Hypertension: Constraining the Expression of ACE-II by Adopting Optimal Macronutrients Diet Predicted via Support Vector Machine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Antihypertensive Peptides Database
2.2. Feature Selection
2.3. Machine Learning Models
2.4. Support Vector Machine (SVM) Model
2.5. Nontrivial Feature Selection and Pattern of Dominance
3. Result
3.1. Biological Significance of Nontrivial Features
3.2. Performance Evaluation
4. Discussion
5. Case Study of Chicken Egg White Protein
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Wu, Z.; McGoogan, J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA 2020, 323, 1239–1242. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Karakiulakis, G.; Roth, M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection. Lancet Respir. Med. 2020, 8, E21. [Google Scholar] [CrossRef]
- Lippi, G.; Wong, J.; Henry, B.M. Hypertension and its severity or mortality in Coronavirus Disease 2019 (COVID-19): A pooled analysis. Pol. Arch. Intern. Med. 2020, 130. [Google Scholar] [CrossRef] [Green Version]
- Carretero, O.; Oparil, S. Essential hypertension; Part I: Definition and etiology. Circulation 2000, 101, 329–335. [Google Scholar] [CrossRef]
- Ryoo, J.H.; Park, S.K.; Oh, C.M.; Choi, Y.J.; Chung, J.Y.; Ham, W.T.; Jung, T. Evaluating the risk of hypertension according to the metabolic health status stratified by degree of obesity. J. Am. Soc. Hypertens. 2016, 11, 20–27. [Google Scholar] [CrossRef]
- Khan, M.F.; Gazara, R.K.; Nofal, M.M.; Chakrabarty, S.; Dannoun, E.M.; Al-Hmouz, R.; Mursaleen, M. Reinforcing synthetic data for meticulous survival prediction of patients suffering from left ventricular systolic dysfunction. IEEE Access 2021, 9, 72661–72669. [Google Scholar] [CrossRef]
- Karaboyas, A.; Xu, H.; Morgenstern, H.; Locatelli, F.; Jadoul, M.; Nitta, K.; Dasgupta, I.; Tentori, F.; Port, F.K.; Robinson, B.M. DOPPS data suggest a possible survival benefit of renin angiotensin-aldosterone system inhibitors and other antihypertensive medications for hemodialysis patients. Kidney Int. 2018, 94, 589–598. [Google Scholar] [CrossRef] [Green Version]
- Cremer, A.; Tambosco, C.; Corcuff, J.B.; Boulestreau, R.; Gaillard, P.; Laine, M.; Papaioannou, G.; Gosse, P. Investigating the association of vitamin D with blood pressure and the renin–angiotensin–aldosterone system in hypertensive subjects: A cross-sectional prospective study. J. Hum. Hypertens. 2018, 32, 114–121. [Google Scholar] [CrossRef]
- Vegter, S.; de Jong-van den Berg, L.T.W. Misdiagnosis and mistreatment of a common side-effect-angiotensin-converting enzyme inhibitor-induced cough. Br. J. Clin. Pharmacol. 2010, 69, 200–203. [Google Scholar] [CrossRef] [Green Version]
- Montoro de Francisco, A.; García-Luque, A.; Fernández, M.; Puerro, M. Side effects of angiotensin converting enzyme inhibitors and angiotensin II receptor antagonists: Are we facing a new syndrome. Am. J. Cardiol. 2012, 110, 1552–1553. [Google Scholar] [CrossRef] [PubMed]
- Obarzanek, E.; Sacks, F.M.; Vollmer, W.M.; Bray, G.A.; Miller, E.R.; Lin, P.H.; Karanja, N.M.; Most-Windhauser, M.M.; Moore, T.J.; Swain, J.F.; et al. Effects on blood lipids of a blood pressure-lowering diet: The dietary approaches to stop hypertension (DASH) trial. Am. J. Clin. Nutr. 2001, 74, 80–89. [Google Scholar] [CrossRef]
- Rivellese, F.; Prediletto, E. ACE2 at the centre of COVID-19 from paucisymptomatic infections to severe pneumonia. Autoimmun. Rev. 2020, 19, 102536. [Google Scholar] [CrossRef] [PubMed]
- Miller, E.R.; Erlinger, T.P.; Appel, L.J. The effects of macronutrients on blood pressure and lipids: An overview of the DASH and omniheart trials. Curr. Atheroscler. Rep. 2006, 8, 460–465. [Google Scholar] [CrossRef]
- Korhonen, H.; Pihlanto, A. Bioactive peptides: Production and functionality. Int. Dairy J. 2006, 16, 945–960. [Google Scholar] [CrossRef]
