A New Evidence-Based Diet Score to Capture Associations of Food Consumption and Chronic Disease Risk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Evidence-Based Selection of Food Groups
2.2. Construction of Diet Score
2.3. Relative Validity and Reliability of the Diet Score
3. Results
3.1. Evidence-Based Selection of Food Groups for Healthy Eating
Food Group | DGE Recommendation | Evidence from Systematic Literature Reviews of Prospective Cohort Studies and Intervention Studies | |||
---|---|---|---|---|---|
Type 2 Diabetes | Coronary Heart Disease | Stroke | Cancer | ||
BREAD AND CEREALS | Daily 4–6 slices (200–300 g) bread or 3–5 slices (150–250 g) bread and 50–60 g cereals. Choose the whole grain variants. | Reduced risk of incident type 2 diabetes [19]. Each additional 30 g whole grain intake: RR = 0.87; 95%-CI 0.82–0.93 [9]. | Comparing highest vs. lowest intake: CHD: RR = 0.85; 95%-CI 0.81–0.90 HF: RR = 0.91; 95%-CI 0.85–0.97. Each additional 30 g whole grain intake: CHD: RR = 0.95; 95%-CI 0.92–0.98 HF: RR = 0.96; 95%-CI 0.95–0.97 [11]. | Comparing highest vs. lowest intake: n.s. Each additional 30 g whole grain intake: n.s. [11]. | Comparing highest vs. lowest intake: 34% reduced risk [22]. |
FERMENTED DAIRY PRODUCTS | Only dairy in general: daily 200–250 g milk and dairy products and two slices (50–60 g) of cheese. If you want to restrict your calorie intake, choose the low-fat variants. | 80 g/day vs. 0 g/day yogurt: RR = 0.86; 95%-CI 0.83–0.90. Per 30 g/day increase in cheese intake: RR = 0.80; 95%-CI 0.69–0.93 [23]. | Per 200 g/day increase: RR = 0.98; 95%-CI 0.97–0.99 [24]. | Highest vs. lowest: RR = 0.80; 95%-CI 0.71–0.89 [24]. | Highest vs. lowest intake: Total cancer: OR = 0.86; 95%-CI 0.80–0.92 [23]. Bladder cancer: RR = 0.78; 95%-CI 0.61–0.94 [26]. |
RAW AND COOKED VEGETABLES | Daily at least three portions (400 g) of vegetable 300 g cooked vegetables and 100 g raw vegetables/salad or 200 g cooked vegetables and 200 g raw vegetables/salad. Consider eating both cooked and raw vegetables. | Per 100 g/day increase: RR = 0.98; 95%-CI 0.96–1.00 [10]. Intake up to 300 g/day: Risk reduction by 9% [9]. | Highest vs. lowest intake: CVD: RR = 0.94; 95%-CI 0.90–97. CHD: RR = 0.92; 95%-CI 0.87–0.96 [30]. | Highest vs. lowest intake: RR = 0.88; 95%-CI 0.83–0.93 [30]. | Highest vs. lowest intake: Colorectal cancer: RR = 0.96; 95%-CI 0.92–1.00. Per 100 g increase: Colorectal cancer: RR = 0.97; 95%-CI 0.96–0.98 [12]. |
FRUITS | Daily at least two portions (250 g) of fruits. If possible, try to eat the fruits with peel and fresh. | Per 100 g/day increase: RR = 0.98; 95%-CI 0.97–1.00 [10]. Intake up to 200–300 g/day: Risk reduction by 10% [9]. | Highest vs. lowest intake: CVD: RR = 0.91; 95%-CI 0.88–0.95. CHD: RR = 0.88; 95%-CI 0.84–0.92 [30] | Highest vs. lowest intake: RR = 0.82; 95%-CI 0.79–0.85 [30]. | Highest vs. lowest intake: Colorectal Cancer: RR = 0.93; 95%-CI 0.88–0.98. Per 100 g increase: Colorectal cancer: RR = 0.97; 95%-CI 0.95–0.99 [12]. |
UNSALTED NUTS | Daily 25 g nuts can replace one portion of fruits. | Highest vs. lower intake: RR = 0.95; 95%-CI 0.85–1.05) [9]. Per 28 g/day increase: RR = 0.89; 95%-CI 0.71–1.12 [9]. | Highest vs. lowest intake: RR = 0.80; 95%-CI 0.62–1.03 [11]. Per 28 g increase: RR = 0.67; 95%-CI 0.43–1.05 [11]. | Highest vs. lowest intake: RR = 0.94; 95%-CI 0.85 1.05 [11]. Per 28 g increase: RR = 0.99; 95%-CI 0.84–1.17 [11]. | Highest vs. lowest intake: Colorectal cancer: RR =0.96; 95%-CI 0.90–1.02. Per 28 g increase: Colorectal cancer: RR = 0.96; 95%-CI 0.76–1.21 [12]. |
