Female Endurance Runners Have a Healthier Diet than Males—Results from the NURMI Study (Step 2)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Ethical Approval
2.2. Participants and Experimental Approach
2.3. Data Clearance
2.4. Measures and Statistical Modelling
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Fluid and Alcohol
4.2. Carbohydrate Foods
4.3. Protein and Fat-Based Foods
4.4. Health Insights in Food Intake
4.5. Limitations and Strengths
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rossi, K.A. Nutritional aspects of the female athlete. Clin. Sports Med. 2017, 36, 627–653. [Google Scholar] [CrossRef] [PubMed]
- Tiller, N.B.; Elliott-Sale, K.J.; Knechtle, B.; Wilson, P.B.; Roberts, J.D.; Millet, G.Y. Do sex differences in physiology confer a female advantage in ultra-endurance sport? Sports Med. 2021, 51, 895–915. [Google Scholar] [CrossRef] [PubMed]
- Hull, M.V.; Jagim, A.R.; Oliver, J.M.; Greenwood, M.; Busteed, D.R.; Jones, M.T. Gender differences and access to a sports dietitian influence dietary habits of collegiate athletes. J. Int. Soc. Sports Nutr. 2016, 13, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, D.T.; Erdman, K.A.; Burke, L.M. Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and Athletic Performance. J. Acad. Nutr. Diet. 2016, 116, 501–528. [Google Scholar] [CrossRef]
- Burke, L.M.; Jeukendrup, A.E.; Jones, A.M.; Mooses, M. Contemporary nutrition strategies to optimize performance in distance runners and race walkers. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 117–129. [Google Scholar] [CrossRef] [Green Version]
- Deldicque, L.; Francaux, M. Recommendations for healthy nutrition in female endurance runners: An update. Front. Nutr. 2015, 2, 17. [Google Scholar] [CrossRef]
- Burrows, M.; Bird, S. The physiology of the highly trained female endurance runner. Sports Med. 2000, 30, 281–300. [Google Scholar] [CrossRef]
- Cheuvront, S.N.; Carter, R.; Deruisseau, K.C.; Moffatt, R.J. Running performance differences between men and women: An update. Sports Med. 2005, 35, 1017–1024. [Google Scholar] [CrossRef]
- Fortunato, R.S.; Ferreira, A.C.; Hecht, F.; Dupuy, C.; Carvalho, D.P. Sexual dimorphism and thyroid dysfunction: A matter of oxidative stress? J. Endocrinol. 2014, 221, R31–R40. [Google Scholar] [CrossRef]
- Duhig, T.J.; McKeag, D. Thyroid disorders in athletes. Curr. Sports Med. Rep. 2009, 8, 16–19. [Google Scholar] [CrossRef] [Green Version]
- Wasfy, M.M.; Hutter, A.M.; Weiner, R.B. Sudden cardiac death in athletes. Methodist Debakey Cardiovasc. J. 2016, 12, 76–80. [Google Scholar] [CrossRef] [Green Version]
- Maas, A.H.; Appelman, Y.E. Gender differences in coronary heart disease. Neth. Heart J. 2010, 18, 598–602. [Google Scholar] [CrossRef]
- Yusko, D.A.; Buckman, J.F.; White, H.R.; Pandina, R.J. Alcohol, tobacco, illicit drugs, and performance enhancers: A comparison of use by college student athletes and nonathletes. J. Am. Coll. Health 2008, 57, 281–290. [Google Scholar] [CrossRef] [Green Version]
- Dandoy, C.; Gereige, R.S. Performance-enhancing drugs. Pediatr. Rev. 2012, 33, 265–272. [Google Scholar] [CrossRef]
- Tarnopolsky, M.A.; Rennie, C.D.; Robertshaw, H.A.; Fedak-Tarnopolsky, S.N.; Devries, M.C.; Hamadeh, M.J. Influence of endurance exercise training and sex on intramyocellular lipid and mitochondrial ultrastructure, substrate use, and mitochondrial enzyme activity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 292, R1271–R1278. [Google Scholar] [CrossRef] [Green Version]
- Devries, M.C. Sex-based differences in endurance exercise muscle metabolism: Impact on exercise and nutritional strategies to optimize health and performance in women. Exp. Physiol. 2016, 101, 243–249. [Google Scholar] [CrossRef]
- Boldt, P.; Knechtle, B.; Nikolaidis, P.; Lechleitner, C.; Wirnitzer, G.; Leitzmann, C.; Wirnitzer, K. Sex differences in the health status of endurance runners: Results from the NURMI Study (Step 2). J. Strength Cond. Res. 2019, 33, 1929–1940. [Google Scholar] [CrossRef]
- Heydenreich, J.; Kayser, B.; Schutz, Y.; Melzer, K. Total energy expenditure, energy intake, and body composition in endurance athletes across the training season: A systematic review. Sports Med. Open 2017, 3, 8. [Google Scholar] [CrossRef] [Green Version]
- Bredella, M.A. Sex differences in body composition. Adv. Exp. Med. Biol. 2017, 1043, 9–27. [Google Scholar]
- Wardle, J.; Haase, A.M.; Steptoe, A.; Nillapun, M.; Jonwutiwes, K.; Bellisle, F. Gender differences in food choice: The contribution of health beliefs and dieting. Ann. Behav. Med. 2004, 27, 107–116. [Google Scholar] [CrossRef]
- Smee, D.; Pumpa, K.; Falchi, M.; Lithander, F. The relationship between diet quality and falls risk, physical function and body composition in older adults. J. Nutr. Health Aging 2015, 19, 1037–1042. [Google Scholar] [CrossRef]
