Associations of Nutritional, Environmental, and Metabolic Biomarkers with Diabetes-Related Mortality in U.S. Adults: The Third National Health and Nutrition Examination Surveys between 1988–1994 and 2016
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Linked Mortality Data through 31 December 2015
2.3. Demographic Characteristics, Lifestyle and Body Mass Index (BMI)
2.4. Physical Activity
2.5. Comorbidities
2.6. Laboratory-Based Biomarkers
2.7. Diabetes Definition
2.8. Statistical Analyses
3. Results
3.1. Patient Characteristics
3.2. Associations of Nutritional, Environmental, and Metabolic Biomarkers with All-Cause Mortality
3.3. Cross-Correlation within a Subset of the Significant Biomarkers
3.4. Assessing the Values of the Significant Biomarkers for Predicting All-Cause Mortality
4. Discussion
Strengths and Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Centers for Disease Control and Prevention (CDC). National Diabetes Statistics Report, 2017 Estimates of Diabetes and Its Burden in the United States; Centers for Disease Control and Prevention (CDC): Atlanta, GA, USA, 2017.
- Murphy, S.L.; Xu, J.; Kochanek, K.D.; Arias, E. Mortality in the United States, 2017. NCHS Data Brief 2018, 328, 1–8. [Google Scholar]
- Gregg, E.W.; Cheng, Y.J.; Srinivasan, M.; Lin, J.; Geiss, L.S.; Albright, A.L.; Imperatore, G. Trends in cause-specific mortality among adults with and without diagnosed diabetes in the USA: An epidemiological analysis of linked national survey and vital statistics data. Lancet 2018, 391, 2430–2440. [Google Scholar] [CrossRef]
- Colhoun, H.M.; Marcovecchio, M.L. Biomarkers of diabetic kidney disease. Diabetologia 2018, 61, 996–1011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McEwen, L.N.; Kim, C.; Karter, A.J.; Haan, M.N.; Ghosh, D.; Lantz, P.M.; Mangione, C.M.; Thompson, T.J.; Herman, W.H. Risk factors for mortality among patients with diabetes: The Translating Research Into Action for Diabetes (TRIAD) Study. Diabetes Care 2007, 30, 1736–1741. [Google Scholar] [CrossRef] [Green Version]
- McEwen, L.N.; Karter, A.J.; Waitzfelder, B.E.; Crosson, J.C.; Marrero, D.G.; Mangione, C.M.; Herman, W.H. Predictors of mortality over 8 years in type 2 diabetic patients: Translating Research Into Action for Diabetes (TRIAD). Diabetes Care 2012, 35, 1301–1309. [Google Scholar] [CrossRef] [Green Version]
- Kussmann, M.; Morine, M.J.; Hager, J.; Sonderegger, B.; Kaput, J. Perspective: A systems approach to diabetes research. Front. Genet. 2013, 4, 205. [Google Scholar] [CrossRef] [Green Version]
- Campion, C.G.; Sanchez-Ferras, O.; Batchu, S.N. Potential Role of Serum and Urinary Biomarkers in Diagnosis and Prognosis of Diabetic Nephropathy. Can. J. Kidney Health Dis. 2017, 4, 2054358117705371. [Google Scholar] [CrossRef]
- Zoppini, G.; Cacciatori, V.; Negri, C.; Stoico, V.; Lippi, G.; Targher, G.; Bonora, E. The aspartate aminotransferase-to-alanine aminotransferase ratio predicts all-cause and cardiovascular mortality in patients with type 2 diabetes. Medicine 2016, 95, e4821. [Google Scholar] [CrossRef]
- Velho, G.; Ragot, S.; El Boustany, R.; Saulnier, P.J.; Fraty, M.; Mohammedi, K.; Fumeron, F.; Potier, L.; Marre, M.; Hadjadj, S.; et al. Plasma copeptin, kidney disease, and risk for cardiovascular morbidity and mortality in two cohorts of type 2 diabetes. Cardiovasc. Diabetol. 2018, 17, 110. [Google Scholar] [CrossRef] [Green Version]
- Broedbaek, K.; Køster-Rasmussen, R.; Siersma, V.; Persson, F.; Poulsen, H.E.; de Fine Olivarius, N. Urinary albumin and 8-oxo-7,8-dihydroguanosine as markers of mortality and cardiovascular disease during 19 years after diagnosis of type 2 diabetes—A comparative study of two markers to identify high risk patients. Redox Biol. 2017, 13, 363–369. [Google Scholar] [CrossRef]
- Von Scholten, B.J.; Reinhard, H.; Hansen, T.W.; Oellgaard, J.; Parving, H.H.; Jacobsen, P.K.; Rossing, P. Urinary biomarkers are associated with incident cardiovascular disease, all-cause mortality and deterioration of kidney function in type 2 diabetic patients with microalbuminuria. Diabetologia 2016, 59, 1549–1557. [Google Scholar] [CrossRef] [Green Version]