LEGUMES | Legumes are a good source of proteins. | Per 50 g/day: RR = 1.00; 95%-CI 0.92–1.09 [10]. | Highest vs. lowest intake: CHD: RR = 0.91; 95%-CI 0.84–0.99. Per 50 g increase: CHD: RR = 0.96; 95%-CI 0.92–1.01 [11]. Per four weekly 100 g-servings: IHD: RR = 0.86; 95%-CI 0.78–0.94 [31]. | Highest vs. lowest intake: RR = 0.98; 95%-CI 0.88–1.10. Per 50 g increase: RR = 1.00; 95%-CI 0.88–1.13 [11]. | Highest vs. lowest intake: Colorectal cancer: RR = 0.99; 95%-CI 0.92–1.06. Per 50 g increase: Colorectal cancer: RR = 1.00; 95%-CI 0.92–1.08 [12]. |
FISH | Weekly one portion (80–150 g) of marine fish (e.g., cod or Norway haddock) and one portion (70 g) of fatty marine fish (e.g., salmon, mackerel or herring). | 166 g vs. 0 g: RR = 1.01; 95%-CI 0.92–1.22 [10]. | Highest vs. lowest intake: CHD: RR = 0.94; 95%-CI 0.88–1.02. Per 100 g increase: CHD: RR = 0.88; 95%-CI 0.79–0.99 [11]. | Highest vs. lowest intake: RR = 0.95; 95%-CI 0.89–1.01. Per 100 g increase: RR = 0.86; 95%-CI 0.75–0.99 [11]. | Highest vs. lowest intake: Colorectal cancer: RR = 0.96; 95%-CI 0.90–1.01. Per 100 g increase: Colorectal cancer: RR = 0.93; 95%-CI 0.85–1.01 [12]. |
PROPORTION OF FATTY FISH | 166 g vs. 0 g of oily fish: RR = 0.89; 95%-CI 0.82–0.96 [10]. | 1–2 servings of seafood rich in long chain n3 PUFA recommended to reduce risk of CHD [32]. | 1–2 servings of seafood rich in long chain n3 PUFA recommended to reduce risk of stroke [32]. | / | |
RED MEAT | Meat and animal products in general. Weekly up to 300–600g lean meat and lean processed meat. | Per 100 g/day: RR = 1.11; 95%-CI 0.97–1.28 [10]. | Highest vs. lowest intake: CHD: RR = 1.16; 95%-CI 1.08–1.24. Per 100 g increase: CHD: RR = 1.15; 95%-CI 1.08–1.23 [11]. | Highest vs. lowest intake: RR = 1.16; 95%-CI 1.08–1.25. Per 100 g increase: RR = 1.12; 95%-CI 1.06–1.17 [11]. | Highest vs. lowest intake: Colorectal cancer: RR = 1.12; 95%-CI 1.06–1.18. Per 100 g increase: Colorectal cancer: RR = 1.12; 95%-CI 1.06–1.19 [12]. |
PROCESSED MEAT | Per 50 g/day: RR = 1.44; 95%-CI 1.18–1.76 [10]. | Highest vs. lowest intake: CHD: RR = 1.15; 95%-CI 0.99–1.33. Per 50 g increase: CHD: RR = 1.27; 95%-CI 1.09–1.49 [11]. | Highest vs. lowest intake: RR = 1.16; 95%-CI 1.07–1.26. Per 50 g increase: RR = 1.17; 95%-CI 1.02–1.34 [11]. | Highest vs. lowest intake: Colorectal cancer: RR = 1.14; 95%-CI 1.06–1.21. Per 50 g increase: Colorectal cancer: RR = 1.17; 95%-CI 1.10–1.23 [12]. | |
VEGETABLE OILS | Fats and oils in general. Daily 10–15 g oil (e.g., rapeseed-, walnut-, or soybean oil) and 15–30 g margarine or butter. Preferably use oils from plants. | Per 10 g/day increase in olive oil intake: RR = 0.91; 95%-CI 0.87–0.96 [10]. Per 13 g/day increase in vegetable fat: RR = 0.81; 95%-CI 0.76–0.88 [39]. | Per 25 g/day increase in olive oil intake: n.s. convincing evidence for partial replacement of SFA with PUFA decreases CVD risk, especially in men [42]. | Per 25 g/day increase in olive oil intake: RR = 0.76; 95%-CI 0.67–0.86 [40]. | Limited-suggestive evidence for inverse association of intake of ALA on prostate cancer [42] |
SUGAR- SWEETENED BEVERAGES | Beverages in general Daily circa 1.5 L of water or unsweetened tea. Preferably drink calorie-free/poor beverages. | Per one serving/day: RR = 1.26; 95%-CI 1.11–1.43 [10]. | Highest vs. lowest intake: CHD: RR = 1.10; 95%-CI 1.01–1.20. Per 250 mL increase: CHD: RR = 1.17; 95%-CI 1.11–1.23 [11]. | Highest vs. lowest intake: RR = 1.09; 95%-CI 1.01–1.18. Per 250 mL increase: RR = 1.07; 95%-CI 1.02–1.12 [11]. | n.s. [12]. |
3.2. Construction of the Diet Score for Healthy Eating
Comparison of the New Diet Score with Existing Diet Scores for Healthy Eating
3.3. Reliability and Relative Validity of the Diet Score for Healthy Eating
