Nutritional Status of Saudi Children with Celiac Disease Following the Ministry of Health’s Gluten-Free Diet Program
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Size and Participants
2.2. Data Collection
2.3. Dietary Intake and Analysis
2.4. Anthropometric Measurements
2.5. Biochemical Parameters
2.6. Statistical Analysis
2.7. Ethical Considerations
3. Results
3.1. Demographic Characteristics
3.2. Dietary Intake
3.3. Anthropometrics Measurements
3.4. Biochemical Parameters
3.5. Factors Associated with Nutritional Status of Children
4. Discussion
5. Conclusions
6. Study Limitation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Azouz, N.P.; Rothenberg, M.E. Mechanisms of gastrointestinal allergic disorders. J. Clin. Investig. 2019, 129, 1419–1430. [Google Scholar] [CrossRef] [PubMed]
- Sarkhy, A.; El Mouzan, M.I.; Saeed, E.; Alanazi, A.; Alghamdi, S.; Anil, S.; Assiri, A. Socioeconomic impacts of gluten-free diet among Saudi children with celiac disease. Pediatr. Gastroenterol. Hepat. Nutr. 2016, 19, 162–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, P.; Arora, A.; Strand, T.A.; Leffler, D.A.; Catassi, C.; Green, P.H.; Kelly, C.P.; Ahuja, V.; Makharia, G.K. Global prevalence of celiac disease: Systematic review and meta-analysis. Clin. Gastroenterol. Hepat. 2018, 16, 823–836. e822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández, C.B.; Varela-Moreiras, G.; Úbeda, N.; Alonso-Aperte, E. Nutritional status in Spanish children and adolescents with celiac disease on a gluten free diet compared to non-celiac disease controls. Nutrients 2019, 11, 2329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saeed, A.; Assiri, A.; Assiri, H.; Ullah, A.; Rashid, M. Celiac disease in Saudi children: Evaluation of clinical features and diagnosis. Saudi Med. J. 2017, 38, 895. [Google Scholar] [CrossRef] [PubMed]
- Fasano, A.; Catassi, C. Celiac disease. N. Engl. J. Med. 2012, 367, 2419–2426. [Google Scholar] [CrossRef]
- Ting, A.; Katz, T.; Sutherland, R.; Liu, V.; Tong, C.W.; Gao, Y.; Lemberg, D.A.; Krishnan, U.; Gupta, N.; Coffey, M.J. Evaluating the Dietary Intakes of Energy, Macronutrients, Sugar, Fiber, and Micronutrients in Children with Celiac Disease. J. Pediatr. Gastroenterol. Nutr. 2020, 71, 246–251. [Google Scholar] [CrossRef]
- Halfdanarson, T.R.; Litzow, M.R.; Murray, J.A. Hematologic manifestations of celiac disease. Blood 2007, 109, 412–421. [Google Scholar] [CrossRef] [Green Version]
- Ludvigsson, J.F.; Leffler, D.A.; Bai, J.C.; Biagi, F.; Fasano, A.; Green, P.H.; Hadjivassiliou, M.; Kaukinen, K.; Kelly, C.P.; Leonard, J.N. The Oslo definitions for coeliac disease and related terms. Gut 2013, 62, 43–52. [Google Scholar] [CrossRef]