- Wannamethee, S.G.; Welsh, P.; Lennon, L.; Papacosta, O.; Whincup, P.H.; Sattar, N. Copeptin and the risk of incident stroke, CHD and cardiovascular mortality in older men with and without diabetes: The British Regional Heart Study. Diabetologia 2016, 59, 1904–1912. [Google Scholar] [CrossRef] [Green Version]
- Hendriks, S.H.; van Dijk, P.R.; van Hateren, K.J.; van Pelt, J.L.; Groenier, K.H.; Bilo, H.J.; Bakker, S.J.; Landman, G.W.; Kleefstra, N. High-sensitive troponin T is associated with all-cause and cardiovascular mortality in stable outpatients with type 2 diabetes (ZODIAC-37). Am. Heart J. 2016, 174, 43–50. [Google Scholar] [CrossRef]
- Riphagen, I.J.; Logtenberg, S.J.; Groenier, K.H.; van Hateren, K.J.; Landman, G.W.; Struck, J.; Navis, G.; Kootstra-Ros, J.E.; Kema, I.P.; Bilo, H.J.; et al. Is the association of serum sodium with mortality in patients with type 2 diabetes explained by copeptin or NT-proBNP? (ZODIAC-46). Atherosclerosis 2015, 242, 179–185. [Google Scholar] [CrossRef]
- Gerrits, E.G.; Alkhalaf, A.; Landman, G.W.; van Hateren, K.J.; Groenier, K.H.; Struck, J.; Schulte, J.; Gans, R.O.; Bakker, S.J.; Kleefstra, N.; et al. Serum peroxiredoxin 4: A marker of oxidative stress associated with mortality in type 2 diabetes (ZODIAC-28). PLoS ONE 2014, 9, e89719. [Google Scholar] [CrossRef]
- Landman, G.W.; van Dijk, P.R.; Drion, I.; van Hateren, K.J.; Struck, J.; Groenier, K.H.; Gans, R.O.; Bilo, H.J.; Bakker, S.J.; Kleefstra, N. Midregional fragment of proadrenomedullin, new-onset albuminuria, and cardiovascular and all-cause mortality in patients with type 2 diabetes (ZODIAC-30). Diabetes Care 2014, 37, 839–845. [Google Scholar] [CrossRef] [Green Version]
- Riphagen, I.J.; Boertien, W.E.; Alkhalaf, A.; Kleefstra, N.; Gansevoort, R.T.; Groenier, K.H.; Van Hateren, K.J.; Struck, J.; Navis, G.; Bilo, H.J.; et al. Copeptin, a surrogate marker for arginine vasopressin, is associated with cardiovascular and all-cause mortality in patients with type 2 diabetes (ZODIAC-31). Diabetes Care 2013, 36, 3201–3207. [Google Scholar] [CrossRef] [Green Version]
- Al-Kindi, S.G.; Refaat, M.; Jayyousi, A.; Asaad, N.; Al Suwaidi, J.; Abi Khalil, C. Red Cell Distribution Width Is Associated with All-Cause and Cardiovascular Mortality in Patients with Diabetes. BioMed Res. Int. 2017, 2017, 5843702. [Google Scholar] [CrossRef] [Green Version]
- Sinkeler, S.J.; Kwakernaak, A.J.; Bakker, S.J.; Shahinfar, S.; Esmatjes, E.; De Zeeuw, D.; Navis, G.; Lambers Heerspink, H.J. Creatinine excretion rate and mortality in type 2 diabetes and nephropathy. Diabetes Care 2013, 36, 1489–1494. [Google Scholar] [CrossRef] [Green Version]
- Broedbraek, K.; Siersma, V.; Henriksen, T.; Weimann, A.; Petersen, M.; Andersen, J.T.; Jimenez-Solem, E.; Stovgaard, E.S.; Hansen, L.J.; Henriksen, J.E.; et al. Urinary markers of nucleic acid oxidation and long-term mortality of newly diagnosed type 2 diabetic patients. Diabetes Care 2011, 34, 2594–2596. [Google Scholar] [CrossRef] [Green Version]
- Welsh, P.; Rankin, N.; Li, Q.; Mark, P.B.; Würtz, P.; Ala-Korpela, M.; Marre, M.; Poulter, N.; Hamet, P.; Chalmers, J.; et al. Circulating amino acids and the risk of macrovascular, microvascular and mortality outcomes in individuals with type 2 diabetes: Results from the advance trial. Diabetologia 2018, 61, 1581–1591. [Google Scholar] [CrossRef] [Green Version]
- Schiller, A.; Gadalean, F.; Schiller, O.; Timar, R.; Bob, F.; Munteanu, M.; Stoian, D.; Mihaescu, A.; Timar, B. Vitamin D deficiency—Prognostic marker or mortality risk factor in end stage renal disease patients with diabetes mellitus treated with hemodialysis—A prospective multicenter study. PLoS ONE 2015, 10, e0126586. [Google Scholar] [CrossRef] [Green Version]
- National Center For Health Statistics. Office of Analysis and Epidemiology. 2015 Public-Use Linked Mortality File; Centers for Disease Control and Prevention (CDC): Atlanta, GA, USA, 2015.
- National Center For Health Statistics (NCHS). Office of Analysis and Epidemiology. Analytic Guidelines for NCHS 2011 Linked Mortality Files; National Center for Health Statistics (NCHS): Atlanta, GA, USA, 2013.
