Caliber Measurements in Diabetes. Investig. Ophthalmol. Vis. Sci. 2009, 50, 5609–5613. [Google Scholar] [CrossRef] [PubMed]
- Lecleire-Collet, A.; Audo, I.; Aout, M.; Girmens, J.-F.; Sofroni, R.; Erginay, A.; Le Gargasson, J.-F.; Mohand-Saïd, S.; Meas, T.; Guillausseau, P.-J.; et al. Evaluation of Retinal Function and Flicker Light-Induced Retinal Vascular Response in Normotensive Patients with Diabetes without Retinopathy. Investig. Ophthalmol. Vis. Sci. 2011, 52, 2861–2867. [Google Scholar] [CrossRef] [PubMed]
- Govoni, V.; Sanders, T.A.B.; Reidlinger, D.P.; Darzi, J.; Berry, S.E.E.; Goff, L.M.; Seed, P.T.; Chowienczyk, P.J.; Hall, W.L. Compliance with Dietary Guidelines Affects Capillary Recruitment in Healthy Middle-Aged Men and Women. Eur. J. Nutr. 2017, 56, 1037–1044. [Google Scholar] [CrossRef] [Green Version]
- Gopinath, B.; Flood, V.M.; Wang, J.J.; Rochtchina, E.; Wong, T.Y.; Mitchell, P. Is Quality of Diet Associated with the Microvasculature? An Analysis of Diet Quality and Retinal Vascular Calibre in Older Adults. Br. J. Nutr. 2013, 110, 739–746. [Google Scholar] [CrossRef] [Green Version]
- Gopinath, B.; Flood, V.M.; Wang, J.J.; Smith, W.; Rochtchina, E.; Louie, J.C.Y.; Wong, T.Y.; Brand-Miller, J.; Mitchell, P. Carbohydrate Nutrition Is Associated with Changes in the Retinal Vascular Structure and Branching Pattern in Children. Am. J. Clin. Nutr. 2012, 95, 1215–1222. [Google Scholar] [CrossRef] [Green Version]
- Stanhewicz, A.E.; Alexander, L.M.; Kenney, W.L. Folic Acid Supplementation Improves Microvascular Function in Older Adults through Nitric Oxide-Dependent Mechanisms. Clin. Sci. 2015, 129, 159–167. [Google Scholar] [CrossRef]
- Hu, B.-J.; Hu, Y.-N.; Lin, S.; Ma, W.-J.; Li, X.-R. Application of Lutein and Zeaxanthin in Nonproliferative Diabetic Retinopathy. Int. J. Ophthalmol. 2011, 4, 303–306. [Google Scholar]
- Kowluru, R.A.; Odenbach, S. Effect of Long-Term Administration of Alpha-Lipoic Acid on Retinal Capillary Cell Death and the Development of Retinopathy in Diabetic Rats. Diabetes 2004, 53, 3233–3238. [Google Scholar] [CrossRef] [Green Version]
- Shi, C.; Wang, P.; Airen, S.; Brown, C.; Liu, Z.; Townsend, J.H.; Wang, J.; Jiang, H. Nutritional and Medical Food Therapies for Diabetic Retinopathy. Eye Vis. 2020, 7, 33. [Google Scholar] [CrossRef] [PubMed]
- Di Marco, E.; Jha, J.C.; Sharma, A.; Wilkinson-Berka, J.L.; Jandeleit-Dahm, K.A.; de Haan, J.B. Are Reactive Oxygen Species Still the Basis for Diabetic Complications? Clin. Sci. 2015, 129, 199–216. [Google Scholar] [CrossRef] [PubMed]
- Sedeek, M.; Montezano, A.C.; Hebert, R.L.; Gray, S.P.; Di Marco, E.; Jha, J.C.; Cooper, M.E.; Jandeleit-Dahm, K.; Schiffrin, E.L.; Wilkinson-Berka, J.L.; et al. Oxidative Stress, Nox Isoforms and Complications of Diabetes--Potential Targets for Novel Therapies. J. Cardiovasc. Transl. Res. 2012, 5, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Neugebauer, S.; Baba, T.; Kurokawa, K.; Watanabe, T. Defective Homocysteine Metabolism as a Risk Factor for Diabetic Retinopathy. Lancet 1997, 349, 473–474. [Google Scholar] [CrossRef]