- Hill, I.D.; Dirks, M.H.; Liptak, G.S.; Colletti, R.B.; Fasano, A.; Guandalini, S.; Hoffenberg, E.J.; Horvath, K.; Murray, J.A.; Pivor, M. Guideline for the diagnosis and treatment of celiac disease in children: Recommendations of the North American Society for Pediatric Gastroenterology, Hepatology and Nutrition. J. Pediatr. Gastroenterol. Nutr. 2005, 40, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Nestares, T.; Martín-Masot, R.; Labella, A.; Aparicio, V.A.; Flor-Alemany, M.; López-Frías, M.; Maldonado, J. Is a gluten-free diet enough to maintain correct micronutrients status in young patients with celiac disease? Nutrients 2020, 12, 844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, M.; Yonamine, G.H.; Fernandes Satiro, C.A. Rate and determinants of non-adherence to a gluten-free diet and nutritional status assessment in children and adolescents with celiac disease in a tertiary Brazilian referral center: A cross-sectional and retrospective study. BMC Gastroenterol. 2018, 18, 15. [Google Scholar]
- Penagini, F.; Dilillo, D.; Meneghin, F.; Mameli, C.; Fabiano, V.; Zuccotti, G.V. Gluten-free diet in children: An approach to a nutritionally adequate and balanced diet. Nutrients 2013, 5, 4553–4565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, J.; Geisel, T.; Maresch, C.; Krieger, K.; Stein, J. Inadequate nutrient intake in patients with celiac disease: Results from a German dietary survey. Digestion 2013, 87, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Al-Hussaini, A.; Troncone, R.; Khormi, M.; AlTuraiki, M.; Alkhamis, W.; Alrajhi, M.; Halal, T.; Fagih, M.; Alharbi, S.; Bashir, M.S. Mass screening for celiac disease among school-aged children: Toward exploring celiac iceberg in Saudi Arabia. J. Pediatr. Gastroenterol. Nutr. 2017, 65, 646–651. [Google Scholar] [CrossRef] [PubMed]
- Otten, J.J.; Hellwig, J.P.; Meyers, L.D. DRI, Dietary Reference Intakes: The Essential Guide to Nutrient Requirements; National Academies Press: Washington, DC, USA, 2006. [Google Scholar]
- El Mouzan, M.I.; Al Salloum, A.A.; Alqurashi, M.M.; Al Herbish, A.S.; Al Omar, A. The LMS and Z scale growth reference for Saudi school-age children and adolescents. Saudi J. Gastroenterol. Off. J. Saudi Gastroenterol. Assoc. 2016, 22, 331. [Google Scholar] [CrossRef] [PubMed]
- WHO. Training Course on Child Growth Assessment; WHO: Geneva, Switzerland, 2008; pp. 17–25. [Google Scholar]
- Poddar, U. Pediatric and adult celiac disease: Similarities and differences. Indian J. Gastroenterol. 2013, 32, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Kunwar, R.; Pillai, P.B. Impact of education of parents on nutritional status of primary school children. Med. J. Armed Forces India 2002, 58, 38–43. [Google Scholar] [CrossRef] [Green Version]
- Vikram, K.; Vanneman, R. Maternal education and the multidimensionality of child health outcomes in India. J. Biosocial. Sci. 2020, 52, 57–77. [Google Scholar] [CrossRef]
- Bilkis, B.; Khurshida, K. Effects of Education Level of Father and Mother on Perceptions of Breastfeeding. J. Enam Med. Coll. 2012, 2, 67–73. [Google Scholar]