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Jannasch, F.; Kroger, J.; Schulze, M.B. Dietary Patterns and Type 2 Diabetes: A Systematic Literature Review and Meta-Analysis of Prospective Studies. J. Nutr. 2017, 147, 1174–1182. [Google Scholar] [CrossRef] [Green Version]
- Galbete, C.; Kroger, J.; Jannasch, F.; Iqbal, K.; Schwingshackl, L.; Schwedhelm, C.; Weikert, C.; Boeing, H.; Schulze, M.B. Evaluating Mediterranean diet and risk of chronic disease in cohort studies: An umbrella review of meta-analyses. Eur. J. Epidemiol. 2018, 33, 909–931. [Google Scholar] [CrossRef] [Green Version]
- Mithril, C.; Dragsted, L.O.; Meyer, C.; Blauert, E.; Holt, M.K.; Astrup, A. Guidelines for the New Nordic Diet. Public Health Nutr. 2012, 15, 1941–1947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Appel, L.J.; Moore, T.J.; Obarzanek, E.; Vollmer, W.M.; Svetkey, L.P.; Sacks, F.M.; Bray, G.A.; Vogt, T.M.; Cutler, J.A.; Windhauser, M.M.; et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N. Engl. J. Med. 1997, 336, 1117–1124. [Google Scholar] [CrossRef] [Green Version]
- McCullough, M.L.; Feskanich, D.; Stampfer, M.J.; Rosner, B.A.; Hu, F.B.; Hunter, D.J.; Variyam, J.N.; Colditz, G.A.; Willett, W.C. Adherence to the Dietary Guidelines for Americans and risk of major chronic disease in women. Am. J. Clin. Nutr. 2000, 72, 1214–1222. [Google Scholar] [CrossRef]
- McCullough, M.L.; Feskanich, D.; Rimm, E.B.; Giovannucci, E.L.; Ascherio, A.; Variyam, J.N.; Spiegelman, D.; Stampfer, M.J.; Willettet, W.C. Adherence to the Dietary Guidelines for Americans and risk of major chronic disease in men. Am. J. Clin. Nutr. 2000, 72, 1223–1231. [Google Scholar] [CrossRef] [Green Version]
- McCullough, M.L.; Feskanich, D.; Stampfer, M.J.; Giovannucci, E.L.; Rimm, E.B.; Hu, F.B.; Spiegelman, D.; Hunter, D.J.; Colditz, G.A.; Willett, W.C. Diet quality and major chronic disease risk in men and women: Moving toward improved dietary guidance. Am. J. Clin. Nutr. 2002, 76, 1261–1271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwingshackl, L.; Hoffmann, G.; Lampousi, A.M.; Knuppel, S.; Iqbal, K.; Schwedhelm, C.; Bechthold, A.; Schlesinger, S.; Boeing, H. Food groups and risk of type 2 diabetes mellitus: A systematic review and meta-analysis of prospective studies. Eur. J. Epidemiol. 2017, 32, 363–375. [Google Scholar] [CrossRef] [Green Version]
- Neuenschwander, M.; Ballon, A.; Weber, K.S.; Norat, T.; Aune, D.; Schwingshackl, L.; Schlesinger, S. Role of diet in type 2 diabetes incidence: Umbrella review of meta-analyses of prospective observational studies. BMJ 2019, 366, l2368. [Google Scholar] [CrossRef] [Green Version]
- Bechthold, A.; Boeing, H.; Schwedhelm, C.; Hoffmann, G.; Knuppel, S.; Iqbal, K.; De Henauw, S.; Michels, N.; Devleesschauwer, B.; Schlesinger, S.; et al. Food groups and risk of coronary heart disease, stroke and heart failure: A systematic review and dose-response meta-analysis of prospective studies. Crit. Rev. Food Sci. Nutr. 2019, 59, 1071–1090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwingshackl, L.; Schwedhelm, C.; Hoffmann, G.; Knuppel, S.; Laure Preterre, A.; Iqbal, K.; Bechthold, A.; De Henauw, S.; Michels, N.; Devleesschauwer, B.; et al. Food groups and risk of colorectal cancer. Int. J. Cancer 2018, 142, 1748–1758. [Google Scholar] [CrossRef] [Green Version]
- von Ruesten, A.; Illner, A.K.; Buijsse, B.; Heidemann, C.; Boeing, H. Adherence to recommendations of the German food pyramid and risk of chronic diseases: Results from the EPIC-Potsdam study. Eur. J. Clin. Nutr. 2010, 64, 1251–1259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deutsche Gesellschaft für Ernährung e.V., Bonn. DGE-Ernährungskreis—Beispiel für eine Vollwertige Lebensmittelauswahl. Available online: https://www.dge.de/ernaehrungspraxis/vollwertige-ernaehrung/ernaehrungskreis/ (accessed on 3 May 2021).
