Blood Chromium Levels and Their Association with Cardiovascular Diseases, Diabetes, and Depression: National Health and Nutrition Examination Survey (NHANES) 2015–2016
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Measures
2.2.1. Dependent Variables: Select Chronic Physical and Mental Health Conditions
2.2.2. Independent Variable: Blood Chromium Levels
2.3. Covariates
2.4. Analysis
3. Results
3.1. Description of Overall Sample
3.2. Analysis by Chronic Physical or Mental Health Condition
3.2.1. CVDs
3.2.2. DM
3.2.3. Depression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vincent, J.B. Chromium: Celebrating 50 years as an essential element? Dalton Trans. 2010, 39, 3787–3794. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, K.; Bawazeer, N.; Joy, S.S. Variation in macro and trace elements in progression of type 2 diabetes. Sci. World J. 2014, 2014, 461591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Institutes of Health (NIH)—Office of Dietary Supplements. Chromium—Fact Sheet for Health Professionals. Available online: https://ods.od.nih.gov/factsheets/Chromium-HealthProfessional/ (accessed on 30 May 2022).
- Anderson, R.A.; Bryden, N.A.; Polansky, M.M. Dietary chromium intake. Freely chosen diets, institutional diet, and individual foods. Biol. Trace Elem. Res. 1992, 32, 117–121. [Google Scholar] [CrossRef]
- Vincent, J.B. New evidence against chromium as an essential trace element. J. Nutr. 2017, 147, 2212–2219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raymond, J.L.; Morrow, K. Krause and Mahan’s Food and the Nutrition Care Process, 15th ed.; Elsevier Health Sciences: St. Louis, MO, USA, 2021; p. 1119. [Google Scholar]
- European Food Safety Authority (EFSA) Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific opinion on dietary reference values for chromium. EFSA J. 2014, 12, 3845–3870. [Google Scholar] [CrossRef] [Green Version]
- Institute of Medicine (US) Panel on Micronutrients. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academies Press: Washington, DC, USA, 2001; pp. 192–223. [Google Scholar]
- Lukaski, H.C. Chromium as a supplement. Annu. Rev. Nutr. 1999, 19, 279–302. [Google Scholar] [CrossRef]
- Ross, A.C.; Caballero, B.; Cousins, R.J.; Tucker, K.L.; Ziegler, T.R. Modern Nutrition in Health and Disease, 11th ed.; Wolters Kluwer Health: Philadelphia, PA, USA, 2012; Chapter 26. [Google Scholar]
- Jin, J.; Mulesa, L.; Carrilero Rouillet, M. Trace elements in parenteral nutrition: Considerations for the prescribing clinician. Nutrients 2017, 9, 440. [Google Scholar] [CrossRef]
- Anderson, R.A. Chromium as an essential nutrient for humans. Regul. Toxicol. Pharmacol. 1997, 26, S35–S41. [Google Scholar] [CrossRef] [Green Version]
- Stearns, D.M. Is chromium a trace essential metal? Biofactors 2000, 11, 149–162. [Google Scholar] [CrossRef]
- Corradi, M.; Mutti, A. Metal ions affecting the pulmonary and cardiovascular systems. Met. Ions Life Sci. 2011, 8, 81–105. [Google Scholar]
- Attenburrow, M.-J.; Odontiadis, J.; Murray, B.J.; Cowen, P.J.; Franklin, M. Chromium treatment decreases the sensitivity of 5-HT2A receptors. Psychopharmacology 2002, 159, 432–436. [Google Scholar] [CrossRef]
- Piotrowska, A.; Młyniec, K.; Siwek, A.; Dybała, M.; Opoka, W.; Poleszak, E.; Nowak, G. Antidepressant-like effect of chromium chloride in the mouse forced swim test: Involvement of glutamatergic and serotonergic receptors. Pharmacol. Rep. 2008, 60, 991–995. [Google Scholar]
- Młyniec, K.; Davies, C.L.; Gómez de Agüero Sánchez, I.; Pytka, K.; Budziszewska, B.; Nowak, G. Essential elements in depression and anxiety. Part I. Pharmacol. Rep. 2014, 66, 534–544. [Google Scholar] [CrossRef]
- Boyle, E., Jr.; Mondschein, B.; Dash, H.H. Chromium depletion in the pathogenesis of diabetes and atherosclerosis. South Med. J. 1977, 70, 1449–1453. [Google Scholar] [CrossRef]
- Khodavirdipour, A.; Haddadi, F.; Keshavarzi, S. Chromium supplementation; Negotiation with diabetes mellitus, hyperlipidemia and depression. J. Diabetes Metab. Disord. 2020, 19, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Suksomboon, N.; Poolsup, N.; Yuwanakorn, A. Systematic review and meta-analysis of the efficacy and safety of chromium supplementation in diabetes. J. Clin. Pharm. Ther. 2014, 39, 292–306. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Depression. Available online: www.who.int/news-room/fact-sheets/detail/depression (accessed on 30 May 2022).