- Fentaw, R.; Bogale, A.; Abebaw, D. Prevalence of child malnutrition in agro-pastoral households in afar regional state of Ethiopia. Nutr. Res. Pract. 2013, 7, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Ajao, K.O.; Ojofeitimi, E.O.; Adebayo, A.A.; Fatusi, A.O.; Afolabi, O.T. Influence of family size, household food security status, and child care practices on the nutritional status of under-five children in Ile-Ife. Niger. Afr. J. Reprod. Health 2010, 14, 117–126. [Google Scholar]
- Kozioł-Kozakowska, A.; Salamon, D.; Grzenda-Adamek, Z.; Krawczyk, A.; Duplaga, M.; Gosiewski, T.; Kowalska-Duplaga, K. Changes in diet and anthropometric parameters in children and adolescents with celiac disease—One Year of Follow-Up. Nutrients 2021, 13, 4306. [Google Scholar] [CrossRef] [PubMed]
- Forchielli, M.L.; Diani, L.; Labriola, F.; Bolasco, G.; Rocca, A.; Salfi, N.C.; Leone, A.; Miserocchi, C.; Andreozzi, L.; Levi Della Vida, F.; et al. Gluten deprivation: What nutritional changes are found during the first year in newly diagnosed coeliac children? Nutrients 2019, 12, 60. [Google Scholar] [CrossRef] [Green Version]
- Kutbi, H.A. Nutrient intake and gender differences among Saudi children. J. Nutr. Sci. 2021, 10, e99. [Google Scholar] [CrossRef]
- Vici, G.; Belli, L.; Biondi, M.; Polzonetti, V. Gluten free diet and nutrient deficiencies: A review. Clin. Nutr. 2016, 35, 1236–1241. [Google Scholar] [CrossRef]
- Mumena, W.A.; Kutbi, H.A. Household food security status, food purchasing, and nutritional health of Saudi girls aged 6–12 years. Process Nutr. 2020, 22, e2020082. [Google Scholar]
- Nasreddine, L.M.; Kassis, A.N.; Ayoub, J.J.; Naja, F.A.; Hwalla, N.C. Nutritional status and dietary intakes of children amid the nutrition transition: The case of the Eastern Mediterranean Region. Nutr. Res. 2018, 57, 12–27. [Google Scholar] [CrossRef]
- Di Nardo, G.; Villa, M.P.; Conti, L.; Ranucci, G.; Pacchiarotti, C.; Principessa, L.; Raucci, U.; Parisi, P. Nutritional deficiencies in children with celiac disease resulting from a gluten-free diet: A Systematic Review. Nutrients 2019, 11, 1588. [Google Scholar] [CrossRef] [Green Version]
- Sansotta, N.; Guandalini, S.; Romano, S.; Amirikian, K.; Cipolli, M.; Tridello, G.; Barzaghi, S.; Jericho, H. The gluten free diet’s impact on growth in children with celiac disease in two different countries. Nutrients 2020, 12, 1547. [Google Scholar] [CrossRef]
- Moya, D.A.; Nugent, C.A.; Baker, R.D.; Baker, S.S. Celiac Disease Nutritional Status and Poor Adherence to Follow-up. Clin. Pediatr. 2020, 59, 649–655. [Google Scholar] [CrossRef] [PubMed]
- Wierdsma, N.J.; Bokhorst-De Van Der Schueren, V.; Marian, A.E.; Berkenpas, M.; Mulder, C.J.; Van Bodegraven, A.A. Vitamin and mineral deficiencies are highly prevalent in newly diagnosed celiac disease patients. Nutrients 2013, 5, 3975–3992. [Google Scholar] [CrossRef] [PubMed]
- Costa-Urrutia, P.; Vizuet-Gámez, A.; Ramirez-Alcántara, M.; Guillen-González, M.Á.; Medina-Contreras, O.; Valdes-Moreno, M.; Musalem-Younes, C.; Solares-Tlapechco, J.; Granados, J.; Franco-Trecu, V. Obesity measured as percent body fat, relationship with body mass index, and percentile curves for Mexican pediatric population. PLoS ONE 2019, 14, e0212792. [Google Scholar] [CrossRef] [PubMed]