- Oberritter, H.S.; Schäbethal, K.; von Ruesten, A.; Boeing, H. The DGE Nutrition Circle—Presentation and Basis of the Food-Related Recommendations from the German Nutrition Society (DGE). Ernährungsumschau Int. 2013, 60, 24–29. [Google Scholar]
- Jungvogel, A.; Michel, M.; Bechthold, A.; Wendt, I. Die lebensmittelbezogenen Ernährungsempfehlungen der DGE. Ernährungsumschau 2016, 63, M474–M481. [Google Scholar]
- Tong, T.Y.; Wareham, N.J.; Khaw, K.T.; Imamura, F.; Forouhi, N.G. Prospective association of the Mediterranean diet with cardiovascular disease incidence and mortality and its population impact in a non-Mediterranean population: The EPIC-Norfolk study. BMC Med. 2016, 14, 135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galbete, C.; Kroger, J.; Jannasch, F.; Iqbal, K.; Schwingshackl, L.; Schwedhelm, C.; Weikert, C.; Boeing, H.; Schulze, M.B. Nordic diet, Mediterranean diet, and the risk of chronic diseases: The EPIC-Potsdam study. BMC Med. 2018, 16, 99. [Google Scholar] [CrossRef]
- Jannasch, F.; Nickel, D.; Schulze, M.B. The reliability and relative validity of predefined dietary patterns were higher than that of exploratory dietary patterns in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam population. Br. J. Nutr. 2020, 125, 1270–1280. [Google Scholar] [CrossRef]
- Lu, L.; Shara, N. Reliability analysis: Calculate and Compare Intra-class Correlation Coefficients (ICC) in SAS. Northeast. SAS Users Group 2007, 2007, 1–4. [Google Scholar]
- Mozaffarian, D. Dietary and Policy Priorities for Cardiovascular Disease, Diabetes, and Obesity: A Comprehensive Review. Circulation 2016, 133, 187–225. [Google Scholar] [CrossRef]
- Gaesser, G.A. Whole Grains, Refined Grains, and Cancer Risk: A Systematic Review of Meta-Analyses of Observational Studies. Nutrients 2020, 12, 3756. [Google Scholar] [CrossRef]
- Guo, J.; Givens, D.I.; Astrup, A.; Bakker, S.J.L.; Goossens, G.H.; Kratz, M.; Marette, A.; Pijl, H.; Soedamah-Muthu, S.S. The Impact of Dairy Products in the Development of Type 2 Diabetes: Where Does the Evidence Stand in 2019? Adv. Nutr. 2019, 10, 1066–1075. [Google Scholar] [CrossRef] [Green Version]
- Fontecha, J.; Calvo, M.V.; Juarez, M.; Gil, A.; Martinez-Vizcaino, V. Milk and Dairy Product Consumption and Cardiovascular Diseases: An Overview of Systematic Reviews and Meta-Analyses. Adv. Nutr. 2019, 10 (Suppl. S2), S164–S189. [Google Scholar] [CrossRef]
- Zhang, K.; Dai, H.; Liang, W.; Zhang, L.; Deng, Z. Fermented dairy foods intake and risk of cancer. Int. J. Cancer 2019, 144, 2099–2108. [Google Scholar] [CrossRef] [PubMed]
- Bermejo, L.M.; Lopez-Plaza, B.; Santurino, C.; Cavero-Redondo, I.; Gomez-Candela, C. Milk and Dairy Product Consumption and Bladder Cancer Risk: A Systematic Review and Meta-Analysis of Observational Studies. Adv. Nutr. 2019, 10 (Suppl. S2), S224–S238. [Google Scholar] [CrossRef] [PubMed]
- Gijsbers, L.; Ding, E.L.; Malik, V.S.; de Goede, J.; Geleijnse, J.M.; Soedamah-Muthu, S.S. Consumption of dairy foods and diabetes incidence: A dose-response meta-analysis of observational studies. Am. J. Clin. Nutr. 2016, 103, 1111–1124. [Google Scholar] [CrossRef] [Green Version]
- Drouin-Chartier, J.P.; Cote, J.A.; Labonte, M.E.; Brassard, D.; Tessier-Grenier, M.; Desroches, S.; Couture, P.; Lamarche, B. Comprehensive Review of the Impact of Dairy Foods and Dairy Fat on Cardiometabolic Risk. Adv. Nutr. 2016, 7, 1041–1051. [Google Scholar] [CrossRef] [PubMed]