- Center’s for Disease Control and Prevention. Defining Adult Overweight and Obesity; Centers for Disease Control and Prevention (CDC): Atlanta, GA, USA, 2021.
- Beddhu, S.; Baird, B.C.; Zitterkoph, J.; Neilson, J.; Greene, T. Physical activity and mortality in chronic kidney disease (NHANES III). Clin. J. Am. Soc. Nephrol. 2009, 4, 1901–1906. [Google Scholar] [CrossRef] [Green Version]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.; Castro, A.F., III; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Inker, L.A.; Astor, B.C.; Fox, C.H.; Isakova, T.; Lash, J.P.; Peralta, C.A.; Tamura, M.K.; Feldman, H.I. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for the evaluation and management of CKD. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2014, 63, 713–735. [Google Scholar] [CrossRef] [Green Version]
- Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Off. J. Int. Soc. Nephrol. 2013, 3, 1–150. [Google Scholar]
- GUNTER, E.W.L.; Brenda, G.; Koncikowsk, S.M. Laboratory Procedures Used for the Third National Health and Nutrition Examination Survey (NHANES III), 1988–1994; National Center for Health Statistics (NCHS): Atlanta, GA, USA, 1996.
- Vatcheva, K.P.; Lee, M.; McCormick, J.B.; Rahbar, M.H. The Effect of Ignoring Statistical Interactions in Regression Analyses Conducted in Epidemiologic Studies: An Example with Survival Analysis Using Cox Proportional Hazards Regression Model. Epidemiology 2015, 6, 216. [Google Scholar]
- Delong, E.R.; Delong, D.M.; Clarke-Pearson, D.L. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 1988, 44, 837–845. [Google Scholar] [CrossRef]
- Zacho, J.; Tybjaerg-Hansen, A.; Nordestgaard, B.G. C-reactive protein and all-cause mortality—The Copenhagen City Heart Study. Eur. Heart J. 2010, 31, 1624–1632. [Google Scholar] [CrossRef]
- Cox, A.J.; Agarwal, S.D.; MHerrington, D.; Carr, J.J.; Freedman, B.I.; Bowden, D.W. C-reactive protein concentration predicts mortality in type 2 diabetes: The Diabetes Heart Study. Diabet. Med. A J. Br. Diabet. Assoc. 2012, 29, 767–770. [Google Scholar] [CrossRef] [Green Version]
- Bruno, G.; Fornengo, P.; Novelli, G.; Panero, F.; Perotto, M.; Segre, O.; Zucco, C.; Deambrogio, P.; Bargero, G.; Perin, P.C. C-reactive protein and 5-year survival in type 2 diabetes: The Casale Monferrato Study. Diabetes 2009, 58, 926–933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, R.; Tian, M.; Wang, L.; Qian, H.; Zhang, S.; Pang, H.; Liu, Z.; Fang, L.; Shen, Z. C-reactive protein for predicting cardiovascular and all-cause mortality in type 2 diabetic patients: A meta-analysis. Cytokine 2019, 117, 59–64. [Google Scholar] [CrossRef] [PubMed]
- The Emerging Risk Factors Collaboration. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: An individual participant meta-analysis. Lancet 2010, 375, 132–140. [Google Scholar] [CrossRef] [Green Version]
- Sheehan, M.T. Biochemical Testing of the Thyroid: TSH is the Best and, Oftentimes, Only Test Needed—A Review for Primary Care. Clin. Med. Res. 2016, 14, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Han, C.; He, X.; Xia, X.; Li, Y.; Shi, X.; Shan, Z.; Teng, W. Subclinical Hypothyroidism and Type 2 Diabetes: A Systematic Review and Meta-Analysis. PLoS ONE 2015, 10, e0135233. [Google Scholar] [CrossRef]
- Cooper, D.S.; Biondi, B. Subclinical thyroid disease. Lancet 2012, 379, 1142–1154. [Google Scholar] [CrossRef]
