The Relationship of Energy Malnutrition, Skeletal Muscle and Physical Functional Performance in Patients with Stable Chronic Obstructive Pulmonary Disease
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Subjects
2.2. Measurement of Energy Metabolism
2.3. Diagnosis of Energy Malnutrition
2.4. Anthropometry
2.5. Lung Function
2.6. Laboratory Determinations
2.7. Evaluation of Skeletal Muscle Mass
2.8. Evaluation of Physical Function, Activities of Daily Living (ADL), and Nutrition Status
2.9. Statistical Analysis
3. Results
3.1. Subjects’ Characteristics
3.2. Comparison of Baseline, Energy Metabolism, Biochemical Tests, Body Composition, Physical Function, and Muscle Mass between Subjects with and without Energy Malnutrition (RQ < 0.85 and RQ ≥ 0.85)
3.3. Logistic Regression Analysis and Decision-Tree Analysis for Energy Malnutrition
3.4. VT and Th12 ESMSMI for Discrimination of Energy Malnutrition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schols, A.M.; Soeters, P.B.; Dingemans, A.M.; Mostert, R.; Frantzen, P.J.; Wouters, E.F. Prevalence and characteristics of nutritional depletion in patients with stable COPD eligible for pulmonary rehabilitation. Am. Rev. Respir. Dis. 1993, 147, 1151–1156. [Google Scholar] [CrossRef]
- Engelen, M.P.; Schols, A.M.; Baken, W.C.; Wesseling, G.J.; Wouters, E.F. Nutritional depletion in relation to respiratory and peripheral skeletal muscle function in out-patients with COPD. Eur. Respir. J. 1994, 7, 1793–1797. [Google Scholar] [CrossRef] [Green Version]
- Wilson, D.O.; Rogers, R.M.; Wright, E.C.; Anthonisen, N.R. Body weight in chronic obstructive pulmonary disease. The National Institutes of Health Intermittent Positive-Pressure Breathing Trial. Am. Rev. Respir. Dis. 1989, 139, 1435–1438. [Google Scholar] [CrossRef]
- Yoshikawa, M.; Yoneda, T.; Fu, A.; Yamamoto, C.; Takenaka, H.; Nakaya, M.; Kobayashi, A.; Tokuyama, T.; Okamoto, Y.; Narita, N. Analysis of body composition by dual energy X-ray absorptiometry and its relation to pulmonary function in patients with pulmonary emphysema. Nihon Kyobu Shikkan Gakkai Zasshi 1996, 34, 953–958. [Google Scholar]
- Thomas, D.R. Loss of skeletal muscle mass in aging: Examining the relationship of starvation, sarcopenia and cachexia. Clin. Nutr. 2007, 26, 389–399. [Google Scholar] [CrossRef]
- Cao, C.; Wang, R.; Wang, J.; Bunjhoo, H.; Xu, Y.; Xiong, W. Body mass index and mortality in chronic obstructive pulmonary disease: A meta-analysis. PLoS ONE 2012, 7, e43892. [Google Scholar] [CrossRef]
- Kwan, H.Y.; Maddocks, M.; Nolan, C.M.; Jones, S.E.; Patel, S.; Barker, R.E.; Kon, S.S.C.; Polkey, M.I.; Cullinan, P.; Man, W.D. The prognostic significance of weight loss in chronic obstructive pulmonary disease-related cachexia: A prospective cohort study. J. Cachexia Sarcopenia Muscle 2019, 10, 1330–1338. [Google Scholar] [CrossRef] [Green Version]
- Yoneda, T.; Yoshikawa, M.; Fu, A.; Tsukaguchi, K.; Okamoto, Y.; Takenaka, H. Plasma levels of amino acids and hypermetabolism in patients with chronic obstructive pulmonary disease. Nutrition 2001, 17, 95–99. [Google Scholar] [CrossRef]
- Schols, A.M. Nutritional and metabolic modulation in chronic obstructive pulmonary disease management. Eur. Respir. J. 2003, 46, 81s–86s. [Google Scholar] [CrossRef] [Green Version]
- Yoneda, T.; Yoshikawa, M.; Fu, A.; Tsukaguchi, K.; Takenaka, H.; Narita, N. Nutritional care of patients with respiratory insufficiency. Nihon Naika Gakkai Zasshi 1999, 88, 94–99. [Google Scholar]
- Jung, J.W.; Yoon, S.W.; Lee, G.E.; Shin, H.G.; Kim, H.; Shin, J.W.; Park, I.W.; Choi, B.W.; Kim, J.Y. Poor nutritional intake is a dominant factor for weight loss in chronic obstructive pulmonary disease. Int. J. Tuberc. Lung Dis. 2019, 23, 631–637. [Google Scholar] [CrossRef]
- The State of Food Security and Nutrition in the World 2019, FAO: Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/3/ca5162en/ca5162en.pdf (accessed on 15 November 2021).