- Rusek, W.; Baran, J.; Leszczak, J.; Adamczyk, M.; Baran, R.; Weres, A.; Inglot, G.; Czenczek-Lewandowska, E.; Pop, T. Changes in children’s body composition and posture during puberty growth. Children 2021, 8, 288. [Google Scholar] [CrossRef] [PubMed]
- Pramfalk, C.; Pavlides, M.; Banerjee, R.; McNeil, C.A.; Neubauer, S.; Karpe, F.; Hodson, L. Sex-specific differences in hepatic fat oxidation and synthesis may explain the higher propensity for NAFLD in men. J. Clin. Endocrinol. Metab. 2015, 100, 4425–4433. [Google Scholar] [CrossRef] [Green Version]
- Kasović, M.; Štefan, L.; Neljak, B.; Petrić, V.; Knjaz, D. Reference data for fat mass and fat-free mass measured by Bioelectrical Impedance in Croatian youth. Int. J. Environ. Res. Public Health 2021, 18, 850. [Google Scholar] [CrossRef]
- Zbořilová, V.; Přidalová, M.; Kaplanová, T. Body fat mass, percent body fat, fat-free mass, and skeletal muscle mass reference curves for Czech children aged 6–11 years. Children 2021, 8, 366. [Google Scholar] [CrossRef]
- González-Ruíz, K.; Medrano, M.; Correa-Bautista, J.E.; García-Hermoso, A.; Agostinis-Sobrinho, C.; Correa-Rodríguez, M.; Rio-Valle, J.S.; González-Jiménez, E.; Ramírez-Vélez, R.; Prieto-Benavides, D.H.; et al. Comparison of bioelectrical impedance analysis, slaughter skinfold-thickness equations, and dual-energy X-ray absorptiometry for estimating body fat percentage in Colombian children and adolescents with excess of adiposity. Nutrients 2018, 10, 1086. [Google Scholar] [CrossRef] [Green Version]
- Al-Hazzaa, H.M.; Al-Rasheedi, A.A.; Alsulaimani, R.A.; Jabri, L. Anthropometric, familial-and lifestyle-related characteristics of school children skipping breakfast in Jeddah, Saudi Arabia. Nutrients 2020, 12, 3668. [Google Scholar] [CrossRef]
- Deora, V.; Aylward, N.; Sokoro, A.; El-Matary, W. Serum vitamins and minerals at diagnosis and follow-up in children with celiac disease. J. Pediatr. Gastroenterol. Nutr. 2017, 65, 185–189. [Google Scholar] [CrossRef]
- Barrea, L.; Savanelli, M.C.; Di Somma, C.; Napolitano, M.; Megna, M.; Colao, A.; Savastano, S. Vitamin D and its role in psoriasis: An overview of the dermatologist and nutritionist. Rev. Endo. Metab. Disord. 2017, 18, 195–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AlZoubi, K.M.; Alshammari, G.M.; Al-Khalifah, A.S.; Mohammed, M.A.; Aljuhani, H.E.; Yahya, M.A. Nutritional status and associated risk factors of Syrian children’s residents in the Kingdom of Saudi Arabia. Children 2021, 8, 1053. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, M.A.; Alshammari, G.M.; Babiker, E.E. Evaluation of nutritional status of foreign students at King Saud University, Kingdom of Saudi Arabia. Public Health Nutr. 2021, 24, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Cossio Bolaños, M.A.; Andruske, C.L.; De Arruda, M.; Sulla-Torres, J.; Urra-Albornoz, C.; Rivera-Portugal, M.; Luarte-Rocha, C.; Pacheco-Carrillo, J.; Gómez-Campos, R. Muscle mass in children and adolescents: Proposed equations and reference values for assessment. Front. Endocrin 2019, 10, 583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alazzeh, A.Y.; AlShammari, E.M.; Smadi, M.M.; Azzeh, F.S.; AlShammari, B.T.; Epuru, S.; Banu, S.; Bano, R.; Sulaiman, S.; Alcantara, J.C. Some socioeconomic factors and lifestyle habits influencing the prevalence of obesity among adolescent male students in the hail region of Saudi Arabia. Children 2018, 5, 39. [Google Scholar] [CrossRef] [Green Version]
- Imran, S.; Tanweer, A. Nutritional Assessment of Celiac Patients of Pakistan. Pak. J. Zool. 2018, 50, 619–627. [Google Scholar] [CrossRef]
- Al-Agha, A.E.; Adam, A.; Almaghrabi, A.; Zainalabidin, A.; Ahmed, H.M.; Almuwallad, R.A.; Aljahdali, S.H.; Alharbi, S.; Alhowig, W. Influence of various environmental factors on the growth of children and adolescents in Jeddah, Kingdom of Saudi Arabia. Acta Bio Med. Atenei Parm. 2020, 91, 21. [Google Scholar]
Variables | Boys (n = 29) | Girls (n = 37) | ||
---|---|---|---|---|
Frequency | % | Frequency | % | |
Age (years) | ||||
6–9 | 10 | 34.5 | 6 | 16.2 |
10–13 | 13 | 44.8 | 17 | 45.9 |
14–16 | 6 | 20.7 | 14 | 37.9 |
Age at diagnosis (years) | ||||
2–6 | 11 | 37.9 | 10 | 27.0 |
7–11 | 15 | 51.7 | 14 | 37.8 |
12–16 | 3 | 10.4 | 13 | 35.2 |
Fathers’ education | ||||
Illiterate/Primary | 2 | 6.9 | 2 | 5.4 |
Secondary Intermediate | 8 | 27.6 | 15 | 40.6 |
Diploma/University | 18 | 62.1 | 14 | 37.8 |
Postgraduate | 1 | 3.4 | 6 | 16.2 |
Mothers’ education | ||||
Illiterate/Primary | 4 | 13.8 | 7 | 18.9 |
Secondary/Intermediate | 11 | 37.9 | 10 | 27.0 |
Diploma/University | 12 | 41.4 | 17 | 45.9 |
Postgraduate | 2 | 6.9 | 3 | 8.2 |
Family’s monthly income | ||||
SAR 2000–5000 | 5 | 17.3 | 10 | 27.0 |
SAR 6000–10,000 | 9 | 31.0 | 8 | 21.6 |
SAR 11,000–15,000 | 4 | 13.8 | 9 | 24.4 |
≥SAR 16,000 | 11 | 37.9 | 10 | 27.0 |
Number of family members | ||||
2–4 | 7 | 24.1 | 3 | 8.1 |
5–7 | 12 | 41.4 | 24 | 64.9 |
8–10 | 8 | 27.6 | 8 | 21.6 |
10˃ | 2 | 6.9 | 2 | 5.4 |
Items Intake | DRI | Boys | Girls | ||||||
---|---|---|---|---|---|---|---|---|---|
Intake (Mean) | Difference | t-Test | p-Value | Intake (Mean) | Difference | t-Test | p-Value | ||
Calories (kcal) | 1800 | 1400.18 | −399.82 | −4.80 ** | 0.000 | 1296.15 | −303.85 | −4.43 ** | 0.000 |
Protein (g) | 34 | 47.37 | 13.37 | 3.53 ** | 0.001 | 42.94 | 8.93 | 4.80 ** | 0.000 |
Carbohydrates (g) | 130 | 192.86 | 62.86 | 6.22 ** | 0.000 | 172.44 | 42.44 | 4.21 ** | 0.000 |
Fiber (g) | 25 | 12.85 | −12.15 | −10.4 8 ** | 0.000 | 12.51 | −9.48 | −8.89 ** | 0.000 |
Fat (% kcal) | 30 | 32.05 | 2.05 | 1.83 | 0.121 | 34.48 | 4.48 | 5.91 | 0.213 |
Vitamin A, RAE (mcg) | 600 | 326.16 | −273.84 | −3.12 ** | 0.004 | 247.09 | −352.90 | −9.05 ** | 0.000 |
Vitamin B1 (mg) | 0.9 | 0.69 | −0.21 | −2.42 * | 0.022 | 0.53 | −0.37 | −8.62 ** | 0.000 |
Vitamin B2 (mg) | 0.9 | 0.94 | 0.03 | 0.41 | 0.683 | 0.72 | −0.18 | −3.06 ** | 0.004 |
Vitamin B3 (mg) | 12 | 9.62 | −2.37 | −1.94 | 0.062 | 7.97 | −4.03 | −5.84 ** | 0.000 |