- Kadiyala, R.; Peter, R.; Okosieme, O.E. Thyroid dysfunction in patients with diabetes: Clinical implications and screening strategies. Int. J. Clin. Pract. 2010, 64, 1130–1139. [Google Scholar] [CrossRef] [Green Version]
- Biondi, B.; Kahaly, G.J.; Robertson, R.P. Thyroid Dysfunction and Diabetes Mellitus: Two Closely Associated Disorders. Endocr. Rev. 2019, 40, 789–824. [Google Scholar] [CrossRef] [Green Version]
- Kaptoge, S.; White, I.R.; Thompson, S.G.; Wood, A.M.; Lewington, S.; Lowe, G.D.; Danesh, J.; Kostis, J.B.; Wilson, A.C.; Folsom, A.R.; et al. Associations of plasma fibrinogen levels with established cardiovascular disease risk factors, inflammatory markers, and other characteristics: Individual participant meta-analysis of 154,211 adults in 31 prospective studies: The fibrinogen studies collaboration. Am. J. Epidemiol. 2007, 166, 867–879. [Google Scholar]
- Kunutsor, S.K.; Kurl, S.; Zaccardi, F.; Laukkanen, J.A. Baseline and long-term fibrinogen levels and risk of sudden cardiac death: A new prospective study and meta-analysis. Atherosclerosis 2016, 245, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.H.; Du, Y.; Zhang, Y.; Li, X.L.; Li, S.; Xu, R.X.; Zhu, C.G.; Guo, Y.L.; Wu, N.Q.; Qing, P.; et al. Serum fibrinogen and cardiovascular events in Chinese patients with type 2 diabetes and stable coronary artery disease: A prospective observational study. BMJ Open 2017, 7, e015041. [Google Scholar] [CrossRef] [Green Version]
- Jialal, I.; Sokoll, L.J. Clinical utility of lactate dehydrogenase: A historical perspective. Am. J. Clin. Pathol. 2015, 143, 158–159. [Google Scholar] [CrossRef]
- Wu, L.W.; Kao, T.W.; Lin, C.M.; Yang, H.F.; Sun, Y.S.; Liaw, F.Y.; Wang, C.C.; Peng, T.C.; Chen, W.L. Examining the association between serum lactic dehydrogenase and all-cause mortality in patients with metabolic syndrome: A retrospective observational study. BMJ Open 2016, 6, e011186. [Google Scholar] [CrossRef]
- Mason, J.E.; Starke, R.D.; van Kirk, J.E. Gamma-glutamyl transferase: A novel cardiovascular risk biomarker. Prev. Cardiol. 2010, 13, 36–41. [Google Scholar] [CrossRef]
- Sluik, D.; Beulens, J.W.; Weikert, C.; Van Dieren, S.; Spijkerman, A.M.; van der, A.D.L.; Fritsche, A.; Joost, H.G.; Boeing, H.; Nöthlings, U. Gamma-glutamyltransferase, cardiovascular disease and mortality in individuals with diabetes mellitus. Diabetes Metab. Res. Rev. 2012, 28, 284–288. [Google Scholar] [CrossRef]
- Monami, M.; Balzi, D.; Lamanna, C.; Melani, C.; Cocca, C.; Lotti, E.; Fedeli, A.; Masotti, G.; Marchionni, N.; Mannucci, E. Prognostic value of serum liver enzymes levels in type 2 diabetic patients. Diabetes Metab. Res. Rev. 2007, 23, 625–630. [Google Scholar] [CrossRef]
- Kengne, A.P.; Czernichow, S.; Stamatakis, E.; Hamer, M.; Batty, G.D. Gamma-glutamyltransferase and risk of cardiovascular disease mortality in people with and without diabetes: Pooling of three British Health Surveys. J. Hepatol. 2012, 57, 1083–1089. [Google Scholar] [CrossRef]
- Levey, A.S.; Eckardt, K.U.; Tsukamoto, Y.; Levin, A.; Coresh, J.; Rossert, J.; Zeeuw, D.D.; Hostetter, T.H.; Lameire, N.; Eknoyan, G. Definition and classification of chronic kidney disease: A position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2005, 67, 2089–2100. [Google Scholar] [CrossRef] [Green Version]