- Sacks, F.M.; Svetkey, L.P.; Vollmer, W.M.; Appel, L.J.; Bray, G.A.; Harsha, D.; Obarzanek, E.; Conlin, P.R.; Miller, E.R.; Simons-Morton, D.G.; et al. Effects on blood pressure of reduced dietary sodium and the dietary approaches to stop hypertension (DASH) diet. N. Engl. J. Med. 2001, 344, 3–10. [Google Scholar] [CrossRef]
- Carey, V.J.; Bishop, L.; Charleston, J.; Conlin, P.; Erlinger, T.; Laranjo, N.; McCarron, P.; Miller, E.; Rosner, B.; Swain, J.; et al. Rationale and design of the optimal macro-nutrient intake heart trial to prevent heart disease (OMNI-Heart). Clin. Trials 2005, 2, 529–537. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Guha, S.; Majumder, K. Food-derived bioactive peptides in human health: Challenges and opportunities. Nutrients 2018, 10, 1738. [Google Scholar] [CrossRef] [Green Version]
- Azadbakht, L.; Mirmiran, P.; Esmaillzadeh, A.; Azizi, T.; Azizi, F. Beneficial effects of a dietary approaches to stop hypertension eating plan on features of the metabolic syndrome. Diabetes Care 2005, 28, 2823–2831. [Google Scholar] [CrossRef] [Green Version]
- Aluko, R.E. Antihypertensive peptides from food proteins. Annu. Rev. Food Sci. Technol. 2015, 6, 235–262. [Google Scholar] [CrossRef]
- Kalyan, G.; Junghare, V.; Khan, M.F.; Pal, S.; Bhattacharya, S.; Guha, S.; Majumder, K.; Chakrabarty, S.; Hazra, S. Anti-hypertensive peptide predictor: A machine learning-empowered web server for prediction of food-derived peptides with potential angiotensin-converting enzyme-I inhibitory activity. J. Agric. Food Chem. 2021, 69, 14995–15004. [Google Scholar] [CrossRef]
- Tapak, L.; Mahjub, H.; Hamidi, O.; Poorolajal, J. Real-data comparison of data mining methods in prediction of diabetes in Iran. Healthc. Inform. Res. 2013, 19, 177–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Keam, B.; Jang, E.J.; Park, M.S.; Lee, J.Y.; Kim, D.B.; Lee, C.H.; Kim, T.; Oh, B.; Park, H.J.; et al. Development of a predictive model for type 2 diabetes mellitus using genetic and clinical data. Osong Public Health Res. Perspect. 2011, 2, 75–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barakat, N.H.; Bradley, A.P.; Barakat, M.N.H. Intelligible support vector machines for diagnosis of diabetes mellitus. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 1114–1120. [Google Scholar] [CrossRef]
- Siqueira, L.F.S.; Morais, C.L.M.; Junior, R.F.A.; de Araujo, A.A.; Lima, K.M.G. SVM for FT-MIR prostate cancer classification: An alternative to the traditional methods. J. Chemom. 2018, 32, e3075. [Google Scholar] [CrossRef]
- Ju, Z.; Cao, J.Z.; Gu, H. Predicting lysine phosphoglycerylation with fuzzy SVM by incorporating k-spaced amino acid pairs into Chou’s general PseAAC. J. Theor. Biol. 2016, 397, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Cui, J.; Hu, X.; Tu, L.; Liu, H.; Jiao, W.; Zeng, L.; Jing, C.; Qiao, L.; Ma, X.; et al. A Study of Machine-Learning Classifiers for Hypertension Based on Radial Pulse Wave. BioMed Res. Int. 2018, 2018, 2964816. [Google Scholar] [CrossRef] [Green Version]
- Shankar, K.; Lakshmanaprabu, S.K.; Gupta, D.; Maseleno, A.; de Albuquerque, V.H.C. Optimal feature-based multi-kernel SVM approach for thyroid disease classification. J. Supercomput. 2018, 76, 1128–1143. [Google Scholar] [CrossRef]
- Lei, H.; Gao, X. Mixed Feature Selection Method Based on SVM. In Proceedings of the International Conference on Applications and Techniques in Cyber Security and Intelligence, Shanghai, China, 11–13 July 2018; pp. 1093–1100. [Google Scholar] [CrossRef]
- Osuna, E.; Freund, R.; Girosi, F. An improved training algorithm for support vector machines. In Proceedings of the Workshop on Neural Networks for Signal Processing VII, Amelia Island, FL, USA, 24–26 September 1997; pp. 276–285. [Google Scholar] [CrossRef]