- Nikolaidis, P.T.; Veniamakis, E.; Rosemann, T.; Knechtle, B. Nutrition in ultra-endurance: State of the art. Nutrients 2018, 10, 1995. [Google Scholar] [CrossRef] [Green Version]
- Kårlund, A.; Gómez-Gallego, C.; Turpeinen, A.M.; Palo-Oja, O.M.; El-Nezami, H.; Kolehmainen, M. Protein supplements and their relation with nutrition, microbiota composition and health: Is more protein always better for sportspeople? Nutrients 2019, 11, 829. [Google Scholar] [CrossRef] [Green Version]
- Black, K.; Slater, J.; Brown, R.C.; Cooke, R. Low energy availability, plasma lipids, and hormonal profiles of recreational athletes. J. Strength Cond. Res. 2018, 32, 2816–2824. [Google Scholar] [CrossRef]
- Wirnitzer, K.C. Vegan diet in sports and exercise–health benefits and advantages to athletes and physically active people: A narrative review. Int. J. Sports Exerc. Med. 2020, 6, 165. [Google Scholar]
- Schröder, S.; Fischer, A.; Vock, C.; Böhme, M.; Schmelzer, C.; Döpner, M.; Hülsmann, O.; Döring, F. Nutrition concepts for elite distance runners based on macronutrient and energy expenditure. J. Athl. Train. 2008, 43, 489–504. [Google Scholar] [CrossRef]
- Barber, T.M.; Hanson, P.; Kabisch, S.; Pfeiffer, A.F.H.; Weickert, M.O. The low-carbohydrate diet: Short-term metabolic efficacy versus longer-term limitations. Nutrients 2021, 13, 1187. [Google Scholar] [CrossRef]
- Shaw, K.A.; Zello, G.A.; Rodgers, C.D.; Warkentin, T.D.; Baerwald, A.R.; Chilibeck, P.D. Benefits of a plant-based diet and considerations for the athlete. Eur. J. Appl. Physiol. 2022, 122, 1163–1178. [Google Scholar] [CrossRef]
- Wirnitzer, K.C.; Kornexl, E. Energy and macronutrient intake of a female vegan cyclist during an 8-day mountain bike stage race. Bayl. Univ. Med. Cent. 2014, 27, 42–45. [Google Scholar] [CrossRef]
- Grzymisławska, M.; Puch, E.A.; Zawada, A.; Grzymisławski, M. Do nutritional behaviors depend on biological sex and cultural gender? Adv. Clin. Exp. Med. 2020, 29, 165–172. [Google Scholar] [CrossRef] [Green Version]
- Holtzman, B.; Ackerman, K.E. Recommendations and nutritional considerations for female athletes: Health and performance. Sports Med. 2021, 51, 43–57. [Google Scholar] [CrossRef] [PubMed]
- Burke, L.M.; Slater, G.; Broad, E.M.; Haukka, J.; Modulon, S.; Hopkins, W.G. Eating patterns and meal frequency of elite Australian athletes. Int. J. Sport Nutr. Exerc. Metab. 2003, 13, 521–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erdman, K.A.; Tunnicliffe, J.; Lun, V.M.; Reimer, R.A. Eating patterns and composition of meals and snacks in elite Canadian athletes. Int J. Sport Nutr. Exerc. Metab. 2013, 23, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, J.A.D.; Da Costa, T.H.M. Nutrient intake and eating habits of triathletes on a Brazilian diet. Int. J. Sport Nutr. Exerc. Metab. 2004, 14, 684–697. [Google Scholar] [CrossRef] [PubMed]
- Vitale, K.; Getzin, A. Nutrition and supplement update for the endurance athlete: Review and recommendations. Nutrients 2019, 11, 1289. [Google Scholar] [CrossRef] [Green Version]
- Tiller, N.B.; Roberts, J.D.; Beasley, L.; Chapman, S.; Pinto, J.M.; Smith, L.; Wiffin, M.; Russell, M.; Sparks, S.A.; Duckworth, L.; et al. International Society of Sports Nutrition Position Stand: Nutritional considerations for single-stage ultra-marathon training and racing. J. Int. Soc. Sports Nutr. 2019, 16, 50. [Google Scholar] [CrossRef] [Green Version]
- Wirnitzer, K.; Seyfart, T.; Leitzmann, C.; Keller, M.; Wirnitzer, G.; Lechleitner, C.; Rüst, C.A.; Rosemann, T.; Knechtle, B. Prevalence in running events and running performance of endurance runners following a vegetarian or vegan diet compared to non-vegetarian endurance runners: The NURMI study. SpringerPlus 2016, 5, 458. [Google Scholar] [CrossRef] [Green Version]
- Wirnitzer, K.; Boldt, P.; Lechleitner, C.; Wirnitzer, G.; Leitzmann, C.; Rosemann, T.; Knechtle, B. Health status of female and male vegetarian and vegan endurance runners compared to omnivores-results from the NURMI study (step 2). Nutrients 2018, 11, 29. [Google Scholar] [CrossRef] [Green Version]
- Boldt, P.; Knechtle, B.; Nikolaidis, P.; Lechleitner, C.; Wirnitzer, G.; Leitzmann, C.; Rosemann, T.; Wirnitzer, K. Quality of life of female and male vegetarian and vegan endurance runners compared to omnivores-results from the NURMI study (step 2). J. Int. Soc. Sports Nutr. 2018, 15, 33. [Google Scholar] [CrossRef] [Green Version]
- Craig, W.J.; Mangels, A.R.; American Dietetic Association. Position of the American Dietetic Association: Vegetarian diets. J. Am. Diet. Assoc. 2009, 109, 1266–1282. [Google Scholar]
- Melina, V.; Craig, W.; Levin, S. Position of the Academy of Nutrition and Dietetics: Vegetarian diets. J. Acad. Nutr. Diet. 2016, 116, 1970–1980. [Google Scholar] [CrossRef]
- World Health Organization (WHO). A Healthy Lifestyle—WHO Recommendations. Available online: http://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi (accessed on 10 May 2022).