- Satyanarayana, A.; Balakrishna, N.; Pitla, S.; Reddy, P.Y.; Mudili, S.; Lopamudra, P.; Suryanarayana, P.; Viswanath, K.; Ayyagari, R.; Reddy, G.B. Status of B-Vitamins and Homocysteine in Diabetic Retinopathy: Association with Vitamin-B12 Deficiency and Hyperhomocysteinemia. PLoS One 2011, 6, e26747. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Li, J.; Chen, X.; She, H.; Zhao, L.; Peng, Y.; Zhang, J.; Shang, K.; Li, H.; Yang, W.; et al. Association Between Folic Acid Supplementation and Retinal Atherosclerosis in Chinese Adults With Hypertension Complicated by Diabetes Mellitus. Front. Pharmacol. 2018, 9, 1159. [Google Scholar] [CrossRef]
- Gopinath, B.; Wang, J.J.; Flood, V.M.; Burlutsky, G.; Wong, T.Y.; Mitchell, P. The Associations between Blood Levels of Homocysteine, Folate, Vitamin B12, and Retinal Vascular Caliber. Am. J. Ophthalmol. 2009, 148, 902–909. [Google Scholar] [CrossRef]
- Johra, F.T.; Bepari, A.K.; Bristy, A.T.; Reza, H.M. A Mechanistic Review of β-Carotene, Lutein, and Zeaxanthin in Eye Health and Disease. Antioxidants 2020, 9, 1046. [Google Scholar] [CrossRef]
- Neelam, K.; Goenadi, C.J.; Lun, K.; Yip, C.C.; Au Eong, K.-G. Putative Protective Role of Lutein and Zeaxanthin in Diabetic Retinopathy. Br. J. Ophthalmol. 2017, 101, 551–558. [Google Scholar] [CrossRef]
- Lawler, T.; Korger, J.; Liu, Y.; Liu, Z.; Pak, J.W.; Barrett, N.; Blodi, B.; Domalpally, A.; Johnson, E.; Wallace, R.; et al. Serum and Macular Carotenoids in Relation to Retinal Vessel Caliber Fifteen Years Later, in the Second Carotenoids in Age-Related Eye Disease Study. Investig. Ophthalmol. Vis. Sci. 2021, 62, 20. [Google Scholar] [CrossRef]
- Goss-Sampson, M.A.; Kriss, T.; Muller, D.P. Retinal Abnormalities in Experimental Vitamin E Deficiency. Free Radic. Biol. Med. 1998, 25, 457–462. [Google Scholar] [CrossRef]
- Amemiya, T. Photoreceptor Outer Segment and Retinal Pigment Epithelium in Vitamin E Deficient Rats. An Electron Microscopic and Electron Histochemical Study. Albrecht Von Graefes Arch. Klin. Exp. Ophthalmol. 1981, 216, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Hayes, K.C. Retinal Degeneration in Monkeys Induced by Deficiencies of Vitamin E or A. Investig. Ophthalmol. 1974, 13, 499–510. [Google Scholar]
- Sparrow, J.R.; Ueda, K.; Zhou, J. Complement Dysregulation in AMD: RPE-Bruch’s Membrane-Choroid. Mol. Aspects Med. 2012, 33, 436–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyazawa, T.; Tsuzuki, T.; Nakagawa, K.; Igarashi, M. Antiangiogenic Potency of Vitamin E. Ann. N. Y. Acad. Sci. 2004, 1031, 401–404. [Google Scholar] [CrossRef] [PubMed]
- Abu-Amero, K.K.; Kondkar, A.A.; Chalam, K.V. Resveratrol and Ophthalmic Diseases. Nutrients 2016, 8, 200. [Google Scholar] [CrossRef] [Green Version]
- Nagineni, C.N.; Raju, R.; Nagineni, K.K.; Kommineni, V.K.; Cherukuri, A.; Kutty, R.K.; Hooks, J.J.; Detrick, B. Resveratrol Suppresses Expression of VEGF by Human Retinal Pigment Epithelial Cells: Potential Nutraceutical for Age-Related Macular Degeneration. Aging Dis. 2014, 5, 88–100. [Google Scholar] [CrossRef]