- Colodro-Conde, L.; Couvy-Duchesne, B.; Zhu, G.; Coventry, W.L.; Byrne, E.M.; Gordon, S.; Wright, M.J.; Montgomery, G.W.; Madden, P.; Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium; et al. A direct test of the diathesis-stress model for depression. Mol. Psychiatry 2018, 23, 1590–1596. [Google Scholar] [CrossRef]
- Lee, R.D.; Chen, J. Adverse childhood experiences, mental health, and excessive alcohol use: Examination of race/ethnicity and sex differences. Child Abuse Negl. 2017, 69, 40–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Cui, L.; Chen, B.; Xiong, Q.; Zhan, Y.; Ye, J.; Yin, Q. Effect of chromium supplementation on hs-CRP, TNF-α and IL-6 as risk factor for cardiovascular diseases: A meta-analysis of randomized-controlled trials. Complement. Ther. Clin. Pract. 2021, 42, 101291. [Google Scholar] [CrossRef]
- Wysocka, E.; Cymerys, M.; Mielcarz, G.; Bryl, W.; Dzięgielewska, S.; Torliński, L. The way of serum chromium utilization may contribute to cardiovascular risk factors in centrally obese persons. Arch. Med. Sci. 2011, 7, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Nasab, H.; Rajabi, S.; Eghbalian, M.; Malakootian, M.; Hashemi, M.; Mahmoudi-Moghaddam, H. Association of As, Pb, Cr, and Zn urinary heavy metals levels with predictive indicators of cardiovascular disease and obesity in children and adolescents. Chemosphere 2022, 294, 133664. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Noncommunicable Diseases (NCDS) and Mental Health: Challenges and Solutions Infographics. Available online: www.who.int/docs/default-source/infographics-pdf/ncds/ncds-and-mental-health-sdg-in-action.pdf?sfvrsn=e1633a93_2 (accessed on 30 May 2022).
- GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1223–1249. [Google Scholar] [CrossRef]
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global burden of cardiovascular diseases and risk factors, 1990–2019: Update from the GBD 2019 study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Cardiovascular Diseases. Available online: www.who.int/health-topics/cardiovascular-diseases#tab=tab_1 (accessed on 30 May 2022).
- Lin, X.; Xu, Y.; Pan, X.; Xu, J.; Ding, Y.; Sun, X.; Song, X.; Ren, Y.; Shan, P.-F. Global, regional, and national burden and trend of diabetes in 195 countries and territories: An analysis from 1990 to 2025. Sci. Rep. 2020, 10, 14790. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Diabetes. Available online: www.who.int/health-topics/diabetes#tab=tab_1 (accessed on 30 May 2022).