- World Health Organization (WHO). Noncommunicable Diseases: Risk Factors. Available online: http://www.who.int/gho/ncd/risk_factors/bmi_text/en/ (accessed on 10 May 2022).
- Elmadfa, I.; Leitzmann, C. Ernährung des Menschen (Human Nutrition), 6th ed.; UTB GmbH: Berlin, Germany, 2019; p. 618. [Google Scholar]
- König, D. Kohlenhydrate im Sport (Carbohydrates in sport). In Lehrbuch der Sporternährung (Textbook of Sports Nutrition), 1st ed.; Lamprecht, M., Ed.; ÖGSE—Österreichische Gesellschaft für Sporternährung: Graz, Austria, 2007; p. 448. [Google Scholar]
- Scheidt-Nave, C.; Kamtsiuris, P.; Goesswald, A.; Hölling, H. German Health Interview and Examination Survey for Adults (DEGS)—Design, objectives and implementations of the first data collection wave. BMC Public Health 2012, 12, 730. [Google Scholar] [CrossRef] [Green Version]
- Haftenberger, M.; Heuer, T.; Heidemann, C.; Kube, F. Relative validation of a food frequency questionnaire for national health and nutrition monitoring. Nutr. J. 2010, 9, 36. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, C.A.; Cannon, G.; Lawrence, M.; Costa Louzada, M.L.P.; Ereira Machado, P. Ultra-Processed Foods, Diet Quality, and health Using the NOVA Classification System; Food and Agriculture Organization (FAO) of the United Nations (UN): Rome, Italy, 2019. [Google Scholar]
- Open Food Facts—Freie Datenbank für Nahrungsmittel. Nova-Gruppen der Lebensmittelverarbeitung Eine Klassifizierung in 4 Gruppen, um den Grad der Verarbeitung von Lebensmitteln Darzustellen. Available online: https://de.openfoodfacts.org/nova (accessed on 23 August 2021).
- Fachgesellschaft für Ernährungstherapie und Prävention für Professionalität in der Ernährungsberatung (FETeV). 4-Stufen-System für Lebensmittel nach dem Verarbeitungsgrad. Available online: https://fet-ev.eu/lebensmittelbeurteilung/ (accessed on 23 August 2021).
- Redaktion Ernährungsumschau. Lebensmittelkennzeichnung: 4-Stufen-System für Lebensmittel nach dem Verarbeitungsgrad. ERNÄHRUNGSUMSCHAU 4/2020: M192. Available online: https://www.ernaehrungs-umschau.de/print-news/08-04-2020-4-stufen-system-fuer-lebensmittel-nach-dem-verarbeitungsgrad/ (accessed on 23 August 2021).
- Capling, L.; Beck, K.L.; Gifford, J.A.; Slater, G.; Flood, V.M.; O’Connor, H. Validity of dietary assessment in athletes: A systematic review. Nutrients 2017, 9, 1313. [Google Scholar] [CrossRef] [Green Version]
- Baranowski, T. Chapter 4, 24-hour recall and diet record methods. In Nutritional Epidemiology, 3rd ed.; Walter, W., Ed.; Oxford University Press: New York, NY, USA, 2013; pp. 49–69. [Google Scholar]
- Willett, W. Chapter 5, food frequency methods. In Nutritional Epidemiology, 3rd ed.; Walter, W., Ed.; Oxford University Press: New York, NY, USA, 2013; pp. 70–95. [Google Scholar]
- Braakhius, A.K.; Meredith, K.; Cox, G.R.; Hopkins, W.J.; Burke, L.M. Variability in estimation of self reported dietary intake data from elite athletes resulting from processing by different sports dietitians. Int. J. Sport Nutr. Exerc. Metab. 2003, 13, 152–165. [Google Scholar] [CrossRef]
- Burke, L.M. Dietary Assessment Methods for the Athlete: Pros and Cons of Different Methods. Sports Sci. Exch. 2015, 28, 1–6. Available online: https://www.gssiweb.org/sports-science-exchange/article/sse-150-dietary-assessment-methods-for-the-athlete-pros-and-cons-of-different-methods (accessed on 18 May 2022).