- Losso, J.N.; Truax, R.E.; Richard, G. Trans-Resveratrol Inhibits Hyperglycemia-Induced Inflammation and Connexin Downregulation in Retinal Pigment Epithelial Cells. J. Agric. Food Chem. 2010, 58, 8246–8252. [Google Scholar] [CrossRef]
- Richer, S.; Stiles, W.; Ulanski, L.; Carroll, D.; Podella, C. Observation of Human Retinal Remodeling in Octogenarians with a Resveratrol Based Nutritional Supplement. Nutrients 2013, 5, 1989–2005. [Google Scholar] [CrossRef]
- Behl, T.; Kotwani, A. Omega-3 Fatty Acids in Prevention of Diabetic Retinopathy. J. Pharm. Pharmacol. 2017, 69, 946–954. [Google Scholar] [CrossRef] [Green Version]
- Delmas, D.; Cornebise, C.; Courtaut, F.; Xiao, J.; Aires, V. New Highlights of Resveratrol: A Review of Properties against Ocular Diseases. Int. J. Mol. Sci. 2021, 22, 1295. [Google Scholar] [CrossRef] [PubMed]
- Zeng, K.; Ming, J.; Yang, N.; Wang, J.; Yu, X.; Song, Y.; Yang, Y. Taurine Prevents High Glucose-Induced Angiopoietin-2/tie-2 System Alterations and Apoptosis in Retinal Microvascular Pericytes. Mol. Cell. Biochem. 2014, 396, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Del Pinto, R.; Wright, J.T.; Monaco, A.; Pietropaoli, D.; Ferri, C. Vitamin D and Blood Pressure Control among Hypertensive Adults: Results from NHANES 2001-2014. J. Hypertens. 2020, 38, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Luo, B.-A.; Gao, F.; Qin, L.-L. The Association between Vitamin D Deficiency and Diabetic Retinopathy in Type 2 Diabetes: A Meta-Analysis of Observational Studies. Nutrients 2017, 9, 307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Pinto, R.; Pietropaoli, D.; Chandar, A.K.; Ferri, C.; Cominelli, F. Association Between Inflammatory Bowel Disease and Vitamin D Deficiency: A Systematic Review and Meta-Analysis. Inflamm. Bowel Dis. 2015, 21, 2708–2717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Pinto, R.; Ferri, C.; Cominelli, F. Vitamin D Axis in Inflammatory Bowel Diseases: Role, Current Uses and Future Perspectives. Int. J. Mol. Sci. 2017, 18, 2360. [Google Scholar] [CrossRef] [Green Version]
- Del Pinto, R.; Pietropaoli, D.; Monaco, A.; Desideri, G.; Ferri, C.; Grassi, D. Non-Pharmacological Strategies Against Systemic Inflammation: Molecular Basis and Clinical Evidence. Curr. Pharm. Des. 2020, 26, 2620–2629. [Google Scholar] [CrossRef]
- Avery, E.G.; Bartolomaeus, H.; Maifeld, A.; Marko, L.; Wiig, H.; Wilck, N.; Rosshart, S.P.; Forslund, S.K.; Müller, D.N. The Gut Microbiome in Hypertension: Recent Advances and Future Perspectives. Circ. Res. 2021, 128, 934–950. [Google Scholar] [CrossRef]
- Ozkul, C.; Yalinay, M.; Karakan, T. Structural Changes in Gut Microbiome after Ramadan Fasting: A Pilot Study. Benef. Microbes 2020, 11, 227–233. [Google Scholar] [CrossRef]
- Guevara-Cruz, M.; Flores-López, A.G.; Aguilar-López, M.; Sánchez-Tapia, M.; Medina-Vera, I.; Díaz, D.; Tovar, A.R.; Torres, N. Improvement of Lipoprotein Profile and Metabolic Endotoxemia by a Lifestyle Intervention That Modifies the Gut Microbiota in Subjects With Metabolic Syndrome. J. Am. Heart Assoc. 2019, 8, e012401. [Google Scholar] [CrossRef]