- Tolentino, J.C.; Schmidt, S.L. DSM-5 Criteria and depression severity: Implications for clinical practice. Front. Psychiatry 2018, 9, 450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Q.; Guo, W.; Jia, Y.; Xu, J. Comparison of chromium and iron distribution in serum and urine among healthy people and prediabetes and diabetes patients. BioMed Res. Int. 2019, 2019, 3801639. [Google Scholar] [CrossRef] [Green Version]
- Hajra, B.; Orakzai, B.A.; Faryal, U.; Hassan, M.; Rasheed, S.; Wazir, S. Insulin sensitivity to trace metals (chromium, manganese) in type 2 diabetic patients and non diabetic individuals. J. Ayub Med. Coll. Abbottabad 2016, 28, 534–536. [Google Scholar]
- Lin, C.C.; Huang, Y.L. Chromium, zinc and magnesium status in type 1 diabetes. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 588–592. [Google Scholar] [CrossRef]
- Rafiei, R.; Habyby, Z.; Fouladi, L.; Najafi, S.; Asgary, S.; Torabi, Z. Chromium level in prediction of diabetes in pre-diabetic patients. Adv. Biomed. Res. 2014, 3, 235. [Google Scholar] [CrossRef]
- Eva, H.; Akter, Q.S.; Alam, M.K. Relationship between glycemic status and serum chromium level with type 2 diabetes mellitus. Mymensingh Med. J. 2020, 29, 183–186. [Google Scholar]
- Chen, S.; Jin, X.; Shan, Z.; Li, S.; Yin, J.; Sun, T.; Luo, C.; Yang, W.; Yao, P.; Yu, K.; et al. Inverse association of plasma chromium levels with newly diagnosed type 2 diabetes: A case-control study. Nutrients 2017, 9, 294. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.; Pan, D.; Wang, N.; Xia, H.; Zhang, H.; Wang, S.; Sun, G. Effect of chromium supplementation on blood glucose and lipid levels in patients with type 2 diabetes mellitus: A systematic review and meta-analysis. Biol. Trace Elem. Res. 2022, 200, 516–525. [Google Scholar] [CrossRef]
- Farrokhian, A.; Mahmoodian, M.; Bahmani, F.; Amirani, E.; Shafabakhsh, R.; Asemi, Z. The influences of chromium supplementation on metabolic status in patients with type 2 diabetes mellitus and coronary heart disease. Biol. Trace Elem. Res. 2020, 194, 313–320. [Google Scholar] [CrossRef]
- Simonoff, M. Chromium deficiency and cardiovascular risk. Cardiovasc. Res. 1984, 18, 591–596. [Google Scholar] [CrossRef]
- Alissa, E.M.; Bahjri, S.M.; Ahmed, W.H.; Al-Ama, N.; Ferns, G.A.A. Chromium status and glucose tolerance in Saudi men with and without coronary artery disease. Biol. Trace Elem. Res. 2009, 131, 215–228. [Google Scholar] [CrossRef]
- Ngala, R.A.; Awe, M.A.; Nsiah, P. The effects of plasma chromium on lipid profile, glucose metabolism and cardiovascular risk in type 2 diabetes mellitus. A case-control study. PLoS ONE 2018, 13, e0197977. [Google Scholar] [CrossRef]
- Khan, N.; Hashmi, S.; Siddiqui, A.J.; Farooq, S.; Sami, S.A.; Basir, N.; Bokhari, S.S.; Sharif, H.; Junejo, S.; El-Seedi, H.R.; et al. Understanding of metals dysregulation in patients with systolic and diastolic dysfunction in ischemic heart disease. Sci. Rep. 2020, 10, 13948. [Google Scholar] [CrossRef]
- Lind, P.M.; Olsén, L.; Lind, L. Circulating levels of metals are related to carotid atherosclerosis in elderly. Sci. Total Environ. 2012, 416, 80–88. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, S.; Chen, W.; Yan, L.; Chen, Y.; Wen, H.; Liu, D.; Rosenblat, J.D.; Wang, J.; Cao, B. Trace elements differences in the depression sensitive and resilient rat models. Biochem. Biophys. Res. Commun. 2020, 529, 204–209. [Google Scholar] [CrossRef]
- Tarleton, E.K.; Littenberg, B.; MacLean, C.D.; Kennedy, A.G.; Daley, C. Role of magnesium supplementation in the treatment of depression: A randomized clinical trial. PLoS ONE 2017, 12, e0180067. [Google Scholar] [CrossRef] [Green Version]
- Szewczyk, B.; Szopa, A.; Serefko, A.; Poleszak, E.; Nowak, G. The role of magnesium and zinc in depression: Similarities and differences. Magnes. Res. 2018, 31, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Um, P.; Dickerman, B.A.; Liu, J. Zinc, magnesium, selenium and depression: A review of the evidence, potential mechanisms and implications. Nutrients 2018, 10, 584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yosaee, S.; Soltani, S.; Esteghamati, A.; Motevalian, S.A.; Tehrani-Doost, M.; Clark, C.C.T.; Jazayeri, S. Effects of zinc, vitamin D, and their co-supplementation on mood, serum cortisol, and brain-derived neurotrophic factor in patients with obesity and mild to moderate depressive symptoms: A phase II, 12-wk, 2 × 2 factorial design, double-blind, randomized, placebo-controlled trial. Nutrition 2020, 71, 110601. [Google Scholar] [CrossRef] [PubMed]
- Lang, U.E.; Beglinger, C.; Schweinfurth, N.; Walter, M.; Borgwardt, S. Nutritional aspects of depression. Cell. Physiol. Biochem. 2015, 37, 1029–1043. [Google Scholar] [CrossRef]
- Brownley, K.A.; Von Holle, A.; Hamer, R.M.; La Via, M.; Bulik, C.M. A double-blind, randomized pilot trial of chromium picolinate for binge eating disorder: Results of the Binge Eating and Chromium (BEACh) study. J. Psychosom. Res. 2013, 75, 36–42. [Google Scholar] [CrossRef] [Green Version]
- Center for Disease Control and Prevention (CDC)—National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey (NHANES) 2015–2016. Available online: https://wwwn.cdc.gov/nchs/nhanes/ContinuousNhanes/Default.aspx?BeginYear=2015 (accessed on 31 May 2022).