- Sunami, A.; Sasaki, K.; Suzuki, Y.; Oguma, N.; Ishihara, J.; Nakai, A.; Yasuda, J.; Yokoyama, Y.; Yoshizaki, T.; Tada, Y.; et al. Validity of a semi-quantitative food frequency questionnaire for collegiate athletes. J. Epidemiol. 2016, 26, 284–291. [Google Scholar] [CrossRef]
- Braakhuis, A.J.; Hopkins, W.G.; Lowe, T.E.; Rush, E.C. Development and validation of a food-frequency questionnaire to assess shortterm antioxidant intake in athletes. Int. J. Sport Nutr. Exerc. Metab. 2011, 21, 105–112. [Google Scholar] [CrossRef]
- Rogerson, D. Vegan diets: Practical advice for athletes and exercisers. J. Int. Soc. Sports Nutr. 2017, 14, 36. [Google Scholar] [CrossRef] [Green Version]
- Škof, B.; Rotovnik Kozjek, N. A comparison of dietary habits between recreational runners and a randomly selected adult population in Slovenia. Zdr. Varst. 2015, 54, 212–221. [Google Scholar]
- Heikura, I.A.; Burke, L.M.; Mero, A.A.; Uusitalo, A.L.T.; Stellingwerff, T. Dietary microperiodization in elite female and male runners and race walkers during a block of high intensity precompetition training. Int. J. Sport Nutr. Exerc. Metab. 2017, 27, 297–304. [Google Scholar] [CrossRef]
- Davy, S.R.; Benes, B.A.; Driskell, J.A. Sex differences in dieting trends, eating habits, and nutrition beliefs of a group of Midwestern college students. J. Am. Diet Assoc. 2006, 106, 1673–1677. [Google Scholar] [CrossRef]
- Sobiecki, J.G.; Appleby, P.N.; Bradbury, K.E.; Key, T.J. High compliance with dietary recommendations in a cohort of meat eaters, fish eaters, vegetarians, and vegans: Results from the European Prospective Investigation into Cancer and Nutrition-Oxford study. Nutr. Res. 2016, 36, 464–477. [Google Scholar] [CrossRef] [Green Version]
- Mensink, G.; Truthmann, J.; Rabenberg, M.; Heidemann, C.; Haftenberger, M.; Schienkiewitz, A.; Richter, A. Obst- und Gemüsekonsum in Deutschland. Bundesgesundheitsbl 2013, 56, 779–785. [Google Scholar] [CrossRef] [Green Version]
- Österreichischer Ernährungsbericht. Available online: https://broschuerenservice.sozialministerium.at/Home/Download?publicationId=528 (accessed on 11 May 2022).
- Sechster Schweizerischer Ernährungsbericht. Available online: https://www.blv.admin.ch/dam/blv/de/dokumente/lebensmittel-und-ernaehrung/publikationen-forschung/6-seb-gesamtbericht-final.pdf.download.pdf/gesamtbericht.pdf (accessed on 11 May 2022).
- BMEL. Available online: https://www.bmel.de/SharedDocs/Downloads/DE/_Ernaehrung/Forsa-Ern%C3%A4hrungsrport2018.pdf?__blob=publicationFile&v=353 (accessed on 11 May 2022).
- Wirnitzer, K.; Motevalli, M.; Tanous, D.R.; Gregori, M.; Wirnitzer, G.; Leitzmann, C.; Rosemann, T.; Knechtle, B. Sex Differences in Supplement Intake in Recreational Endurance Runners—Results from the NURMI Study (Step 2). Nutrients 2021, 13, 2776. [Google Scholar] [CrossRef]
- Deutsche Gesellschaft für Ernährung e. V. Available online: https://www.dge.de/wissenschaft/referenzwerte/alkohol/?L=0 (accessed on 11 May 2022).