- Sun, M.; Wu, W.; Chen, L.; Yang, W.; Huang, X.; Ma, C.; Chen, F.; Xiao, Y.; Zhao, Y.; Ma, C.; et al. Microbiota-Derived Short-Chain Fatty Acids Promote Th1 Cell IL-10 Production to Maintain Intestinal Homeostasis. Nat. Commun. 2018, 9, 3555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinolo, M.A.R.; Hatanaka, E.; Lambertucci, R.H.; Newsholme, P.; Curi, R. Effects of Short Chain Fatty Acids on Effector Mechanisms of Neutrophils. Cell Biochem. Funct. 2009, 27, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Noailles, A.; Maneu, V.; Campello, L.; Lax, P.; Cuenca, N. Systemic Inflammation Induced by Lipopolysaccharide Aggravates Inherited Retinal Dystrophy. Cell Death Dis. 2018, 9, 350. [Google Scholar] [CrossRef] [PubMed]
- Katsi, V.K.; Marketou, M.E.; Vrachatis, D.A.; Manolis, A.J.; Nihoyannopoulos, P.; Tousoulis, D.; Vardas, P.E.; Kallikazaros, I. Essential Hypertension in the Pathogenesis of Age-Related Macular Degeneration: A Review of the Current Evidence. J. Hypertens. 2015, 33, 2382–2388. [Google Scholar] [CrossRef] [PubMed]
- Andriessen, E.M.; Wilson, A.M.; Mawambo, G.; Dejda, A.; Miloudi, K.; Sennlaub, F.; Sapieha, P. Gut Microbiota Influences Pathological Angiogenesis in Obesity-Driven Choroidal Neovascularization. EMBO Mol. Med. 2016, 8, 1366–1379. [Google Scholar] [CrossRef]
Retinal Vessel Measures | MA Patients (n = 18) | Healthy Controls (n = 17) | p-Value |
---|---|---|---|
WLR * (mean, SD) | 0.29 ± 0.05 | 0.25 ± 0.03 | 0.008 |
WCSA ** (mean, SD) | 4876 ± 976 | 4004 ± 872 | 0.012 |
Internal diameter (mean, SD) | 96.25 ± 13.14 | 94.76 ± 13.15 | NS |
External diameter (mean, SD) | 124.78 ± 14.54 | 117.8 ± 15.30 | NS |
Wall thickness (mean, SD) | 13.92 ± 1.53 | 11.87 ± 1.50 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Del Pinto, R.; Mulè, G.; Vadalà, M.; Carollo, C.; Cottone, S.; Agabiti Rosei, C.; De Ciuceis, C.; Rizzoni, D.; Ferri, C.; Muiesan, M.L. Arterial Hypertension and the Hidden Disease of the Eye: Diagnostic Tools and Therapeutic Strategies. Nutrients 2022, 14, 2200. https://doi.org/10.3390/nu14112200
Del Pinto R, Mulè G, Vadalà M, Carollo C, Cottone S, Agabiti Rosei C, De Ciuceis C, Rizzoni D, Ferri C, Muiesan ML. Arterial Hypertension and the Hidden Disease of the Eye: Diagnostic Tools and Therapeutic Strategies. Nutrients. 2022; 14(11):2200. https://doi.org/10.3390/nu14112200
Chicago/Turabian StyleDel Pinto, Rita, Giuseppe Mulè, Maria Vadalà, Caterina Carollo, Santina Cottone, Claudia Agabiti Rosei, Carolina De Ciuceis, Damiano Rizzoni, Claudio Ferri, and Maria Lorenza Muiesan. 2022. "Arterial Hypertension and the Hidden Disease of the Eye: Diagnostic Tools and Therapeutic Strategies" Nutrients 14, no. 11: 2200. https://doi.org/10.3390/nu14112200
APA StyleDel Pinto, R., Mulè, G., Vadalà, M., Carollo, C., Cottone, S., Agabiti Rosei, C., De Ciuceis, C., Rizzoni, D., Ferri, C., & Muiesan, M. L. (2022). Arterial Hypertension and the Hidden Disease of the Eye: Diagnostic Tools and Therapeutic Strategies. Nutrients, 14(11), 2200. https://doi.org/10.3390/nu14112200