- Chen, T.C.; Clark, J.; Riddles, M.K.; Mohadjer, L.K.; Fakhouri, T.H. National Health and Nutrition Examination Survey, 2015–2018: Sample Design and Estimation Procedures; Data Evaluation and Methods Research; National Center for Health Statistics. Vital and Health Statistics. Series 2. Number 184; U.S. Department of Health and Human Services. Centers for Disease Control and Prevention. National Center for Health Statistics: Washington, DC, USA, 2020; pp. 1–9. Available online: www.cdc.gov/nchs/data/series/sr_02/sr02-184-508.pdf (accessed on 31 May 2022).
- American Diabetes Association. 2. Classification and diagnosis of diabetes: Standards of medical care in diabetes—2018. Diabetes Care 2018, 41, S13–S27. [Google Scholar] [CrossRef] [Green Version]
- Little, R. Laboratory Procedure Manual—Analyte: Glycohemoglobin; Matrix: Whole Blood; Method: Tosoh G8 Glycohemoglobin Analyzer; University of Missouri: Columbia, MO, USA, 2015; pp. 1–30. Available online: https://wwwn.cdc.gov/nchs/data/nhanes/2015-2016/labmethods/GHB_I_MET.pdf (accessed on 14 June 2022).
- Center for Disease Control and Prevention (CDC)—National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey 2015–2016—Data Documentation, Codebook, and Frequencies: Glycohemoglobin. Available online: https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/GHB_I.htm (accessed on 13 June 2022).
- Kroenke, K.; Spitzer, R.L. The PHQ-9: A new depression diagnostic and severity measure. Psychiatr. Ann. 2002, 32, 509–515. [Google Scholar] [CrossRef] [Green Version]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef]
- Spitzer, R.L.; Kroenke, K.; Williams, J.B. Validation and utility of a self-report version of PRIME-MD: The PHQ primary care study. JAMA 1999, 282, 1737–1744. [Google Scholar] [CrossRef] [Green Version]
- Center for Disease Control and Prevention (CDC)—National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey 2015–2016—Data Documentation, Codebook, and Frequencies: Chromium & Cobalt. Available online: https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/CRCO_I.htm (accessed on 30 May 2022).
- Cieslak, W.; Pap, K.; Bunch, D.R.; Reineks, E.; Jackson, R.; Steinle, R.; Wang, S. Highly sensitive measurement of whole blood chromium by inductively coupled plasma mass spectrometry. Clin. Biochem. 2013, 46, 266–270. [Google Scholar] [CrossRef]
- Filler, G.; Felder, S. Trace elements in dialysis. Pediatr. Nephrol. 2014, 29, 1329–1335. [Google Scholar] [CrossRef] [Green Version]
- Laposata, M. Laposata’s Laboratory Medicine: The Diagnosis of Disease in the Clinical Laboratory, 3rd ed.; McGraw Hill Education: New York, NY, USA, 2019; Chapter 3. [Google Scholar]
- IBM. IBM SPSS Statistics for Windows; Version 24; IBM Corp.: Armonk, NY, USA, 2016. [Google Scholar]
- Fischbach, F.; Dunning, M.B., III. A Manual of Laboratory and Diagnostic Tests, 9th ed.; Wolters Kluwer Health: Philadelphia, PA, USA, 2015. [Google Scholar]
- Government of Canada. Canadian Guidelines for Body Weight Classification in Adults. Available online: www.canada.ca/en/health-canada/services/food-nutrition/healthy-eating/healthy-weights/canadian-guidelines-body-weight-classification-adults/questions-answers-public.html (accessed on 30 May 2022).
- Centers for Disease Control and Prevention (CDC). Alcohol and Public Health—Dietary Guidelines for Alcohol. Available online: https://www.cdc.gov/alcohol/fact-sheets/moderate-drinking.htm (accessed on 30 May 2022).