- Boeing, H.; Bechthold, A.; Bub, A.; Ellinger, S.; Haller, D.; Kroke, A.; Leschik-Bonnet, E.; Muller, M.J.; Oberritter, H.; Schulze, M.; et al. Critical review: Vegetables and fruit in the prevention of chronic diseases. Eur. J. Nutr. 2012, 51, 637–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zurbau, A.; Au-Yeung, F.; Blanco Mejia, S.; Khan, T.A.; Vuksan, V.; Jovanovski, E.; Leiter, L.A.; Kendall, C.W.C.; Jenkins, D.J.A.; Sievenpiper, J.L. Relation of Different Fruit and Vegetable Sources With Incident Cardiovascular Outcomes: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. J. Am. Heart Assoc. 2020, 9, e017728. [Google Scholar] [CrossRef] [PubMed]
- Afshin, A.; Micha, R.; Khatibzadeh, S.; Mozaffarian, D. Consumption of nuts and legumes and risk of incident ischemic heart disease, stroke, and diabetes: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2014, 100, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Rimm, E.B.; Appel, L.J.; Chiuve, S.E.; Djousse, L.; Engler, M.B.; Kris-Etherton, P.M.; Mozaffarian, D.; Siscovick, D.S.; Lichtenstein, A.H.; American Heart Association Nutrition Committee of the Council on Lifestyle Cardiometabolic; et al. Seafood Long-Chain n-3 Polyunsaturated Fatty Acids and Cardiovascular Disease: A Science Advisory From the American Heart Association. Circulation 2018, 138, e35–e47. [Google Scholar] [CrossRef] [PubMed]
- Pan, A.; Chen, M.; Chowdhury, R.; Wu, J.H.; Sun, Q.; Campos, H.; Mozaffarian, D.; Hu, F.B. alpha-Linolenic acid and risk of cardiovascular disease: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2012, 96, 1262–1273. [Google Scholar] [CrossRef]
- Wei, J.; Hou, R.; Xi, Y.; Kowalski, A.; Wang, T.; Yu, Z.; Hu, Y.; Chandrasekar, E.K.; Sun, H.; Ali, M.K. The association and dose-response relationship between dietary intake of alpha-linolenic acid and risk of CHD: A systematic review and meta-analysis of cohort studies. Br. J. Nutr. 2018, 119, 83–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mozaffarian, D.; Micha, R.; Wallace, S. Effects on coronary heart disease of increasing polyunsaturated fat in place of saturated fat: A systematic review and meta-analysis of randomized controlled trials. PLoS Med. 2010, 7, e1000252. [Google Scholar] [CrossRef]
- Hooper, L.; Al-Khudairy, L.; Abdelhamid, A.S.; Rees, K.; Brainard, J.S.; Brown, T.J.; Ajabnoor, S.M.; O’Brien, A.T.; Winstanley, L.E.; Donaldson, D.H.; et al. Omega-6 fats for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2018, 11, CD011094. [Google Scholar]
- Li, J.; Guasch-Ferre, M.; Li, Y.; Hu, F.B. Dietary intake and biomarkers of linoleic acid and mortality: Systematic review and meta-analysis of prospective cohort studies. Am. J. Clin. Nutr. 2020, 112, 150–167. [Google Scholar] [CrossRef] [PubMed]
- Schulze, M.B.; Minihane, A.M.; Saleh, R.N.M.; Riserus, U. Intake and metabolism of omega-3 and omega-6 polyunsaturated fatty acids: Nutritional implications for cardiometabolic diseases. Lancet Diabetes Endocrinol. 2020, 8, 915–930. [Google Scholar] [CrossRef]