- Siobhan, A.C. Systemic response to injury and metabolic support. In Schwartz’s Principles of Surgery; Brunicardi, F.C., Ed.; McGraw-Hill Professional: New York, NY, USA, 2004; pp. 3–41. [Google Scholar]
- Nair, K.S.; Woolf, P.D.; Welle, S.L.; Matthews, D.E. Leucine, glucose, and energy metabolism after 3 days of fasting in healthy human subjects. Am. J. Clin. Nutr. 1987, 46, 557–562. [Google Scholar] [CrossRef]
- Kovarik, M.; Najpaverova, S.; Koblizek, V.; Zadak, Z.; Hronek, M. Association of resting energy expenditure and nutritional substrate oxidation with COPD stage and prediction indexes. Respir. Med. 2020, 174, 106174. [Google Scholar] [CrossRef]
- Yamanaka-Okumura, H.; Nakamura-Kutsuzawa, T.; Teramoto, A.; Urano, E.; Katayama, T.; Miyake, H.; Imura, S.; Utsunomiya, T.; Shimada, M.; Taketda, A. Non-esterified fatty acid is being validated as a substitute measure for non-protein respiratory quotient in patients with cirrhosis. e-SPEN J. 2013, 8, 90–94. [Google Scholar] [CrossRef]
- Widmaier, E.P.; Raff, H.; Strang, K.T.; Vander, A.J. Vander’s Human Physiology: The Mechanisms of Body Function, 14th ed.; McGraw-Hill: New York, NY, USA, 2016; pp. 622, 638, 691, 697. [Google Scholar]
- Bursztein, S.; Elwyn, D.H.; Askanazi, J.; Kinney, J.M. (Eds.) Energy Metabolism, Indirect Calorimetry, and Nutrition; William & Wilkins: Baltimore, MD, USA, 1989; pp. 17–21. [Google Scholar]
- Tajika, M.; Kato, M.; Mohri, H.; Miwa, Y.; Kato, T.; Ohnishi, H.; Moriwaki, H. Prognostic value of energy metabolism in patients with viral liver cirrhosis. Nutrition 2002, 18, 229–234. [Google Scholar] [CrossRef]
- McClave, S.A.; Lowen, C.C.; Kleber, M.J.; McConnell, J.W.; Jung, L.Y.; Goldsmith, L.J. Clinical use of the respiratory quotient obtained from indirect calorimetry. J. Parenter. Enter. Nutr. 2003, 27, 21–26. [Google Scholar] [CrossRef]
- Kotoh, Y.; Saeki, I.; Yamasaki, T.; Sasaki, R.; Tanabe, N.; Oono, T.; Maeda, M.; Hidaka, I.; Ishikawa, T.; Takami, T.; et al. Albumin-bilirubin score as a useful predictor of energy malnutrition in patients with hepatocellular carcinoma. Clin. Nutr. 2021, 40, 3585–3591. [Google Scholar] [CrossRef]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; van der Grinten, C.P.; Gustafsson, P.; et al. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef] [Green Version]
- Tanimura, K.; Sato, S.; Fuseya, Y.; Hasegawa, K.; Uemasu, K.; Sato, A.; Oguma, T.; Hirai, T.; Mishima, M.; Muro, S. Quantitative Assessment of Erector Spinae Muscles in Patients with Chronic Obstructive Pulmonary Disease. Novel Chest Computed Tomography-derived Index for Prognosis. Ann. Am. Thorac. Soc. 2016, 13, 334–341. [Google Scholar] [CrossRef]
- Murray, M.P. Gait as a total pattern of movement. Am. J. Phys. Med. 1967, 46, 290–333. [Google Scholar]