- Saltiel, A.R.; Kahn, C.R. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001, 414, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Q.; Cefalu, W.T. Current concepts about chromium supplementation in type 2 diabetes and insulin resistance. Curr. Diabetes Rep. 2010, 10, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Liu, P.; Pattar, G.R.; Tackett, L.; Bhonagiri, P.; Strawbridge, A.B.; Elmendorf, J.S. Chromium activates glucose transporter 4 trafficking and enhances insulin-stimulated glucose transport in 3T3-L1 adipocytes via a cholesterol-dependent mechanism. Mol. Endocrinol. 2006, 20, 857–870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, W.; Chai, Z.; Duan, P.; Feng, W.; Qian, Q. Serum and urine chromium concentrations in elderly diabetics. Biol. Trace Elem. Res. 1998, 63, 231–237. [Google Scholar] [CrossRef]
- Morris, B.W.; MacNeil, S.; Hardisty, C.A.; Heller, S.; Burgin, C.; Gray, T.A. Chromium homeostasis in patients with type II (NIDDM) diabetes. J. Trace Elem. Med. Biol. 1999, 13, 57–61. [Google Scholar] [CrossRef]
- Helton, S.G.; Lohoff, F.W. Serotonin pathway polymorphisms and the treatment of major depressive disorder and anxiety disorders. Pharmacogenomics 2015, 16, 541–553. [Google Scholar] [CrossRef]
- Kyte, B.; Ifebi, E.; Shrestha, S.; Charles, S.; Liu, F.; Zhang, J. High red blood cell folate is associated with an increased risk of death among adults with diabetes, a 15-year follow-up of a national cohort. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 997–1006. [Google Scholar] [CrossRef]
- Barbash, I.M.; Gaglia, M.A., Jr.; Torguson, R.; Minha, S.; Satler, L.F.; Pichard, A.D.; Waksman, R. Effect of marital status on the outcome of patients undergoing elective or urgent coronary revascularization. Am. Heart J. 2013, 166, 729–736. [Google Scholar] [CrossRef]
- Consuegra-Sánchez, L.; Melgarejo-Moreno, A.; Jaulent-Huertas, L.; Díaz-Pastor, Á.; Escudero-García, G.; Vicente-Gilabert, M.; Alonso-Fernández, N.; Galcerá-Tomás, J. Unraveling the relation between marital status and prognosis among myocardial infarction survivors: Impact of being widowed on mortality. Int. J. Cardiol. 2015, 185, 141–143. [Google Scholar] [CrossRef]
- Gerward, S.; Tydén, P.; Engström, G.; Hedblad, B. Marital status and occupation in relation to short-term case fatality after a first coronary event—A population based cohort. BMC Public Health 2010, 10, 235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hadi Khafaji, H.A.R.; Habib, K.A.; Asaad, N.; Singh, R.; Hersi, A.; Falaeh, H.A.; Saif, S.A.; Al-Motarreb, A.; Almahmeed, W.; Sulaiman, K.; et al. Marital status and outcome of patients presenting with acute coronary syndrome: An observational report. Clin. Cardiol. 2012, 35, 741–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vujcic, I.; Vlajinac, H.; Dubljanin, E.; Vasiljevic, Z.; Matanovic, D.; Maksimovic, J.; Sipetic, S.; Marinkovic, J. Long-term prognostic significance of living alone and other risk factors in patients with acute myocardial infarction. Ir. J. Med. Sci. 2015, 184, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, H.; Higuma, T.; Nishizaki, F.; Izumiyama, K.; Shibutani, S.; Yamada, M.; Tomita, H.; Abe, N.; Osanai, T.; Okumura, K. Marital status and long-term mortality of male patients presenting with acute myocardial infarction. Circulation 2014, 130, A16483. [Google Scholar] [CrossRef]