- Mattock, M.B.; Morrish, N.J.; Viberti, G.; Keen, H.; Fitzgerald, A.P.; Jackson, G. Prospective study of microalbuminuria as predictor of mortality in NIDDM. Diabetes 1992, 41, 736–741. [Google Scholar] [CrossRef]
- Mogensen, C.E. Microalbuminuria predicts clinical proteinuria and early mortality in maturity-onset diabetes. N. Engl. J. Med. 1984, 310, 356–360. [Google Scholar] [CrossRef]
- De Jong, P.E.; Curhan, G.C. Screening, monitoring, and treatment of albuminuria: Public health perspectives. J. Am. Soc. Nephrol. 2006, 17, 2120–2126. [Google Scholar] [CrossRef]
- Li, C.; Ford, E.S.; Zhao, G.; Balluz, L.S.; Giles, W.H.; Liu, S. Serum alpha-carotene concentrations and risk of death among US Adults: The Third National Health and Nutrition Examination Survey Follow-up Study. Arch. Intern. Med. 2011, 171, 507–515. [Google Scholar] [CrossRef] [Green Version]
- Jayedi, A.; Rashidy-Pour, A.; Parohan, M.; Zargar, M.S.; Shab-Bidar, S. Dietary Antioxidants, Circulating Antioxidant Concentrations, Total Antioxidant Capacity, and Risk of All-Cause Mortality: A Systematic Review and Dose-Response Meta-Analysis of Prospective Observational Studies. Adv. Nutr. 2018, 9, 701–716. [Google Scholar] [CrossRef] [Green Version]
- Cheng, P.C.; Hsu, S.R.; Cheng, Y.C. Association between Serum Albumin Concentration and Ketosis Risk in Hospitalized Individuals with Type 2 Diabetes Mellitus. J. Diabetes Res. 2016, 2016, 1269706. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Cai, X.; Liu, Y.; Hu, M.; Zhou, L.; Liu, W.; Wu, J.; Zhang, R.; Gao, X.; Yang, W. Serum Albumin, but not Bilirubin, is Associated with Diabetic Chronic Vascular Complications in a Chinese Type 2 Diabetic Population. Sci. Rep. 2019, 9, 12086. [Google Scholar] [CrossRef]
- Viswanathan, V.; Snehalatha, C.; Kumutha, R.; Jayaraman, M.; Ramachandran, A. Serum albumin levels in different stages of type 2 diabetic nephropathy patients. Indian J Nephrol. 2004, 14, 89–92. [Google Scholar]
Biomarkers | All | Men | Women | p-Value |
---|---|---|---|---|
Participants (n) | 2113 | 955 | 1158 | |
Nutritional biomarkers | ||||
Blood | ||||
Vitamin A (μmol/L) | 2.11 (0.73) | 2.21 (0.77) | 2.02 (0.68) | <0.0001 |
Vitamin C (mmol/L) | 36.5 (23.2) | 33.6 (22.5) | 38.9 (23.4) | <0.0001 |
Vitamin D (nmol/L) | 57.6 (24.6) | 62.1 (23.5) | 53.9 (24.9) | <0.0001 |
Vitamin E (μmol/L) | 30.2 (15.6) | 29.5 (15.1) | 30.9 (16.0) | 0.06 |
Alpha carotene (μmol/L) | 0.07 (0.04–0.11) | 0.07 (0.04–0.09) | 0.07 (0.04–0.11) | 0.002 |
Beta carotene (μmol/L) | 0.28 (0.17–0.47) | 0.26 (0.15–0.43) | 0.32 (0.17–0.50) | <0.0001 |
Total carotene (μmol/L) | 1.29 (0.93–1.75) | 1.28 (0.90–1.74) | 1.30 (0.96–1.77) | 0.21 |
Iron (μmol/L) | 14.3 (6.13) | 15.7 (6.53) | 13.1 (5.51) | <0.0001 |
Ferritin (ug/L) | 138 (67–259) | 181 (102–330) | 105 (48.0–201) | <0.0001 |
Total iron binding capacity (μmol/L) | 61.9 (10.7) | 60.4 (9.92) | 63.2 (11.1) | <0.0001 |
Calcium (mmol/L) | 2.30 (0.13) | 2.29 (0.13) | 2.31 (0.13) | 0.001 |
Selenium (nmol/L) | 1.58 (0.24) | 1.60 (0.26) | 1.57 (0.22) | 0.004 |
Sodium (mmol/L) | 141 (3.10) | 141 (2.90) | 140 (3.25) | 0.04 |
Chloride (mmol/L) | 103 (3.96) | 103 (3.82) | 103 (4.07) | 0.16 |
Potassium (mmol/L) | 4.08 (0.41) | 4.14 (0.42) | 4.03 (0.40) | <0.0001 |
Phosphorus (mmol/L) | 1.11 (0.19) | 1.08 (0.20) | 1.13 (1.03–1.26) | <0.0001 |
Lutein/zeaxanthin (μmol/L) | 0.37 (0.26–0.53) | 0.40 (0.28–0.54) | 0.35 (0.26–0.53) | 0.005 |
Beta cryptoxanthin (μmol/L) | 0.19 (0.16) | 0.19 (0.16) | 0.20 (0.16) | 0.10 |