- Neuenschwander, M.; Barbaresko, J.; Pischke, C.R.; Iser, N.; Beckhaus, J.; Schwingshackl, L.; Schlesinger, S. Intake of dietary fats and fatty acids and the incidence of type 2 diabetes: A systematic review and dose-response meta-analysis of prospective observational studies. PLoS Med. 2020, 17, e1003347. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Gonzalez, M.A.; Dominguez, L.J.; Delgado-Rodriguez, M. Olive oil consumption and risk of CHD and/or stroke: A meta-analysis of case-control, cohort and intervention studies. Br. J. Nutr. 2014, 112, 248–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imamura, F.; O’Connor, L.; Ye, Z.; Mursu, J.; Hayashino, Y.; Bhupathiraju, S.N.; Forouhi, N.G. Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: Systematic review, meta-analysis, and estimation of population attributable fraction. Br. J. Sports Med. 2016, 50, 496–504. [Google Scholar] [CrossRef] [PubMed]
- Schwab, U.; Lauritzen, L.; Tholstrup, T.; Haldorssoni, T.; Riserus, U.; Uusitupa, M.; Becker, W. Effect of the amount and type of dietary fat on cardiometabolic risk factors and risk of developing type 2 diabetes, cardiovascular diseases, and cancer: A systematic review. Food Nutr. Res. 2014, 58, 25145. [Google Scholar] [CrossRef] [Green Version]
- Schulze, M.B.; Martinez-Gonzalez, M.A.; Fung, T.T.; Lichtenstein, A.H.; Forouhi, N.G. Food based dietary patterns and chronic disease prevention. BMJ 2018, 361, k2396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morze, J.; Danielewicz, A.; Hoffmann, G.; Schwingshackl, L. Diet Quality as Assessed by the Healthy Eating Index, Alternate Healthy Eating Index, Dietary Approaches to Stop Hypertension Score, and Health Outcomes: A Second Update of a Systematic Review and Meta-Analysis of Cohort Studies. J. Acad. Nutr. Diet. 2020, 120, 1998–2031.e15. [Google Scholar] [CrossRef] [PubMed]
- Krebs-Smith, S.M.; Pannucci, T.E.; Subar, A.F.; Kirkpatrick, S.I.; Lerman, J.L.; Tooze, J.A.; Wilson, M.M.; Reedy, J. Update of the Healthy Eating Index: HEI-2015. J. Acad. Nutr. Diet. 2018, 118, 1591–1602. [Google Scholar] [CrossRef] [Green Version]
- de Koning, L.; Chiuve, S.E.; Fung, T.T.; Willett, W.C.; Rimm, E.B.; Hu, F.B. Diet-quality scores and the risk of type 2 diabetes in men. Diabetes Care 2011, 34, 1150–1156. [Google Scholar] [CrossRef] [Green Version]
- Chiuve, S.E.; Fung, T.T.; Rimm, E.B.; Hu, F.B.; McCullough, M.L.; Wang, M.; Stampfer, M.J.; Willett, W.C. Alternative dietary indices both strongly predict risk of chronic disease. J. Nutr. 2012, 142, 1009–1018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janu, C.; Kumar, D.R.S.; Reshma, M.V.; Jayamurthy, P.; Sundaresan, A.; Nisha, P. Comparative Study on the Total Phenolic Content and Radical Scavenging Activity of Common Edible Vegetable Oils. J. Food Biochem. 2014, 38, 38–49. [Google Scholar] [CrossRef]
- Tresserra-Rimbau, A.; Rimm, E.B.; Medina-Remon, A.; Martinez-Gonzalez, M.A.; de la Torre, R.; Corella, D.; Salas-Salvado, J.; Gomez-Gracia, E.; Lapetra, J.; Aros, F.; et al. Inverse association between habitual polyphenol intake and incidence of cardiovascular events in the PREDIMED study. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 639–647. [Google Scholar] [CrossRef]
- Ros, E.; Hu, F.B. Consumption of plant seeds and cardiovascular health: Epidemiological and clinical trial evidence. Circulation 2013, 128, 553–565. [Google Scholar] [CrossRef] [Green Version]
- Weickert, M.O.; Pfeiffer, A.F. Metabolic effects of dietary fiber consumption and prevention of diabetes. J. Nutr. 2008, 138, 439–442. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.W.; Major, A.W. Pulses and lipaemia, short- and long-term effect: Potential in the prevention of cardiovascular disease. Br. J. Nutr. 2002, 88 (Suppl. S3), S263–S271. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.C. Nutritional Epidemiology, 3rd ed.; Oxford University Press: Oxford, UK, 2013; Volume 40. [Google Scholar]