- Leasure, J.L.; Neighbors, C.; Henderson, C.E.; Young, C.M. Exercise and alcohol consumption: What we know, what we need to know, and why it is important. Front. Psychiatry 2015, 6, 156. [Google Scholar] [CrossRef] [Green Version]
- Wallis, G.A.; Dawson, R.; Achten, J.; Webber, J.; Jeukendrup, A.E. Metabolic response to carbohydrate ingestion during exercise in males and females. Am. J. Physiol. Endocrinol. Metab. 2006, 290, E708–E715. [Google Scholar] [CrossRef] [Green Version]
- Burke, L.M.; Cox, G.R.; Culmmings, N.K.; Desbrow, B. Guidelines for daily carbohydrate intake: Do athletes achieve them? Sports Med. 2001, 31, 267–299. [Google Scholar] [CrossRef] [PubMed]
- Margetts, B.; Martine, J.A.; Saba, A.; Holm, L.; Kearney, M. Definitions of “healthy” eating: A pan-EU survey of consumer attitudes to food, nutrition and health. Eur. J. Clin. Nutr. 1997, 51, 23–29. [Google Scholar]
- Martinsen, M.; Bratland-Sanda, S.; Eriksson, A.K.; Sundgot-Borgen, J. Dieting to win or to be thin? A study of dieting and disordered eating among adolescent elite athletes and non-athlete controls. Br. J. Sports Med. 2010, 44, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Gillen, J.B.; Trommelen, J.; Wardenaar, F.C.; Brinkmans, N.Y.J.; Versteegen, J.J.; Jonvik, K.L.; Kapp, C.; de Vries, J.; van den Borne, J.J.G.C.; Gibala, M.J.; et al. Dietary protein intake and distribution patterns of well-trained Dutch athletes. Int. J. Sport Nutr. Exerc. Metab. 2017, 27, 105–114. [Google Scholar] [CrossRef]
- Morton, R.W.; Murphy, K.T.; McKellar, S.R.; Schoenfeld, B.J.; Henselmans, M.; Helms, E.; Aragon, A.A.; Devries, M.C.; Banfield, L.; Krieger, J.W.; et al. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br. J. Sports Med. 2018, 52, 376–384. [Google Scholar] [CrossRef] [Green Version]
- Tarnopolsky, M. Protein requirements for endurance athletes. Nutrition 2004, 20, 662–668. [Google Scholar] [CrossRef]
- Aguilera, E.; Piñero, P.; Infante Amate, J.; González de Molina, M.; Lassaletta, L.; Sanz Cobeña, A. Emisiones de Gases de Efecto Invernadero En El Sistema Agroalimentario y Huella de Carbono de La Alimentación En España; Real Academia de Ingeniería: Madrid, Spain, 2020. [Google Scholar]
- Beis, L.Y.; Willkomm, L.; Ross, R.; Bekele, Z.; Wolde, B.; Fudge, B.; Pitsiladis, Y.P. Food and Macronutrient Intake of Elite Ethiopian Distance Runners. J. Int. Soc. Sports Nutr. 2011, 8, 7. [Google Scholar] [CrossRef] [Green Version]
- Health Canada. Canada’s Food Guide. Available online: https://food-guide.canada.ca/en/ (accessed on 13 July 2021).
- Baranauskas, M.; Jablonskiene, V.; Abaravicius, J.A.; Stukas, R. Actual nutrition and dietary supplementation in Lithuanian elite athletes. Medicina 2020, 56, 247. [Google Scholar] [CrossRef]
- Bärebring, L.; Palmqvist, M.; Winkvist, A.; Augustin, H. Gender differences in perceived food healthiness and food avoidance in a Swedish population-based survey: A cross sectional study. Nutr. J. 2020, 19, 140. [Google Scholar] [CrossRef]
- Wood, P.D. Physical activity, diet, and health: Independent and interactive effects. Med. Sci. Sports Exerc. 1994, 26, 838–843. [Google Scholar] [CrossRef]
- Janiczak, A.; Devlin, B.L.; Forsyth, A.; Trakman, G.L. A systematic review update of athletes’ nutrition knowledge and association with dietary intake. Br. J. Nutr. 2021, 1–14. [Google Scholar] [CrossRef]
- Petroczi, A.; Naughton, D.P. The age-gender-status profile of high performing athletes in the UK taking nutritional supplements: Lessons for the future. J. Int. Soc. Sports Nutr. 2008, 5, 2. [Google Scholar] [CrossRef] [Green Version]
- Jenner, S.L.; Buckley, G.L.; Belski, R.; Devlin, B.L.; Forsyth, A.K. Dietary intakes of professional and semi-professional team sport athletes do not meet sport nutrition recommendations-a systematic literature review. Nutrients 2019, 11, 1160. [Google Scholar] [CrossRef] [Green Version]