Lycopene (μmol/L) | 0.34 (0.21) | 0.34 (0.22) | 0.34 (0.21) | 0.77 |
Globulin (g/L) | 34.7 (5.12) | 33.9 (5.19) | 35.2 (4.99) | <0.0001 |
Bicarbonate (mmol/L) | 31.6 (14.4) | 31.4 (13.7) | 31.7 (14.9) | 0.69 |
Folate (nmol/L) | 16.4 (14.3) | 15.7 (12.4) | 17.1 (15.8) | 0.03 |
Protein (g/L) | 74.1 (5.23) | 73.9 (5.25) | 74.2 (5.22) | 0.33 |
Urine | ||||
Creatinine (mmol/L) | 10.2 (6.17) | 11.7 (6.18) | 8.90 (5.87) | <0.0001 |
Albumin (ug/mL) | 14.8 (5.50–50.0) | 16.8 (6.30–60.5) | 13.4 (4.95–45.0) | 0.0009 |
Iodine (ug/dL) | 15.0 (8.80–23.2) | 15.5 (9.80–24.2) | 14.3 (7.80–22.1) | 0.0002 |
Environmental Biomarkers | ||||
Blood | ||||
Lead (μmol/L) | 0.16 (0.11–0.26) | 0.21 (0.14–0.32) | 0.14 (0.09–0.20) | <0.0001 |
Cotinine (ng/mL) | 0.27 (0.08–10.1) | 0.38 (0.10–78.9) | 0.22 (0.07–2.02) | <0.0001 |
Urine | ||||
Cadmium (nmol/L) | 5.16 (2.58–9.61) | 5.34 (2.94–10.05) | 5.07 (2.40–9.16) | 0.009 |
Metabolic biomarkers | ||||
Blood | ||||
Creatinine (μmol/L) | 97.2 (79.6–115) | 106 (97.2–124) | 88.4 (79.6–97.2) | <0.0001 |
C-reactive protein (mg/dL) | 0.33 (0.21–0.80) | 0.21 (0.21–0.66) | 0.40 (0.21–1.00) | <0.0001 |
Urea nitrogen (mmol/L) | 6.22 (3.21) | 6.47 (3.14) | 6.02 (3.26) | 0.002 |
Uric acid (μmol/L) | 335 (102) | 356 (100) | 317 (100) | <0.0001 |
Albumin (g/L) | 39.9 (4.01) | 40.5 (4.19) | 39.5 (3.78) | <0.0001 |
Lactate dehydrogenase (U/L) | 171 (41.3) | 167.9 (41.6) | 173 (41.0) | 0.004 |
Alkaline phosphatase (U/L) | 104 (45.8) | 102 (49.6) | 105 (42.3) | 0.21 |
Sum retinyl esters (μmol/L) | 0.17 (0.10–0.24) | 0.17 (0.10–0.24) | 0.17 (0.10–0.24) | 0.76 |
Bilirubin (μmol/L) | 9.77 (5.44) | 11.2 (6.13) | 8.60 (4.45) | <0.0001 |
Osmolality (mmol/Kg) | 284 (7.62) | 284 (7.40) | 284 (7.80) | 0.51 |
Fibrinogen (g/L) | 3.47 (1.03) | 3.41 (1.06) | 3.51 (1.01) | 0.047 |
Gamma glutamyl transferase (U/L) | 29.0 (20.0–46.0) | 31.0 (22.0–53.0) | 28.0 (19.0–43.0) | <0.0001 |
Aspartate aminotransferase (U/L) | 19.0 (15.0–24.0) | 20.0 (16.5–25.0) | 18.0 (15.0–23.0) | <0.0001 |
Alanine aminotransferase (U/L) | 15.0 (10.0–21.0) | 17.0 (12.0–24.0) | 14.0 (10.0–20.0) | <0.0001 |
Thyroid stimulating hormone (mU/L) | 1.70 (1.10–2.60) | 1.70 (1.10–2.50) | 1.72 (1.10–2.70) | 0.37 |
ORs (95% CI) of Model 1 | p for Linear Trend † | ORs (95% CI) of Model 2 | p for Linear Trend † | |||
---|---|---|---|---|---|---|
Tertile 2 ‡ | Tertile 3 | Tertile 2 | Tertile 3 | |||
Nutritional biomarkers | ||||||
Blood | ||||||
Vitamin A (μmol/L) | 0.61 (0.37–1.001) | 1.15 (0.66–1.98) | 0.35 | 0.69 (0.41–1.18) | 1.32 (0.74–2.35) | 0.17 |
Vitamin C (mmol/L) | 0.97 (0.54–1.76) | 0.68 (0.40–1.16) | 0.13 | 1.27 (0.73–2.23) | 0.95 (0.56–1.61) | 0.75 |
Vitamin D (nmol/L) | 0.70 (0.49–1.002) | 0.83 (0.52–1.34) | 0.66 | 0.82 (0.54–1.23) | 0.92 (0.56–1.53) | 0.90 |
Vitamin E (μmol/L) | 1.09 (0.72–1.66) | 1.24 (0.77–1.98) | 0.40 | 1.03 (0.65–1.62) | 1.46 (0.91–2.34) | 0.09 |
Alpha carotene (μmol/L) | 0.78 (0.48–1.27) | 0.37 (0.25–0.57) | <0.0001 | 0.94 (0.56–1.59) | 0.44 (0.26–0.74) | 0.006 |
Beta carotene (μmol/L) | 0.65 (0.43–0.99) | 0.59 (0.39–0.91) | 0.03 | 0.76 (0.46–1.27) | 0.67 (0.41–1.10) | 0.11 |
Total carotene (μmol/L) | 0.60 (0.39–0.93) | 0.62 (0.35–1.09) | 0.11 | 0.68 (0.42–1.10) | 0.72 (0.39–1.34) | 0.33 |
Iron (μmol/L) | 0.60 (0.39–0.91) | 0.74 (0.48–1.14) | 0.25 | 0.60 (0.41–0.88) | 0.83 (0.53–1.31) | 0.71 |