Vitamin B6 (mg) | 1.0 | 0.66 | −0.34 | −4.93 ** | 0.000 | 0.54 | 0.46 | −9.38 ** | 0.000 |
Vitamin B12 (mcg) | 1.8 | 2.54 | 0.74 | 0.85 | 0.403 | 1.82 | 0.01 | 0.04 | 0.967 |
Vitamin C (mg) | 45 | 36.18 | −8.82 | −1.68 | 0.104 | 32.24 | −12.76 | −3.18 * | 0.003 |
Vitamin D (mcg) | 15 | 3.26 | −11.74 | −28.86 ** | 0.000 | 2.50 | −12.50 | −41.04 ** | 0.000 |
Vitamin E (mg) | 11 | 1.45 | −9.55 | −61.66 ** | 0.000 | 1.59 | −9.41 | −44.38 ** | 0.000 |
Folate, DFE (mcg) | 300 | 142.09 | −157.91 | −11.71 ** | 0.000 | 146.52 | −153.48 | −10.60 ** | 0.000 |
Vitamin K (mcg) | 60 | 34.71 | −25.28 | −2.45 * | 0.021 | 62.25 | 2.25 | 0.17 | 0.865 |
Calcium (mg) | 1300 | 531.45 | −768.55 | −16.80 ** | 0.000 | 496.58 | −803.41 | −25.47 ** | 0.000 |
Iron (mg) | 8 | 7.68 | −0.32 | −0.44 | 0.666 | 6.22 | −1.78 | −4.19 ** | 0.000 |
Magnesium (mg) | 240 | 97.85 | −142.14 | −15.79 ** | 0.000 | 94.64 | −145.35 | −17.50 ** | 0.000 |
Phosphorus (mg) | 1250 | 494.23 | −755.76 | −19.10 ** | 0.000 | 458.84 | −791.16 | −19.08 ** | 0.000 |
Potassium (mg) | 2500 | 1175.18 | −1324.82 | −12.29 ** | 0.000 | 1032.87 | −1267.13 | −16.97 ** | 0.000 |
Sodium (mg) | 1800 | 1705.44 | −94.56 | −0.76 | 0.455 | 1666.19 | −133.81 | −0.70 | 0.486 |
Zinc (mg) | 8 | 3.37 | −4.63 | −17.96 ** | 0.000 | 3.15 | −4.85 | −19.52 ** | 0.000 |
Anthropometric Index | Boys (n = 29) | Girls (n = 37) | Total (n = 66) | |||
---|---|---|---|---|---|---|
Frequency | % | Frequency | % | Frequency | % | |
BMI-for-age | ||||||
Normal | 26 | 89.7 | 25 | 67.6 | 51 | 77.3 |
Overweight | 2 | 6.9 | 7 | 18.9 | 9 | 13.6 |
Obesity | 0 | 0 | 1 | 2.7 | 1 | 1.5 |
Thinness | 1 | 3.4 | 4 | 10.8 | 5 | 7.6 |
Height-for-age | ||||||
Normal | 25 | 86.2 | 36 | 97.3 | 61 | 92.4 |
Short stature | 4 | 13.8 | 1 | 2.7 | 5 | 7.6 |
Fat Mass (%) | ||||||
Low | 2 | 6.9 | 1 | 2.7 | 3 | 4.5 |
Normal | 19 | 65.5 | 20 | 54.1 | 39 | 59.1 |
High | 8 | 27.6 | 16 | 43.2 | 24 | 36.4 |
Muscle Mass (%) | ||||||
Low | 9 | 31.0 | 17 | 45.9 | 26 | 39.4 |
Normal | 18 | 62.1 | 19 | 51.4 | 37 | 56.1 |
High | 2 | 6.9 | 1 | 2.7 | 3 | 4.5 |
Anthropometric Index | Boys (n = 29) | Girls (n = 37) | t-Test | p-Value |
---|---|---|---|---|
Weight (kg) | 31.79 ± 16.76 | 41.57 ± 18.08 | −2.25 * | 0.028 |
Height (cm) | 133.52 ± 21.38 | 143.70 ± 14.77 | −2.19 * | 0.034 |
BMI (kg/m2) | 16.61 ± 3.79 | 19.63 ± 5.57 | −2.61 * | 0.011 |
FM (kg) | 6.56 ± 5.58 | 13.38 ± 10.77 | −3.32 ** | 0.002 |
FFM (kg) | 25.23 ± 11.83 | 28.20 ± 8.27 | −1.15 | 0.257 |
MM (kg) | 23.78 ± 11.21 | 26.65 ± 7.87 | −1.17 | 0.248 |
SMM (kg) | 13.80 ± 6.90 | 15.50 ± 4.98 | −1.11 | 0.271 |
FM (%) | 18.79 ± 6.64 | 28.68 ± 9.30 | −4.84 ** | 0.000 |
FFM (%) | 81.20 ± 6.65 | 71.32 ± 9.30 | 4.83 ** | 0.000 |
MM (%) | 76.45 ± 6.25 | 67.38 ± 8.76 | 4.71 ** | 0.000 |
SMM (%) | 43.82 ± 4.53 | 38.74 ± 5.59 | 3.98 ** | 0.000 |
FMI (kg/m2) | 3.31 ± 1.94 | 6.05 ± 3.96 | −3.68 ** | 0.001 |
FFMI (kg/m2) | 13.30 ± 2.11 | 13.33 ± 2.06 | −0.06 | 0.951 |
Variables | Boys (n = 29) | Girls (n = 37) | t-Test | p-Value * | ||
---|---|---|---|---|---|---|