- Wirnitzer, K.; Boldt, P.; Wirnitzer, G.; Leitzmann, C.; Tanous, D.; Motevalli, M.; Rosemann, T.; Knechtle, B. Health status of recreational runners over 10-km up to ultra-marathon distance based on data of the NURMI Study Step 2. Sci. Rep. 2022, in press. [Google Scholar] [CrossRef]
- Nikolaidis, P.T.; Clemente-Suárez, V.J.; Chlíbková, D.; Knechtle, B. Training, anthropometric, and physiological characteristics in men recreational marathon runners: The role of sport experience. Front. Physiol. 2021, 12, 666201. [Google Scholar] [CrossRef]
- Waśkiewicz, Z.; Nikolaidis, P.T.; Gerasimuk, D.; Borysiuk, Z.; Rosemann, T.; Knechtle, B. What motivates successful marathon runners? The role of sex, age, education, and training experience in polish runners. Front. Psychol. 2019, 10, 1671. [Google Scholar] [CrossRef]
Basic Food Clusters | ||
---|---|---|
Cluster 1 | Grains a—grains b—whole grains | cornflakes; white bread; white pasta muesli; wholegrain; mixed bread; wholegrain pasta; wholegrain rice; other grains |
Cluster 2 | Legumes, nuts, and pulses | pulses; nuts and seeds; legumes |
Cluster 3 | Fruit and vegetables | vegetable juice; fruit; vegetables |
Cluster 4 | Dairy products | milk; cheese; yoghurt |
Cluster 5 | Dairy alternatives | milk alternatives |
Cluster 6 | Meat a—meat b—processed meat | chicken; beef; pork; deer fried nuggets; hamburger; sausage; kebab; pork; processed meat |
Cluster 7 | Meat alternatives | tofu; seitan; tempeh; etc. |
Cluster 8 | Fish, shellfish, and seafood | |
Cluster 9 | Eggs | |
Cluster 10 | Oils and spreads | butter; margarine; oils |
Cluster 11 | Sweets and snacks | sweets; snacks; salty snacks |
Cluster 12 | Water and unsweetened tea | |
Cluster 13 | Beverages | |
Cluster 14 | Alcohol | |
Preparation/Umbrella Clusters | ||
Cluster 15 | Protein a—plant protein b—animal protein | legumes and beans; vegetables; grains (couscous, quinoa); dairy alternatives (e.g., soy products); meat alternatives dairy products; eggs; meat and processed meat products; fish, seafood, and shellfish |
Cluster 16 | (Ultra-)processed foods and free/added sugar | sugary carbonated drinks; kcal reduced/artificially sweetened drinks; fruit juice; free sugar in tea; free sugar in coffee; cereals; sweet and savory spreads; margarine; pasta; sweets, cakes, and biscuits; salty snacks, butter; processed meat; processed plant products |
Cluster 17 | Free/added sugar | Sweet spread; sugary carbonated drinks; fruit juice; free sugar in tea; free sugar in coffee; cereals; sweets, cakes, and biscuits |
Total n = 211 | Females n = 121 | Males n = 90 | Statistics | ||
---|---|---|---|---|---|
Age (years) | 38 (IQR 18) | 37 (IQR 15) | 42 (IQR 17) | F(1, 209) = 5.26; p = 0.023 | |
Body Weight (kg) | 65.0 (IQR 14.1) | 59.8 (IQR 10.6) | 73.6 (IQR 12.3) | F(1, 209) = 189.68; p < 0.001 | |
Height (m) | 1.7 (IQR 0.1) | 1.7 (IQR 0.1) | 1.8 (IQR 0.1) | F(1, 209) = 191.83; p < 0.001 | |
BMI (kg/m2) | 21.72 (IQR 3.40) | 20.94 (IQR 3.05) | 22.91 (IQR 2.86) | F(1, 209) = 33.21; p < 0.001 | |
Academic Qualification | Upper Secondary/Technical A Levels or Equivalent University/Higher Degree No Answer | 33% (69) 23% (49) 34% (72) 9% (21) | 30% (36) 23% (28) 36% (43) 12% (14) | 37% (33) 23% (21) 32% (29) 8% (7) | χ2(3) = 2.14; p = 0.709 |
Marital Status | Divorced/Separated Married/Partner Single | 5% (11) 68% (143) 27% (57) | 7% (8) 61% (74) 32% (39) | 3% (3) 77% (69) 20% (18) | χ2(2) = 5.75; p = 0.056 |
Country of Residence | Austria Germany Switzerland Other Countries | 17% (36) 74% (156) 5% (11) 4% (8) | 10% (12) 80% (97) 5% (6) 5% (6) | 27% (24) 66% (59) 6% (5) 2% (2) | χ2(3) = 11.03; p = 0.012 |
Race Distance | 10-km HM M/UM | 35% (74) 39% (83) 26% (54) | 45% (55) 38% (46) 17% (20) | 21% (19) 41% (37) 38% (34) | χ2(2) = 17.95; p < 0.001 |