Ferritin (ug/L) | 0.57 (0.34–0.94) | 1.03 (0.62–1.71) | 0.26 | 0.65 (0.37–1.13) | 1.13 (0.61–2.06) | 0.26 |
Total iron binding capacity (μmol/L) | 0.81 (0.52–1.27) | 0.99 (0.64–1.53) | 0.94 | 0.77 (0.49–1.22) | 0.99 (0.66–1.50) | 0.87 |
Calcium (mmol/L) | 0.70 (0.47–1.06) | 1.10 (0.65–1.86) | 0.94 | 0.76 (0.50–1.17) | 0.98 (0.59–1.64) | 0.77 |
Selenium (nmol/L) | 0.54 (0.35–0.85) | 0.60 (0.34–1.05) | 0.12 | 0.64 (0.41–0.996) | 0.77 (0.43–1.38) | 0.52 |
Sodium (mmol/L) | 0.84 (0.57–1.23) | 0.53 (0.36–0.80) | 0.004 | 0.92 (0.61–1.40) | 0.51 (0.33–0.78) | 0.005 |
Chloride (mmol/L) | 0.77 (0.49–1.23) | 0.89 (0.50–1.57) | 0.64 | 0.81 (0.50–1.33) | 0.75 (0.43–1.31) | 0.30 |
Potassium (mmol/L) | 1.34 (0.79–2.28) | 1.19 (0.72–1.97) | 0.53 | 1.33 (0.80–2.20) | 1.15 (0.72–1.84) | 0.54 |
Phosphorus (mmol/L) | 0.99 (0.60–1.65) | 1.21 (0.78–1.89) | 0.43 | 0.91 (0.53–1.56) | 1.02 (0.63–1.64) | 0.99 |
Lutein/zeaxanthin (μmol/L) | 0.73 (0.47–1.12) | 0.88 (0.54–1.47) | 0.70 | 0.72 (0.45–1.16) | 1.01 (0.61–1.68) | 0.84 |
Beta cryptoxanthin (μmol/L) | 0.88 (0.55–1.42) | 0.79 (0.54–1.16) | 0.22 | 0.98 (0.59–1.63) | 1.01 (0.67–1.52) | 0.96 |
Lycopene (μmol/L) | 0.59 (0.35–1.00) | 0.69 (0.42–1.13) | 0.24 | 0.65 (0.36–1.16) | 0.77 (0.46–1.29) | 0.49 |
Globulin (g/L) | 1.19 (0.75–1.89) | 1.12 (0.77–1.64) | 0.48 | 1.11 (0.71–1.74) | 1.26 (0.84–1.91) | 0.25 |
Bicarbonate (mmol/L) | 0.90 (0.56–1.43) | 1.01 (0.61–1.69) | 0.94 | 0.88 (0.52–1.49) | 1.10 (0.65–1.87) | 0.77 |
Folate (nmol/L) | 0.74 (0.45–1.22) | 0.67 (0.47–0.96) | 0.051 | 0.80 (0.47–1.37) | 0.81 (0.55–1.21) | 0.38 |
Protein (g/L) | 0.69 (0.42–1.11) | 0.74 (0.43–1.27) | 0.20 | 0.72 (0.43–1.19) | 0.79 (0.48–1.31) | 0.28 |
Urine | ||||||
Cadmium (nmol/L) | 1.22 (0.75–1.98) | 1.58 (0.97–2.58) | 0.08 | 1.21 (0.66–1.89) | 1.23 (0.72–2.10) | 0.48 |
Creatinine (mmol/L) | 1.07 (0.69–1.66) | 0.97 (0.60–1.55) | 0.86 | 1.06 (0.64–1.76) | 0.81 (0.48–1.36) | 0.37 |
Albumin (ug/mL) | 1.13 (0.70–1.85) | 4.08 (2.40–6.92) | <0.0001 | 1.10 (0.66–1.83) | 3.75 (2.17–6.49) | <0.0001 |
Iodine (ug/dL) | 1.32 (0.86–2.04) | 1.35 (0.77–2.38) | 0.33 | 1.33 (0.87–2.05) | 1.19 (0.67–2.09) | 0.62 |
Environmental Biomarkers | ||||||
Blood | ||||||
Lead (μmol/L) | 1.38 (0.86–2.21) | 1.55 (0.94–2.56) | 0.09 | 1.33 (0.82–2.17) | 1.33 (0.80–2.21) | 0.28 |
Cotinine (ng/mL) | 1.12 (0.66–1.86) | 2.02 (1.23–3.31) | 0.02 | 1.12 (0.64–1.95) | 1.07 (0.54–2.12) | 0.99 |
Urine | ||||||
Cadmium (nmol/L) | 1.22 (0.75–1.98) | 1.58 (0.97–2.58) | 0.08 | 1.21 (0.66–1.89) | 1.23 (0.72–2.10) | 0.48 |
Metabolic biomarkers | ||||||
Blood | ||||||
Creatinine (μmol/L) | 1.20 (0.71–2.02) | 1.51 (0.81–2.83) | 0.20 | 1.23 (0.74–2.07) | 1.33 (0.69–2.59) | 0.37 |
C-reactive protein (mg/dL) | 1.10 (0.71–1.70) | 2.60 (1.60–4.24) | 0.0001 | 0.97 (0.61–1.55) | 2.36 (1.42–3.94) | 0.0004 |
Urea nitrogen (mmol/L) | 1.05 (0.65–1.69) | 1.47 (0.74–2.89) | 0.26 | 1.18 (0.68–2.08) | 1.34 (0.68–2.62) | 0.40 |
Uric acid (μmol/L) | 0.90 (0.54–1.49) | 1.42 (0.90–2.23) | 0.11 | 0.92 (0.57–1.50) | 1.42 (0.88–2.30) | 0.13 |
Albumin (g/L) | 0.52 (0.29–0.94) | 0.41 (0.24–0.69) | 0.001 | 0.56 (0.29–1.05) | 0.43 (0.24–0.76) | 0.005 |
Lactate dehydrogenase (U/L) | 1.38 (0.91–2.09) | 2.04 (1.23–3.39) | 0.006 | 1.36 (0.87–2.13) | 1.94 (1.11–3.39) | 0.02 |
Alkaline phosphatase (U/L) | 1.64 (1.01–2.64) | 1.57 (1.06–2.33) | 0.04 | 1.77 (1.11–2.84) | 1.38 (0.89–2.14) | 0.08 |