- Andersen, K.K.; Andersen, Z.J.; Olsen, T.S. Predictors of early and late case-fatality in a nationwide Danish study of 26,818 patients with first-ever ischemic stroke. Stroke 2011, 42, 2806–2812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Floud, S.; Balkwill, A.; Canoy, D.; Wright, F.L.; Reeves, G.K.; Green, J.; Beral, V.; Cairns, B.J.; Million Women Study Collaborators. Marital status and ischemic heart disease incidence and mortality in women: A large prospective study. BMC Med. 2014, 12, 42. [Google Scholar] [CrossRef] [Green Version]
- Engström, G.; Tydén, P.; Berglund, G.; Hansen, O.; Hedblad, B.; Janzon, L. Incidence of myocardial infarction in women. A cohort study of risk factors and modifiers of effect. J. Epidemiol. Community Health 2000, 54, 104–107. [Google Scholar] [CrossRef]
- Kriegbaum, M.; Christensen, U.; Lund, R.; Prescott, E.; Osler, M. Job loss and broken partnerships: Do the number of stressful life events influence the risk of ischemic heart disease in men? Ann. Epidemiol. 2008, 18, 743–745. [Google Scholar] [CrossRef]
- Ng, T.P.; Jin, A.; Chow, K.Y.; Feng, L.; Nyunt, M.S.Z.; Yap, K.B. Age-dependent relationships between body mass index and mortality: Singapore longitudinal ageing study. PLoS ONE 2017, 12, e0180818. [Google Scholar] [CrossRef]
- Wang, J.L.; Schmitz, N.; Dewa, C.S. Socioeconomic status and the risk of major depression: The Canadian National Population Health Survey. J. Epidemiol. Community Health 2010, 64, 447–452. [Google Scholar] [CrossRef]
- Levy, D.; Zavala-Arciniega, L.; Reynales-Shigematsu, L.M.; Fleischer, N.L.; Yuan, Z.; Li, Y.; Romero, L.M.S.; Lau, Y.K.; Meza, R.; Thrasher, J.F. Measuring smoking prevalence in a middle income nation: An examination of the 100 cigarettes lifetime screen. Glob. Epidemiol. 2019, 1, 100016. [Google Scholar] [CrossRef] [PubMed]
- Roussel, A.M.; Andriollo-Sanchez, M.; Ferry, M.; Bryden, N.A.; Anderson, R.A. Food chromium content, dietary chromium intake and related biological variables in French free-living elderly. Br. J. Nutr. 2007, 98, 326–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maret, W. Chromium supplementation in human health, metabolic syndrome, and diabetes. Met. Ions Life Sci. 2019, 19, 393–412. [Google Scholar] [CrossRef]
Variable (Reference Category) | Cardiovascular Diseases | Diabetes Mellitus a | Depression b | |||
---|---|---|---|---|---|---|
Men | Women | Men | Women | Men | Women | |
1. Blood Chromium Levels (Within range of 0.7–28.0 µg/L) | ||||||
Below range (<0.7 µg/L) | 1.86 (1.22–2.85, 0.00) | 1.11 (0.71–1.73, 0.66) | 1.93 (1.32–2.83, 0.00) | 0.88 (0.63–1.22, 0.44) | 0.42 (0.22–0.77, 0.01) | 0.93 (0.65–1.33, 0.71) |
2. Socio-demographic Characteristics | ||||||
Age (40–49 years) | ||||||
50–59 years | 1.09 (0.77–1.54, 0.62) | 0.66 (0.44–0.98, 0.04) | 0.48 (0.35–0.66, 0.00) | 0.47 (0.35–0.63, 0.00) | 1.72 (1.15–2.57, 0.01) | 2.44 (1.78–3.36, 0.00) |