Mean ± SD | Ref. Range | Mean ± SD | Ref. Range | |||
Vitamin D (nmol/L) | 42.11 ± 8.74 | (75–350) | 47.44 ± 13.76 | (75–350) | −1.82 * | 0.034 |
Hemoglobin (g/dL) | 13.01 ± 1.47 | (13.5–18) | 13.00 ± 0.75 | (11–15) | 0.05 | 0.963 |
Albumin (g/L) | 41.33 ± 8.05 | (32–45) | 42.23 ± 1.49 | (38–54) | −0.66 | 0.509 |
Sodium (mmol/L) | 138.10 ± 1.33 | (136–145) | 138.25 ± 1.37 | (138–145) | −0.46 | 0.648 |
Potassium (mmol/L) | 4.49 ± 0.25 | (3.50–5.10) | 4.34 ± 0.24 | (3.40–4.70) | 0.51 | 0.317 |
Alkaline Phosphatase (U/L) | 244.25 ± 48.60 | (89–365) | 245.72 ± 56.58 | (141–460) | −0.11 | 0.912 |
Calcium (mmol/L) | 2.40 ± 0.06 | (1.63–3.53) | 2.39 ± 0.05 | (2.22–2.70) | 0.52 | 0.604 |
Dependent Variable/Independent Variable | Boys (n = 29) | Girls (n = 37) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
BMI | FM | MM | BMI | FM | MM | |||||||
r | β, r2 | r | β, r2 | r | β, r2 | r | β, r2 | r | β, r2 | r | β, r2 | |
Age (years) | 0.616 ** | 0.121 **, 0.380 | 0.686 ** | 0.083 **, 0.389 | 0.865 ** | 0.056 **, 0.708 | 0.509 ** | 0.063 **, 0.239 | 0.653 ** | 0.037 **, 0.308 | 0.710 ** | 0.066 **, 0.536 |
Father’s education | −0.259 | −0.003, 0.0002 | −0.314 | −0.001, 0.00003 | −0.205 | −0.003, 0.003 | −0.215 | −0.022, 0.021 | −0.146 | −0.004, 0.003 | −0.018 | −0.003, 0.001 |
Mother’s education | −0.193 | −0.024, 0.012 | −0.224 | −0.016, 0.012 | −0.279 | −0.019, 0.069 | −0.184 | −0.027, 0.027 | −0.101 | −0.012, 0.020 | −0.058 | −0.008, 0.004 |
Family’s education | 0.265 * | 0.120 *, 0.153 | 0.222 * | 0.076 *, 0.135 | 0.334 * | 0.040 *, 0.147 | −0.166 | −0.014, 0.004 | −0.141 | −0.003, 0.001 | 0.066 | 0.011, 0.005 |
Family members | 0.367 | 0.077, 0.107 | 0.402 * | 0.059 *, 0.136 | 0.460 * | 0.038 *, 0.224 | 0.109 | 0.023, 0.035 | 0.144 | 0.014, 0.048 | 0.025 | 0.012, 0.019 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allowaymi, S.S.; Binobead, M.A.; Alshammari, G.M.; Alrasheed, A.; Mohammed, M.A.; Yahya, M.A. Nutritional Status of Saudi Children with Celiac Disease Following the Ministry of Health’s Gluten-Free Diet Program. Nutrients 2022, 14, 2792. https://doi.org/10.3390/nu14142792
Allowaymi SS, Binobead MA, Alshammari GM, Alrasheed A, Mohammed MA, Yahya MA. Nutritional Status of Saudi Children with Celiac Disease Following the Ministry of Health’s Gluten-Free Diet Program. Nutrients. 2022; 14(14):2792. https://doi.org/10.3390/nu14142792
Chicago/Turabian StyleAllowaymi, Shiekhah S., Manal Abdulaziz Binobead, Ghedeir M. Alshammari, Ali Alrasheed, Mohammed A. Mohammed, and Mohammed Abdo Yahya. 2022. "Nutritional Status of Saudi Children with Celiac Disease Following the Ministry of Health’s Gluten-Free Diet Program" Nutrients 14, no. 14: 2792. https://doi.org/10.3390/nu14142792
APA StyleAllowaymi, S. S., Binobead, M. A., Alshammari, G. M., Alrasheed, A., Mohammed, M. A., & Yahya, M. A. (2022). Nutritional Status of Saudi Children with Celiac Disease Following the Ministry of Health’s Gluten-Free Diet Program. Nutrients, 14(14), 2792. https://doi.org/10.3390/nu14142792