- Podsiadlo, D.; Richardson, S. The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [CrossRef]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e302. [Google Scholar] [CrossRef]
- Robert, O.C.; Richard, C.; Allan, L.C.; Paul, L.E.; Neil, R.M.; Roy, T.M.; Douglas, J.; Jack, S.W.; Jorge, Z. ATS statement: Guidelines for the six-minute walk test. Am. J. Respir. Crit. Care Med. 2002, 166, 111–117. [Google Scholar] [CrossRef]
- Yoza, Y.; Ariyoshi, K.; Honda, S.; Taniguchi, H.; Senjyu, H. Development of an activity of daily living scale for patients with COPD: The Activity of Daily Living Dyspnoea scale. Respirology 2009, 14, 429–435. [Google Scholar] [CrossRef] [Green Version]
- Rubenstein, L.Z.; Harker, J.O.; Salvà, A.; Guigoz, Y.; Vellas, B. Screening for undernutrition in geriatric practice: Developing the short-form mini-nutritional assessment (MNA-SF). J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M366–M372. [Google Scholar] [CrossRef] [Green Version]
- Yamada, S.; Kawaguchi, A.; Kawaguchi, T.; Fukushima, N.; Kuromatsu, R.; Sumie, S.; Takata, A.; Nakano, M.; Satani, M.; Tonan, T.; et al. Serum albumin level is a notable profiling factor for non-B, non-C hepatitis virus-related hepatocellular carcinoma: A data-mining analysis. Hepatol. Res. 2014, 44, 837–845. [Google Scholar] [CrossRef]
- Esteban, C.; Arostegui, I.; Moraza, J.; Aburto, M.; Quintana, J.M.; Pérez-Izquierdo, J.; Aizpiri, S.; Capelastegui, A. Development of a decision tree to assess the severity and prognosis of stable COPD. Eur. Respir. J. 2011, 38, 1294–1300. [Google Scholar] [CrossRef] [Green Version]
- Metting, E.I.; In ’t Veen, J.C.; Dekhuijzen, P.N.; van Heijst, E.; Kocks, J.W.; Muilwijk-Kroes, J.B.; Chavannes, N.H.; van der Molen, T. Development of a diagnostic decision tree for obstructive pulmonary diseases based on real-life data. ERJ Open Res. 2016, 2, 00077-2015. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, K.; Yu, Y.; Tian, B.; Cui, W.; Zhang, G. A new prediction model for assessing the clinical outcomes of ICU patients with community-acquired pneumonia: A decision tree analysis. Ann. Med. 2019, 51, 41–50. [Google Scholar] [CrossRef]
- Yoshikawa, M.; Yamauchi, M.; Yamamoto, Y. Survey of nutritional status and comorbidity in chronic obstructive pulmonary disease (COPD). Ministry of Health, Labour and Welfare, Research and Study Group on Respiratory Failure, 2008. Res. Rep. 2009, 247–251. [Google Scholar]
- Arora, N.S.; Rochester, D.F. Respiratory muscle strength and maximal voluntary ventilation in undernourished patients. Am. Rev. Respir. Dis. 1982, 126, 5–8. [Google Scholar] [CrossRef] [PubMed]
- Yoneda, T.; Yoshikawa, M.; Tsukaguchi, K.; Egawa, S.; Morikawa, A.; Kasuga, H.; Narita, N.; Enoki, Y.; Mikami, R. Nutritional assessment of chronic pulmonary emphysema and the significant relation of malnutrition to pulmonary function and respiratory muscle function. Nihon Kyobu Shikkan Gakkai Zasshi 1990, 28, 465–472. [Google Scholar] [PubMed]