60 years+ | 1.20 (0.88–1.64, 0.24) | 0.95 (0.67–1.34, 0.77) | 1.11 (0.83–1.48, 0.48) | 0.78 (0.60–1.01, 0.06) | 3.50 (2.49–4.90, 0.00) | 1.94 (1.47–2.56, 0.00) |
Education (Less than high school graduate) | ||||||
High school graduate and/or some post–secondary education | 0.90 (0.59–1.37, 0.63) | 2.20 (1.32–3.64, 0.00) | 1.55 (1.04–2.31, 0.03) | 0.92 (0.63–1.34, 0.66) | 1.74 (1.10–2.75, 0.02) | 1.93 (1.30–2.86, 0.00) |
Post–secondary graduate or above | 1.62 (1.21–2.17, 0.00) | 1.75 (1.25–2.45, 0.00) | 1.18 (0.90–1.55, 0.22) | 0.64 (0.50–0.81, 0.00) | 1.15 (0.81–1.64, 0.43) | 1.40 (1.06–1.86, 0.02) |
Marital Status (Widowed/divorced/separated) | ||||||
Married/living with partner | 2.36 (1.38–4.03, 0.00) | 0.86 (0.50–1.50, 0.60) | 3.22 (1.87–5.53, 0.00) | 1.35 (0.87–2.10, 0.18) | 2.86 (1.60–5.14, 0.00) | 0.80 (0.52–1.23, 0.31) |
Never married | 1.30 (0.80–2.10, 0.29) | 0.69 (0.41–1.18, 0.18) | 3.50 (2.11–5.79, 0.00) | 1.32 (0.86–2.02, 0.21) | 1.58 (0.91–2.77, 0.11) | 0.75 (0.49–1.14, 0.18) |
Family Income ($75,000+ USD) | ||||||
$65,000–74,999 USD | 0.32 (0.15–0.69, 0.00) | 1.52 (0.66–3.54, 0.33) | 0.69 (0.35–1.38, 0.29) | 0.64 (0.33–1.25, 0.19) | 0.86 (0.32–2.28, 0.76) | 0.83 (0.40–1.71, 0.62) |
$55,000–64,999 USD | 0.16 (0.06–0.39, 0.00) | 1.23 (0.45–3.35, 0.69) | 0.63 (0.28–1.39, 0.25) | 0.53 (0.24–1.15, 0.11) | 1.12 (0.38–3.32, 0.84) | 0.65 (0.27–1.57, 0.34) |
$45,000–54,999 USD | 0.32 (0.13–0.74, 0.01) | 1.87 (0.73–4.78, 0.19) | 0.69 (0.32–1.47, 0.33) | 0.71 (0.33–1.49, 0.36) | 1.53 (0.55–4.29, 0.41) | 1.79 (0.81–3.92, 0.15) |
$35,000–44,999 USD | 0.63 (0.26–1.49, 0.29) | 2.57 (1.03–6.41, 0.04) | 1.89 (0.88–4.06, 0.10) | 0.80 (0.39–1.64, 0.54) | 1.97 (0.70–5.56, 0.20) | 1.08 (0.50–2.35, 0.84) |
$25,000–34,999 USD | 0.31 (0.13–0.73, 0.01) | 2.62 (1.04–6.62, 0.04) | 1.37 (0.62–3.00, 0.43) | 0.55 (0.26–1.13, 0.10) | 1.10 (0.38–3.20, 0.86) | 1.04 (0.47–2.29, 0.92) |
Less than $25,000 USD | 0.30 (0.13–0.72, 0.01) | 1.83 (0.78–4.30, 0.17) | 1.07 (0.50–2.31, 0.86) | 0.96 (0.49–1.90, 0.91) | 2.73 (0.99–7.51, 0.05) | 1.47 (0.71–3.06, 0.30) |
Not reported | 0.50 (0.22–1.13, 0.10) | 4.07 (1.75–9.44, 0.00) | 1.33 (0.64–2.75, 0.44) | 1.15 (0.59–2.25, 0.68) | 1.95 (0.73–5.23, 0.18) | 1.86 (0.92–3.78, 0.09) |
3. Biological Measurements | ||||||
Red Blood Cell Folate c (Below/within range: <317 or 317–1422 nmol/L) | ||||||
Above range (>1422 nmol/L) | 0.80 (0.62–1.05, 0.11) | 0.84 (0.63–1.12, 0.23) | 1.55 (1.20–2.00, 0.00) | 1.33 (1.07–1.66, 0.01) | 1.51 (1.10–2.06, 0.01) | 0.94 (0.75–1.19, 0.63) |
4. Health Measures | ||||||
Multi–morbidity d (No health conditions) | ||||||
One health condition | 0.68 (0.50–0.93, 0.02) | 0.80 (0.55–1.14, 0.22) | 0.93 (0.69–1.26, 0.66) | 0.78 (0.58–1.05, 0.10) | 0.38 (0.26–0.56, 0.00) | 0.35 (0.25–0.50, 0.00) |
Two or more health conditions | 0.84 (0.60–1.16, 0.29) | 0.77 (0.55–1.08, 0.13) | 1.36 (1.02–1.83, 0.04) | 0.80 (0.62–1.04, 0.09) | 0.61 (0.43–0.87, 0.01) | 0.55 (0.41–0.73, 0.00) |
Diabetes a (No diabetes or prediabetes; glycohemoglobin <5.7%) | ||||||
Have diabetes or prediabetes | 0.79 (0.61–1.01, 0.06) | 0.77 (0.58–1.03, 0.08) | – | – | 0.81 (0.61–1.07, 0.14) | 0.54 (0.43–0.69, 0.00) |