Sum retinyl esters (μmol/L) | 1.26 (0.75–2.11) | 1.22 (0.74–2.03) | 0.45 | 1.34 (0.77–2.31) | 1.25 (0.74–2.11) | 0.41 |
Bilirubin (μmol/L) | 0.93 (0.55–1.57) | 0.86 (0.46–1.61) | 0.65 | 1.004 (0.58–1.75) | 1.07 (0.57–2.01) | 0.82 |
Osmolality (mmol/Kg) | 0.68 (0.48–0.96) | 1.12 (0.64–1.95) | 0.83 | 0.71 (0.51–0.98) | 1.03 (0.55–1.92) | 0.77 |
Fibrinogen (g/L) | 1.08 (0.72–1.61) | 2.36 (1.46–3.82) | 0.0006 | 1.02 (0.67–1.54) | 1.84 (1.08–3.14) | 0.03 |
Gamma glutamyl transferase (U/L) | 1.30 (0.82–2.05) | 1.74 (1.05–2.89) | 0.03 | 1.27 (0.82–1.97) | 1.77 (1.09–2.88) | 0.02 |
Aspartate aminotransferase (U/L) | 0.71 (0.47–1.08) | 0.84 (0.53–1.34) | 0.63 | 0.78 (0.52–1.17) | 1.003 (0.63–1.59) | 0.91 |
Alanine aminotransferase (U/L) | 0.62 (0.40–0.96) | 0.66 (0.41–1.04) | 0.21 | 0.67 (0.44–1.02) | 0.75 (0.48–1.16) | 0.36 |
Thyroid stimulating hormone (mU/L) | 0.86 (0.56–1.33) | 1.75 (1.09–2.80) | 0.01 | 0.78 (0.52–1.18) | 1.61 (0.97–2.67) | 0.04 |
Biomarkers | C Statistic in Model without Biomarker * | C Statistic in Model with Biomarker as Tertiles * | Change in C Statistic (95% CI) | p-Value |
---|---|---|---|---|
Blood | ||||
Alpha carotene | 0.739 | 0.739 | −0.0005 (−0.0016, 0.0017) | 0.96 |
Sodium | 0.738 | 0.738 | 0.0003 (−0.0011, 0.0016) | 0.68 |
Thyroid stimulating hormone | 0.737 | 0.746 | 0.0086 (0.0011, 0.0161) | 0.03 |
C-reactive protein | 0.738 | 0.741 | 0.0022 (−0.0013, 0.0058) | 0.22 |
Albumin | 0.738 | 0.742 | 0.0040 (−0.0018, 0.0098) | 0.17 |
Lactate dehydrogenase | 0.738 | 0.741 | 0.0027 (−0.0021, 0.0075) | 0.26 |
Fibrinogen | 0.722 | 0.735 | 0.0128 (0.0030, 0.0229) | 0.01 |
Gamma glutamyl transferase | 0.743 | 0.746 | 0.0029 (−0.0019, 0.0076) | 0.24 |
Urine | ||||
Albumin | 0.735 | 0.761 | 0.0265 (0.0143, 0.0387) | <0.0001 |
Blood thyroid stimulating hormone and fibrinogen | 0.722 | 0.741 | 0.0190 (0.0068, 0.0313) | 0.002 |
Blood thyroid stimulating hormone, fibrinogen, and urine albumin | 0.719 | 0.762 | 0.0432 (0.0255, 0.0607) | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Ardeshirrouhanifard, S.; Li, J.; Li, M.; Dai, H.; Song, Y. Associations of Nutritional, Environmental, and Metabolic Biomarkers with Diabetes-Related Mortality in U.S. Adults: The Third National Health and Nutrition Examination Surveys between 1988–1994 and 2016. Nutrients 2022, 14, 2629. https://doi.org/10.3390/nu14132629
Zhang X, Ardeshirrouhanifard S, Li J, Li M, Dai H, Song Y. Associations of Nutritional, Environmental, and Metabolic Biomarkers with Diabetes-Related Mortality in U.S. Adults: The Third National Health and Nutrition Examination Surveys between 1988–1994 and 2016. Nutrients. 2022; 14(13):2629. https://doi.org/10.3390/nu14132629
Chicago/Turabian StyleZhang, Xi, Shirin Ardeshirrouhanifard, Jing Li, Mingyue Li, Hongji Dai, and Yiqing Song. 2022. "Associations of Nutritional, Environmental, and Metabolic Biomarkers with Diabetes-Related Mortality in U.S. Adults: The Third National Health and Nutrition Examination Surveys between 1988–1994 and 2016" Nutrients 14, no. 13: 2629. https://doi.org/10.3390/nu14132629
APA StyleZhang, X., Ardeshirrouhanifard, S., Li, J., Li, M., Dai, H., & Song, Y. (2022). Associations of Nutritional, Environmental, and Metabolic Biomarkers with Diabetes-Related Mortality in U.S. Adults: The Third National Health and Nutrition Examination Surveys between 1988–1994 and 2016. Nutrients, 14(13), 2629. https://doi.org/10.3390/nu14132629