- O’Donnell, D.E.; Webb, K.A. Exertional breathlessness in patients with chronic airflow limitation. The role of lung hyperinflation. Am. Rev. Respir. Dis. 1993, 148, 1351–1357. [Google Scholar] [CrossRef] [PubMed]
- Ratnovsky, A.; Elad, D.; Halpern, P. Mechanics of respiratory muscles. Respir. Physiol. Neurobiol. 2008, 163, 82–89. [Google Scholar] [CrossRef]
- Tanimura, K.; Sato, S.; Sato, A.; Tanabe, N.; Hasegawa, K.; Uemasu, K.; Hamakawa, Y.; Oguma, T.; Muro, S.; Hirai, T. Accelerated Loss of Antigravity Muscles Is Associated with Mortality in Patients with COPD. Respiration 2020, 99, 298–306. [Google Scholar] [CrossRef]
- Higashimoto, Y.; Shiraishi, M.; Sugiya, R.; Mizusawa, H.; Nishiyama, O.; Ryo, Y.; Iwanaga, T.; Chiba, Y.; Tohda, Y.; Fukuda, K. Effect of Pulmonary Rehabilitation on Erector Spinae Muscles in Individuals With COPD. Respir. Care 2021, 66, 1458–1468. [Google Scholar] [CrossRef]
Reference Value | Median (IQR) | Range (Min–Max) | |
---|---|---|---|
Number (n) | N/A | 56 | N/A |
Age (years) | N/A | 74 (67–80) | 60–93 |
Sex (female/male) | N/A | 0/56 | N/A |
BMI (kg/m2) | 18.5–24.9 | 22.5 (20.1–24.1) | 15.0–27.2 |
%IBW (%) | N/A | 102.4 (91.3–109.8) | 68.2–123.6 |
GOLD stage (I/II/III/IV) (n) | N/A | 12/23/18/3 | N/A |
mMRC dyspnea scale score (0/1/2/3/4) (n) | N/A | 14/26/8/6/2 | N/A |
FEV1 (L) | N/A | 1.59 (1.14–2.15) | 0.47–2.81 |
%FEV1 (%) | N/A | 58.8 (44.8–77.9) | 18.9–110.6 |
FVC (L) | N/A | 3.11 (2.56–3.70) | 1.07–4.89 |
FEV1/FVC (%) | N/A | 52.7 (42.5–63.8) | 27.4–94.8 |
VC (L) | N/A | 3.41 (2.91–3.86) | 1.02–5.36 |
MNA-SF (point) | N/A | 12 (10.2–13.0) | 6–14 |
NR-ADL (point) | N/A | 95 (90–97) | 73–99 |
Albumin (g/dL) | 4.1–5.1 | 4.2 (3.9–4.5) | 3.1–4.8 |
Transthyretin (mg/dL) | 22.0–40.0 | 28.3 (24.0–32.4) | 8.7–44.9 |
CRP (mg/dL) | 0.04< | 0.09 (0.04–0.27) | 0–6.4 |
AST (IU/L) | 13–30 | 22 (18.2–26.0) | 13–47 |
ALT (IU/L) | 10–30 | 18 (15.0–23.5) | 7–50 |
GGT (IU/L) | 13–64 | 25.5 (18.0–34.7) | 9–240 |
Total cholesterol (mg/dL) | 142–219 | 197.5 (173–215) | 110–251 |
HDL cholesterol (mg/dL) | 40–86 | 63 (50.2–75.0) | 36–111 |
LDL cholesterol (mg/dL) | 60–139 | 117 (97.5–134) | 46–173 |
Triglyceride (mg/dL) | 40–149 | 97 (66.5–132.7) | 44–266 |
Creatinine (mg/dL) | 0.65–1.07 | 0.87 (0.75–1.03) | 0.57–1.63 |
Blood glucose (mg/dL) | 80–109 | 103 (95.2–114) | 85–158 |
RQ | N/A | 0.85 (0.81–0.88) | 0.74–0.97 |
Carbohydrate oxidation rate (%) | N/A | 50.8 (38.8–61.9) | 10.9–90.5 |
Fat oxidation rate (%) | N/A | 49.2 (38.5–61.1) | 9.5–89.1 |
Energy Malnutrition [RQ < 0.85] (n = 24) | Non = Energy Malnutrition [RQ ≥ 0.85] (n = 32) | ||||
---|---|---|---|---|---|
Median (IQR) | Range (Min–Max) | Median (IQR) | Range (Min–Max) | p-Value | |
Age (years) | 75 (65.2–81.0) | 60–93 | 72 (67.5–77.7) | 60–87 | 0.528 |