Recommended Intake | Maximum Score | Standard for Maximum | Standard for Minimum | |
---|---|---|---|---|
Bread and Cereals Overall Intake | Moderate intake: 3–5 portions/day. | 0.5 points. | 3–5 portions/day. | 0 < 1 portion/day. |
Proportion of Whole Grains | High intake: 100%. | 0.5 points. | 100%. | 0%. |
Fermented Dairy Products | Moderate intake: 1–2 portions/day. | 1 point. | 1–2 portions/day. | None to <1 portion/day. More than 4 portions/day. |
Raw and Cooked Vegetables | High intake: ≥3 portions/day. | 1 point. | ≥3 portions/day. | None to <1 portion/day. |
Fruits | High intake: ≥2 portions/day. | 1 point. | ≥2 portions/day. | None to <1 portion/day. |
Legumes | High intake: ≥2 portions/week. | 1 point. | ≥2 portions/week. | None to <1 portion/week. |
Unsalted Nuts | Moderate intake: 7 portions/week. | 1 point. | 7 portions/week. | None to <3 portions/week. |
Fish Overall Intake | Moderate intake: 2 portions/week. | 0.5 points. | 2 portions/week. | None to <1 portion/week. |
Proportion of Fatty Marine Fish | High intake: 100%. | 0.5 points. | 100%. | 0%. |
Meat Processed Meat | Low intake: <1 portion/week. | 0.5 points. | None to <1 portion/week. | >2 portions/week. |
Red Meat | Low intake: ≤2 portions/week. | 0.5 points. | None to 2 portions/week. | >4 portions/week. |
Vegetable Oils Intake | High intake: ≥7 times/week. | 0.5 points. | ≥7 times/week. | None to ≤3 times/week. |
General use for food preparation | High intake: 100%. | 0.5 points. | 100%. | 0%. |
Sugar-Sweetened Beverages | Low intake: 1 glass/week or less. | 1 point. | None to <1 glass/week. | ≥2 glasses/week. |
New Diet Score | German Food Pyramid Index [13] | Pyramid-based Mediterranean Diet Score [17] | Healthy Eating Index (HEI-2015) [45] | Alternative Healthy Eating Index (AHEI-2010) [47] | Dietary Approaches to Stop Hypertension (DASH) [46] |
---|---|---|---|---|---|
Bread and Cereals Proportion of Whole Grains | Cereals (incl. bread, cereals, pasta, rice, and potatoes). | Cereals. | Grains. Total grains. Whole grains. | Whole grains. | Whole grains. |
Refined grains. | |||||
Raw and Cooked Vegetables | Vegetables. | Vegetables. | Vegetables. Total vegetables. Dark Green/Orange Vegetables and Legumes. Greens and Beans. | Vegetables. | Vegetables. |
Potatoes. | |||||
Fruits | Fruits. | Fruits. | Fruits. Total fruits. Whole fruits. | Whole fruits. | Fruits. |
Legumes | - | Legumes. | - | Nuts and legumes. | Nuts and legumes. |
Nuts | - | Nuts. | - | ||
Fermented Dairy Products | Dairy (Milk, Yogurt, and Cheese). | Dairy. | Dairy. Milk/Dairy. | - | Low-fat dairy. |
Red Meat | Meat, sausages, fish, and eggs. | Red meats. | Protein Foods. Meat & Beans. Total protein foods Seafood and Plant protein. | Red and/or processed meat. | Red and/or processed meat. |
Processed Meat | Processed meats. | ||||
White meats. | |||||
Eggs. | |||||
Fish Proportion of Fatty Marine Fish | Fish. | Long-chain (n-3) fats (EPA + DHA) (mg/day). | - | ||
Vegetable Oils General use of oils for food preparation | Added fat and oils (incl. margarine, butter, and oil). | Olive oil. | Fats. Oils. (PUFA + MUFA)/SFA. | PUFA (% of energy). | - |
Sugar-Sweetened Beverages | Beverages (incl. water and fruit juice). | Alcohol. | Empty calories. Solid fats, alcohols, and added sugar. Added sugars. Saturated fats. | Sugar-sweetened beverages and fruit juice. | Sweetened beverages. |