Diet Type | Omnivorous Vegetarian Vegan | 45% (95) 19% (40) 36% (76) | 36% (44) 21% (26) 42% (51) | 57% (51) 16% (14) 28% (25) | χ2(2) = 8.64; p = 0.013 |
Females | Males | Statistics | |
---|---|---|---|
n = 121 | n = 90 | ||
Part A—Basic clusters | |||
FC—1 (Total of grains) | 15.43 ± 7.86 | 21.90 ± 8.16 | F(1, 209) = 36.40; p < 0.001 |
FC—1a (Total of refined grains) | 9.99 ± 8.14 | 15.54 ± 9.57 | F(1, 209) = 19.64; p < 0.001 |
Cornflakes | 1.60 ± 3.57 | 1.44 ± 4.99 | F(1, 209) = 2.34; p = 0.127 |
White bread | 6.07 ± 6.35 | 10.36 ± 9.18 | F(1, 209) = 12.03; p = 0.001 |
White pasta | 8.81 ± 8.48 | 13.84 ± 9.42 | F(1, 209) = 16.03; p < 0.001 |
FC—1b (Total of whole grains) | 17.12 ± 8.48 | 22.95 ± 9.17 | F(1, 209) = 22.12; p < 0.001 |
Muesli | 14.89 ± 12.32 | 18.80 ± 14.00 | F(1, 207) = 3.91; p = 0.049 |
Whole grain bread | 14.45 ± 8.54 | 18.99 ± 9.40 | F(1, 209) = 16.23; p < 0.001 |
Whole grain pasta | 9.37 ± 8.11 | 11.22 ± 9.36 | F(1, 209) = 1.65; p = 0.201 |
Whole grain rice | 5.87 ± 6.57 | 8.96 ± 8.26 | F(1, 209) = 7.17; p = 0.008 |
Other whole grains | 6.07 ± 6.35 | 10.36 ± 9.18 | F(1, 209) = 12.03; p = 0.001 |
FC—2 (Total of beans and seeds) | 28.47 ± 13.89 | 23.70 ± 13.74 | F(1, 209) = 7.12; p = 0.008 |
Nuts & seeds | 22.25 ± 13.21 | 16.11 ± 12.67 | F(1, 209) = 13.04; p < 0.001 |
Legumes | 15.98 ± 10.65 | 15.71 ± 10.74 | F(1, 209) = 0.23; p = 0.630 |
FC—3 (Total of fruit and vegetables) | 34.09 ± 13.03 | 26.84 ± 11.77 | F(1, 209) = 19.30; p < 0.001 |
Vegetable juice | 5.48 ± 9.74 | 5.70 ± 11.58 | F(1, 209) = 1.01; p = 0.315 |
Fruit | 19.93 ± 9.30 | 18.16 ± 8.73 | F(1, 209) = 2.92; p = 0.089 |
Vegetables | 34.73 ± 12.56 | 27.08 ± 10.50 | F(1, 209) = 22.01; p < 0.001 |
FC—4 (Total of dairy) | 9.70 ± 12.11 | 10.77 ± 9.67 | F(1, 209) = 2.00; p = 0.159 |
Milk | 7.57 ± 11.31 | 9.67 ± 11.71 | F(1, 209) = 3.00; p = 0.085 |
Cheese | 7.10 ± 8.89 | 8.12 ± 8.05 | F(1, 209) = 1.76; p = 0.187 |
Yogurt | 7.81 ± 11.00 | 7.17 ± 9.09 | F(1, 209) = 0.04; p = 0.833 |
FC—5: Dairy alternatives | 18.08 ± 15.04 | 13.69 ± 15.51 | F(1, 209) = 6.44; p = 0.012 |
FC—6 (Total of meat) | 4.95 ± 9.81 | 12.46 ± 13.70 | F(1, 209) = 19.26; p < 0.001 |
FC—6a (Total of unprocessed meat) | 5.43 ± 10.68 | 13.04 ± 14.47 | F(1, 209) = 17.24; p < 0.001 |
Chicken | 2.42 ± 5.16 | 4.98 ± 6.35 | F(1, 209) = 12.75; p < 0.001 |
Beef and pork and deer | 4.34 ± 8.90 | 11.25 ± 13.20 | F(1, 209) = 18.29; p < 0.001 |
FC—6b (Total of processed meat) | 3.93 ± 8.40 | 10.52 ± 12.67 | F(1, 209) = 19.72; p < 0.001 |
Fried nuggets | 1.32 ± 3.19 | 2.62 ± 3.64 | F(1, 209) = 11.67; p = 0.001 |
Hamburger | 0.43 ± 1.44 | 1.67 ± 3.10 | F(1, 209) = 12.15; p = 0.001 |
Sausage | 0.25 ± 1.20 | 1.47 ± 3.14 | F(1, 209) = 14.23; p < 0.001 |
Kebab | 0.34 ± 1.01 | 1.57 ± 2.78 | F(1, 209) = 15.49; p < 0.001 |
Other processed meat | 4.05 ± 9.51 | 9.78 ± 13.02 | F(1, 209) = 14.40; p < 0.001 |
FC—7: Meat alternatives | 5.99 ± 6.02 | 6.16 ± 7.44 | F(1, 209) = 0.48; p = 0.488 |
FC—8: Fish | 3.80 ± 5.70 | 5.57 ± 6.90 | F(1, 209) = 4.60; p = 0.033 |
FC—9: Eggs | 6.91 ± 8.65 | 9.16 ± 8.86 | F(1, 209) = 4.22; p = 0.041 |
FC—10 (Total of oils) | 10.24 ± 10.66 | 15.49 ± 14.99 | F(1, 209) = 4.60; p = 0.033 |
Butter | 4.50 ± 8.76 | 8.00 ± 13.53 | F(1, 209) = 0.88; p = 0.348 |
Margarine | 5.92 ± 8.73 | 7.49 ± 11.36 | F(1, 209) = 0.13; p = 0.717 |
Other oils | 4.95 ± 5.36 | 7.74 ± 7.50 | F(1, 209) = 5.71; p = 0.018 |
FC—11 (Total of snacks) | 9.83 ± 6.67 | 11.81 ± 7.63 | F(1, 209) = 2.98; p = 0.086 |
Sweet snacks | 9.77 ± 6.43 | 10.51 ± 6.78 | F(1, 209) = 0.43; p = 0.511 |
Salty snacks | 5.22 ± 6.66 | 7.66 ± 7.67 | F(1, 207) = 6.13; p = 0.014 |
FC—12 (Total of water) | 39.28 ± 22.17 | 29.92 ± 18.09 | F(1, 209) = 9.77; p = 0.002 |
Water | 61.92 ± 28.33 | 56.16 ± 26.33 | F(1, 209) = 2.24; p = 0.136 |