Sex (female/male) | 0/24 | N/A | 0/32 | N/A | N/A |
BMI (kg/m2) | 21.2 (19.6–23.6) | 15.0–26.2 | 22.9 (20.6–24.9) | 17.5–27.2 | 0.131 |
%IBW (%) | 96.3 (89.1–107.5) | 68.2–118.9 | 104.0 (93.9–113.3) | 79.4–123.6 | 0.129 |
GOLD stage (I/II/III/IV) (n) | 3/11/8/2 | N/A | 9/12/10/1 | N/A | 0.474 |
mMRC dyspnea scale score (0/1/2/3/4) (n) | 6/8/3/5/2 | N/A | 8/18/5/1/0 | N/A | 0.080 |
FEV1 (L) | 1.3 (1.1–2.1) | 0.8–2.8 | 1.7 (1.2–2.2) | 0.5–2.8 | 0.161 |
%FEV1 (%) | 55.5 (44.1–71.3) | 27.6–87.8 | 65.8 (46.5–81.1) | 18.9–110.6 | 0.164 |
FVC (L) | 2.9 (2.4–3.6) | 1.1–3.8 | 3.2 (2.7–3.7) | 1.5–4.9 | 0.179 |
FEV1/FVC (%) | 49.9 (43.0–63.8) | 27.4–87.8 | 54.7 (41.5–63.7) | 30.6–94.8 | 0.746 |
VC (L) | 3.3 (2.7–3.7) | 1.0–4.3 | 3.5 (3.0–3.8) | 1.7–5.3 | 0.376 |
REE (kcal/day) | 1237 (1103–1421) | 868–1531 | 1319 (1144–1375) | 1040–1719 | 0.328 |
REE/kg (kcal/kg/day) | 21.8 (19.3–23.7) | 16.5–28.2 | 21.6 (19.5–22.7) | 16.7–25.2 | 0.797 |
BEE (kcal/day) | 1241 (1109–1424) | 836–1714 | 1324 (1203–1473) | 940–1705 | 0.138 |
REE/BEE | 1.01 (0.90–1.10) | 0.76–1.31 | 1.00 (0.90–1.05) | 0.78–1.17 | 0.728 |
RQ | 0.80 (0.77–0.83) | 0.74–0.84 | 0.88 (0.86–0.89) | 0.85–0.97 | <0.001 |
Carbohydrate oxidation rate (%) | 35.4 (23.3–43.6) | 10.9–49.3 | 61.2 (53.0–67.1) | 49.4–90.5 | <0.001 |
Fat oxidation rate (%) | 64.5 (56.3–76.6) | 50.7–89.1 | 38.7 (32.8–46.9) | 9.5–50.6 | <0.001 |
RR (count/min) | 14.1 (12.0–18.1) | 8.0–23.6 | 13.8 (10.9–15.5) | 6.6–20.6 | 0.236 |
VT (mL) | 548 (474–634) | 374–693 | 645 (552–708) | 433–1105 | 0.005 |
VE (mL/min) | 7.8 (6.6–8.7) | 4.8–10.1 | 8.5 (7.3–9.0) | 6.3–12.0 | 0.149 |
Albumin (g/dL) | 4.2 (4.0–4.4) | 3.1–4.7 | 4.3 (3.9–4.5) | 3.4–4.8 | 0.796 |
Transthyretin (mg/dL) | 28.4 (21.9–33.8) | 8.7–44.9 | 28.2 (24.2–31.5) | 20.0–44.2 | 0.953 |
CRP (mg/dL) | 0.07 (0.03–0.44) | 0–6.47 | 0.11 (0.04–0.27) | 0–2.75 | 0.898 |
AST (IU/L) | 21.0 (18.2–26.7) | 13.0–46.0 | 22.5 (18.2–25.7) | 14.0–47.0 | 0.721 |
ALT (IU/L) | 18.0 (15.0–24.7) | 7.0–47.0 | 18.0 (15.2–21.7) | 9.0–50.0 | 0.993 |
GGT (IU/L) | 24.5 (18.0–34.7) | 14.0–240.0 | 27.0 (18.7–36.2) | 9.0–216.0 | 0.888 |
Total cholesterol (mg/dL) | 208 (181–215) | 110–248 | 192 (170–220) | 136–251 | 0.428 |
HDL cholesterol (mg/dL) | 62 (51–72) | 45–111 | 63 (50–77) | 36–94 | 0.642 |
LDL cholesterol (mg/dL) | 119 (97–137) | 46–173 | 116 (91–133) | 67–158 | 0.810 |
Triglyceride (mg/dL) | 101 (66–130) | 47–199 | 97 (66–137) | 44–266 | 0.849 |
Creatinine (mg/dL) | 0.89 (0.80–1.02) | 0.59–1.63 | 0.85 (0.72–1.06) | 0.57–1.39 | 0.562 |
Blood glucose (mg/dL) | 97 (94–110) | 86–149 | 106 (96–120) | 85–158 | 0.095 |
Lean mass (kg) | 45.5 (42.5–51.4) | 35.8–56.5 | 47.3 (44.2–51.4) | 35.7–58.8 | 0.278 |
SMI (BIA) (kg/m2) | 7.5 (7.1–8.0) | 6.7–8.4 | 7.4 (6.9–8.4) | 5.8–9.0 | 0.961 |
Fat mass (kg) | 11.5 (8.6–17.0) | 2.6–23.2 | 12.7 (10.8–17.8) | 4.2–25.3 | 0.190 |