Alcohol (sex-specific). | |||||
- | Sweets and snacks. | Sweets. | Trans fat (% of energy). | - | |
- | - | - | Sodium. | Sodium. | Low sodium intake. |
FFQb | FFQ1 | mHDR | FFQ1 vs. FFQb | FFQ1 vs. mHDR | FFQb vs. FFQ1 | FFQ1 vs. mHDR | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Std | Mean | Std | Mean | Std | Mean Difference | Std | Mean Difference | Std | r | r | rdeatt | |
Diet score | |||||||||||||
all | 3.89 | 1.05 | 3.91 | 0.97 | 4.20 | 0.95 | −0.03 | 0.97 | 0.29 | 1.04 | 0.53 | 0.41 | 0.43 |
Men | 3.69 | 1.05 | 3.77 | 1.00 | 4.18 | 1.02 | −0.08 | 1.07 | 0.41 | 1.11 | 0.46 | 0.40 | 0.42 |
Women | 4.14 | 0.99 | 4.09 | 0.90 | 4.23 | 0.87 | −0.05 | 0.83 | 0.14 | 0.94 | 0.61 | 0.43 | 0.46 |
Median | IQR | Median | IQR | Median | IQR | Mean difference | Std | Mean difference | Std | r | r | rdeatt | |
Bread and Cereals | 204 | 94.0 | 192 | 94.2 | 138 | 71.5 | 1.37 | 54.9 | −47.2 | 68.4 | 0.72 | 0.48 | 0.50 |
Vegetables | 114 | 80.5 | 128 | 66.4 | 136 | 83.4 | −0.17 | 59.7 | 16.2 | 70.1 | 0.53 | 0.30 | 0.31 |
Fruits | 141 | 133 | 156 | 129 | 235 | 171 | −10.2 | 92.2 | 69.2 | 97.9 | 0.53 | 0.58 | 0.60 |
Legumes | 1.87 | 4.39 | 2.80 | 5.07 | 0 | 8.18 | −0.28 | 4.25 | 1.19 | 9.25 | 0.57 | 0.39 | 0.42 |
Nuts | 0.95 | 3.18 | 0.73 | 1.96 | 0 | 0.82 | 1.31 | 5.70 | −0.76 | 3.62 | 0.64 | 0.32 | 0.33 |
Fermented Dairy | 1.27 | 1.00 | 1.24 | 0.76 | 1.32 | 0.80 | 0.14 | 0.95 | 0.08 | 0.71 | 0.34 | 0.51 | 0.55 |
Red Meat | 26.8 | 22.2 | 28.0 | 25.1 | 32.1 | 32.7 | 0.52 | 18.3 | 5.85 | 23.3 | 0.55 | 0.43 | 0.46 |
Processed Meat | 58.0 | 54.2 | 53.2 | 48.8 | 58.9 | 47.8 | 2.80 | 40.9 | 0.49 | 36.9 | 0.51 | 0.58 | 0.60 |
Fish | 22.2 | 22.7 | 21.6 | 20.0 | 19.2 | 28.0 | 9.47 | 56.0 | −0.57 | 20.6 | 0.30 | 0.40 | 0.42 |
Vegetable Oils | 3.31 | 3.34 | 0.86 | 0.70 | 1.84 | 2.31 | 3.24 | 3.98 | 1.30 | 2.20 | 0.07 | −0.03 | −0.03 |
SSB | 0 | 8.80 | 0 | 4.67 | 0 | 27.6 | 10.0 | 62.6 | 8.23 | 50.0 | 0.62 | 0.72 | 0.76 |
Lower Adjacent Quintile N (%) | No Change N (%) | Higher Adjacent Quintile N (%) | Opposite Quintile N (%) | Cohen’s Weighted Kappa | 95%-Confidence Interval | |
---|---|---|---|---|---|---|
Diet score | ||||||
FFQb vs. FFQ1 | 20 (14.9) | 55 (41.0) | 18 (13.4) | 2 (1.5) | 0.37 | 0.26–0.49 |
FFQ1 vs. mHDR | 20 (14.9) | 46 (34.3) | 18 (13.4) | 3 (2.2) | 0.25 | 0.13–0.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jannasch, F.; Nickel, D.V.; Bergmann, M.M.; Schulze, M.B. A New Evidence-Based Diet Score to Capture Associations of Food Consumption and Chronic Disease Risk. Nutrients 2022, 14, 2359. https://doi.org/10.3390/nu14112359
Jannasch F, Nickel DV, Bergmann MM, Schulze MB. A New Evidence-Based Diet Score to Capture Associations of Food Consumption and Chronic Disease Risk. Nutrients. 2022; 14(11):2359. https://doi.org/10.3390/nu14112359
Chicago/Turabian StyleJannasch, Franziska, Daniela V. Nickel, Manuela M. Bergmann, and Matthias B. Schulze. 2022. "A New Evidence-Based Diet Score to Capture Associations of Food Consumption and Chronic Disease Risk" Nutrients 14, no. 11: 2359. https://doi.org/10.3390/nu14112359
APA StyleJannasch, F., Nickel, D. V., Bergmann, M. M., & Schulze, M. B. (2022). A New Evidence-Based Diet Score to Capture Associations of Food Consumption and Chronic Disease Risk. Nutrients, 14(11), 2359. https://doi.org/10.3390/nu14112359