Depression b (No depression) | ||||||
Yes/depressed | 1.32 (0.95–1.83, 0.10) | 0.74 (0.54–1.01, 0.06) | 0.69 (0.51–0.93, 0.01) | 0.62 (0.49–0.79, 0.00) | – | – |
Body Mass Index (BMI) e (Within healthy weight range) | ||||||
Overweight | 0.44 (0.31–0.62, 0.00) | 0.43 (0.30–0.61, 0.00) | 0.47 (0.34–0.64, 0.00) | 0.28 (0.22–0.37, 0.00) | 1.00 (0.67–1.50, 0.98) | 0.85 (0.64–1.14, 0.29) |
Obese | 0.63 (0.49–0.83, 0.00) | 0.56 (0.40–0.78, 0.00) | 0.55 (0.42–0.70, 0.00) | 0.46 (0.36–0.59, 0.00) | 1.32 (0.97–1.80, 0.08) | 1.01 (0.78–1.32, 0.94) |
Cardiovascular Diseases-related Medication (None) | ||||||
Take one or more cardiovascular diseases-related medication(s) | 0.07 (0.05–0.09, 0.00) | 0.03 (0.02–0.04, 0.00) | – | – | – | – |
Mental Health-related Medication f (None or not reported) | ||||||
Take one or more mental health-related medication(s) | – | – | – | – | 0.23 (0.17–0.31, 0.00) | 0.31 (0.25–0.39, 0.00) |
Diabetes Mellitus-related Medication (None) | ||||||
Take one or more diabetes mellitus-related medication(s) | – | – | 0.02 (0.01–0.04, 0.00) | 0.08 (0.05–0.14, 0.00) | – | – |
5. Health Behavior Variables | ||||||
Drinking Behavior g (Moderate drinking) | ||||||
Not moderate drinking | 0.83 (0.61–1.14, 0.25) | 1.45 (1.02–2.06, 0.04) | 1.10 (0.83–1.47, 0.51) | 0.85 (0.66–1.11, 0.23) | 0.87 (0.62–1.24, 0.45) | 1.04 (0.78–1.38, 0.78) |
Not reported | 0.75 (0.53–1.06, 0.10) | 1.32 (0.91–1.91, 0.15) | 0.64 (0.47–0.89, 0.01) | 0.51 (0.39–0.67, 0.00) | 0.97 (0.67–1.41, 0.88) | 1.39 (1.04–1.87, 0.03) |
Smoking (<100 cigarettes in lifetime) | ||||||
≥100 cigarettes in lifetime | 0.76 (0.59–0.97, 0.03) | 1.02 (0.76–1.36, 0.92) | 0.70 (0.55–0.89, 0.00) | 1.22 (0.98–1.52, 0.08) | 0.75 (0.56–1.01, 0.06) | 0.87 (0.69–1.10, 0.24) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Kan, M.; Ratnasekera, P.; Deol, L.K.; Thakkar, V.; Davison, K.M. Blood Chromium Levels and Their Association with Cardiovascular Diseases, Diabetes, and Depression: National Health and Nutrition Examination Survey (NHANES) 2015–2016. Nutrients 2022, 14, 2687. https://doi.org/10.3390/nu14132687
Chen J, Kan M, Ratnasekera P, Deol LK, Thakkar V, Davison KM. Blood Chromium Levels and Their Association with Cardiovascular Diseases, Diabetes, and Depression: National Health and Nutrition Examination Survey (NHANES) 2015–2016. Nutrients. 2022; 14(13):2687. https://doi.org/10.3390/nu14132687
Chicago/Turabian StyleChen, Jasmine, Michael Kan, Pulindu Ratnasekera, Lovepreet Kaur Deol, Vidhi Thakkar, and Karen M. Davison. 2022. "Blood Chromium Levels and Their Association with Cardiovascular Diseases, Diabetes, and Depression: National Health and Nutrition Examination Survey (NHANES) 2015–2016" Nutrients 14, no. 13: 2687. https://doi.org/10.3390/nu14132687
APA StyleChen, J., Kan, M., Ratnasekera, P., Deol, L. K., Thakkar, V., & Davison, K. M. (2022). Blood Chromium Levels and Their Association with Cardiovascular Diseases, Diabetes, and Depression: National Health and Nutrition Examination Survey (NHANES) 2015–2016. Nutrients, 14(13), 2687. https://doi.org/10.3390/nu14132687