Body fat percentage (%) | 19.5 (16.3–26.4) | 6.6–29.2 | 21.9 (18.5–26.6) | 8.9–33.1 | 0.260 |
Upper arm circumference (cm) | 23.1 (21.3–25.1) | 18.3–28.8 | 24.3 (23.4–25.7) | 19.7–29.0 | 0.072 |
Lower leg circumference (cm) | 32.1 (28.9–33.2) | 26.3–36.8 | 31.8 (30.4–35.2) | 27.5–38.5 | 0.407 |
Grip strength (kg) | 35.5 (30.1–40.2) | 16.3–50.3 | 38.0 (32.1–41.6) | 19.1–47.5 | 0.223 |
Knee extension strength (kgf) | 27.9 (19.0–37.9) | 14.8–45.1 | 33.1 (26.1–38.5) | 18.0–52.8 | 0.060 |
Gait speed (m/s) | 1.6 (1.4–2.0) | 0.9–2.4 | 1.7 (1.5–1.8) | 0.9–2.2 | 0.816 |
TUG (second) | 6.9 (6.2–8.7) | 5.3–13.1 | 7.0 (6.2–8.2) | 5.4–11.7 | 0.772 |
CS-5 (second) | 6.0 (5.3–8.3) | 4.3–10.2 | 6.9 (6.1–8.8) | 4.1–13.3 | 0.139 |
6MWT (m) | 505 (450–540) | 390–550 | 460 (427–480) | 260–555 | 0.129 |
NR-ADL (point) | 96.5 (91.7–98.0) | 88–99 | 94.0 (87.5–97.0) | 73–98 | 0.062 |
MNA-SF (point) | 11 (10–12) | 6–14 | 13 (11–13) | 7–14 | 0.013 |
Th12 muscle mass (cm2) | 50.1 (43.2–58.7) | 25.3–87.4 | 53.9 (48.2–65.1) | 35.1–75.1 | 0.046 |
Th12 SMI (cm2/m2) | 17.9 (15.5–21.5) | 10.0–31.9 | 21.1 (17.8–23.3) | 12.8–27.4 | 0.050 |
Th12 ESM muscle mass (cm2) | 27.2 (19.8–31.2) | 8.8–45.2 | 31.5 (27.4–35.9) | 19.8–40.5 | 0.014 |
Th12 ESMSMI (cm2/m2) | 9.9 (7.9–11.4) | 3.6–16.5 | 11.4 (9.9–12.8) | 6.8–15.0 | 0.013 |
Factors | Odds Ratio | 95% Confidence Interval | p-Value |
---|---|---|---|
Th12 ESMSMI (cm2/m2) | 0.73 | 0.517–0.978 | 0.034 |
VT (mL) | 0.99 | 0.984–0.998 | 0.010 |
MNA-SF (point) | 0.91 | 0.578–1.398 | 0.676 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomita, M.; Uchida, M.; Imaizumi, Y.; Monji, M.; Tokushima, E.; Kawashima, M. The Relationship of Energy Malnutrition, Skeletal Muscle and Physical Functional Performance in Patients with Stable Chronic Obstructive Pulmonary Disease. Nutrients 2022, 14, 2596. https://doi.org/10.3390/nu14132596
Tomita M, Uchida M, Imaizumi Y, Monji M, Tokushima E, Kawashima M. The Relationship of Energy Malnutrition, Skeletal Muscle and Physical Functional Performance in Patients with Stable Chronic Obstructive Pulmonary Disease. Nutrients. 2022; 14(13):2596. https://doi.org/10.3390/nu14132596
Chicago/Turabian StyleTomita, Manabu, Masaru Uchida, Yujiro Imaizumi, Megumi Monji, Emiko Tokushima, and Michihiro Kawashima. 2022. "The Relationship of Energy Malnutrition, Skeletal Muscle and Physical Functional Performance in Patients with Stable Chronic Obstructive Pulmonary Disease" Nutrients 14, no. 13: 2596. https://doi.org/10.3390/nu14132596
APA StyleTomita, M., Uchida, M., Imaizumi, Y., Monji, M., Tokushima, E., & Kawashima, M. (2022). The Relationship of Energy Malnutrition, Skeletal Muscle and Physical Functional Performance in Patients with Stable Chronic Obstructive Pulmonary Disease. Nutrients, 14(13), 2596. https://doi.org/10.3390/nu14132596