Unsweetened tea | 25.36 ± 17.63 | 16.52 ± 14.25 | F(1, 209) = 17.48; p < 0.001 |
FC—13: Beverages | 14.19 ± 5.22 | 13.40 ± 4.57 | F(1, 209) = 0.88; p = 0.350 |
FC—14: Alcohol | 2.75 ± 3.77 | 5.06 ± 5.64 | F(1, 209) = 13.04; p < 0.001 |
Part B—Umbrella clusters | |||
FC—15 (Total of protein) | 39.60 ± 14.30 | 38.64 ± 13.81 | F(1, 209) = 0.28; p = 0.599 |
FC—15a (Total of plant protein) | 35.23 ± 14.88 | 30.12 ± 13.94 | F(1, 209) = 6.40; p = 0.012 |
FC—15b (Total of animal protein) | 12.80 ± 14.72 | 18.73 ± 14.98 | F(1, 209) = 9.04; p = 0.003 |
FC—16: Processed foods & free/added sugar | 23.27 ± 12.62 | 30.25 ± 15.62 | F(1, 209) = 10.81; p = 0.001 |
FC—17: Free/added sugar | 13.62 ± 8.60 | 16.19 ± 11.21 | F(1, 209) = 1.57; p = 0.212 |
Age | Sex * | |||||
---|---|---|---|---|---|---|
β | 95%-CI | p | β | 95%-CI | p | |
FC—1a (Total of refined grains) | −0.07 | [1.08, −1.21] | 0.908 | 5.58 | [8.03, 3.13] | <0.001 |
FC—1b (Total of whole grains) | −0.48 | [0.66, −1.62] | 0.407 | 6.01 | [8.46, 3.56] | <0.001 |
FC—2 (Total of beans and seeds) | −0.39 | [1.41, −2.19] | 0.673 | −4.63 | [−0.77, −8.49] | 0.019 |
FC—3 (Total of fruit and vegetables) | −2.11 | [−0.51, −3.72] | 0.010 | −6.45 | [−3.01, −9.89] | <0.001 |
FC—4 (Total of dairy) | 0.43 | [1.88, −1.02] | 0.558 | 0.91 | [4.02, −2.20] | 0.565 |
FC—5 (Dairy alternatives) | −0.04 | [1.95, −2.02] | 0.971 | −4.38 | [−0.12, −8.64] | 0.044 |
FC—6a (Total of unprocessed meat) | 1.29 | [2.90, −0.32] | 0.115 | 7.13 | [10.58, 3.67] | <0.001 |
FC—6b (Total of processed meat) | 1.10 | [2.45, −0.25] | 0.110 | 6.18 | [9.08, 3.28] | <0.001 |
FC—7 (Meat alternatives) | 0.32 | [1.19, −0.55] | 0.470 | 0.05 | [1.91, −1.81] | 0.001 |
FC—8 (Fish) | 0.49 | [1.30, −0.32] | 0.239 | 1.58 | [3.32, −0.16] | 0.074 |
FC—9 (Eggs) | 1.09 | [2.22, −0.04] | 0.058 | 1.84 | [4.26, −0.58] | 0.136 |
FC—10 (Total of oils) | 0.87 | [2.52, −0.78] | 0.299 | 4.92 | [8.45, 1.38] | 0.007 |
FC—11 (Total of snacks) | −0.11 | [0.81, −1.04] | 0.808 | 2.02 | [4.00, 0.04] | 0.046 |
FC—12 (Total of water) | −1.26 | [1.41, −3.93] | 0.355 | −8.88 | [−3.16, −14.61] | 0.003 |
FC—13 (Beverages) | 0.30 | [0.94, −0.35] | 0.366 | −0.91 | [0.48, −2.29] | 0.198 |
FC—14 (Alcohol) | 0.12 | [0.72, −0.49] | 0.703 | 2.27 | [3.57, 0.97] | 0.001 |
FC—15a (Plant protein) | −1.83 | [0.05, −3.70] | 0.056 | −4.43 | [−0.41, −8.44] | 0.031 |
FC—15b (Animal protein) | 1.48 | [3.40, −0.44] | 0.130 | 5.38 | [9.50, 1.26] | 0.011 |
FC—16 (Processed foods & free/added sugar) | −0.15 | [1.67, −1.97] | 0.872 | 7.03 | [10.94, 3.13] | <0.001 |
FC—17 (Free/added sugar) | −0.14 | [1.13, −1.42] | 0.826 | 2.62 | [5.36, −0.12] | 0.061 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Motevalli, M.; Wagner, K.-H.; Leitzmann, C.; Tanous, D.; Wirnitzer, G.; Knechtle, B.; Wirnitzer, K. Female Endurance Runners Have a Healthier Diet than Males—Results from the NURMI Study (Step 2). Nutrients 2022, 14, 2590. https://doi.org/10.3390/nu14132590
Motevalli M, Wagner K-H, Leitzmann C, Tanous D, Wirnitzer G, Knechtle B, Wirnitzer K. Female Endurance Runners Have a Healthier Diet than Males—Results from the NURMI Study (Step 2). Nutrients. 2022; 14(13):2590. https://doi.org/10.3390/nu14132590
Chicago/Turabian StyleMotevalli, Mohamad, Karl-Heinz Wagner, Claus Leitzmann, Derrick Tanous, Gerold Wirnitzer, Beat Knechtle, and Katharina Wirnitzer. 2022. "Female Endurance Runners Have a Healthier Diet than Males—Results from the NURMI Study (Step 2)" Nutrients 14, no. 13: 2590. https://doi.org/10.3390/nu14132590
APA StyleMotevalli, M., Wagner, K.-H., Leitzmann, C., Tanous, D., Wirnitzer, G., Knechtle, B., & Wirnitzer, K. (2022). Female Endurance Runners Have a Healthier Diet than Males—Results from the NURMI Study (Step 2). Nutrients, 14(13), 2590. https://doi.org/10.3390/nu14132590