- Tsimring, L.S. Noise in biology. Rep. Prog. Phys. 2014, 77, 026601. [Google Scholar] [CrossRef] [Green Version]
- Poli, R.; Cagnoni, S.; Livi, R.; Coppini, G.; Valli, G. A neural network expert system for diagnosing and treating hypertension. Computer 1991, 24, 64–71. [Google Scholar] [CrossRef]
- Lacaille-Dubois, M.A.; Franck, U.; Wagner, H. Search for potential Angiotensin Converting Enzyme (ACE)-inhibitors from plants. Phytomedicine 2001, 8, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Vermeirssen, V.; Camp, J.V.; Verstraete, W. Optimisation and validation of an angiotensin-converting enzyme inhibition assay for the screening of bioactive peptides. J. Biochem. Biophys. Methods 2002, 51, 75–87. [Google Scholar] [CrossRef]
- Chou, K.C. Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins Struct. Funct. Bioinform. 2001, 43, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.S.; Shatabda, S.; Saha, S.; Kaykobad, M.; Rahman, M.S. DPP-PseAAC: A DNA-binding protein prediction model using Chou’s general PseAAC. J. Theor. Biol. 2018, 452, 22–34. [Google Scholar] [CrossRef]
- Mousavizadegan, M.; Mohabatkar, H. Computational prediction of antifungal peptides via Chou’s PseAAC and SVM. J. Bioinform. Comput. Biol. 2018, 16, 1850016. [Google Scholar] [CrossRef]
- Xu, C.; Ge, L.; Zhang, Y.; Dehmer, M.; Gutman, I. Computational prediction of therapeutic peptides based on graph index. J. Biomed. Inform. 2017, 75, 63–69. [Google Scholar] [CrossRef]
- Kalyan, G.; Junghare, V.; Bhattacharya, S.; Hazra, S. Understanding structure-based dynamic interactions of antihypertensive peptides extracted from food sources. J. Biomol. Struct. Dyn. 2020, 39, 635–649. [Google Scholar] [CrossRef]
- Kingsford, C.; Salzberg, S.L. What are decision trees? Nat. Biotechnol. 2008, 26, 1011–1013. [Google Scholar] [CrossRef]
- LaValley, M.P. Logistic regression. Circulation 2008, 117, 2395–2399. [Google Scholar] [CrossRef] [Green Version]
- Noble, W.S. What is a support vector machine? Nat. Biotechnol. 2006, 24, 1565–1567. [Google Scholar] [CrossRef]
- Yu, K.; Ji, L.; Zhang, X. Kernel nearest-neighbor algorithm. Neural Process. Lett. 2002, 15, 147–156. [Google Scholar] [CrossRef]
- Wall, M.E.; Rechtsteiner, A.; Rocha, L.M. Singular Value Decomposition and Principal Component Analysis. In A Practical Approach to Microarray Data Analysis; Springer: Boston, MA, USA, 2003. [Google Scholar] [CrossRef] [Green Version]
- Ding, C.; Peng, H. Minimum redundancy feature selection from microarray gene expression data. J. Bioinform. Comput. Biol. 2005, 3, 185–205. [Google Scholar] [CrossRef] [PubMed]
- Darbellay, G.A.; Vajda, I. Estimation of the information by an adaptive partitioning of the observation space. IEEE Trans. Inf. Theory 1999, 45, 1315–1321. [Google Scholar] [CrossRef] [Green Version]
- Sheskin, D.J. Handbook of Parametric and Nonparametric Statistical Procedures, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar] [CrossRef]
- Kothari, C.R. Research Methodology: Methods and Techniques, 4th ed.; New Age International: New Delhi, India, 2004. [Google Scholar]
- Kruskal, W.H.; Wallis, W.A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [Google Scholar] [CrossRef]
- Lahmiri, S.; Shmuel, A. Detection of Parkinson’s disease based on voice patterns ranking and optimized support vector machine. Biomed. Signal Process. Control. 2019, 49, 427–433. [Google Scholar] [CrossRef]
- Kumar, R.; Chaudhary, K.; Chauhan, J.S.; Nagpal, G.; Kumar, R.; Sharma, M.; Raghava, G.P.S. An in silico platform for predicting, screening and designing of antihypertensive peptides. Sci. Rep. 2015, 5, 12512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Win, T.S.; Schaduangrat, N.; Prachayasittikul, V.; Nantasenamat, C.; Shoombuatong, W. PAAP: A web server for predicting antihypertensive activity of peptides. Future Med. Chem. 2018, 10, 1749–1767. [Google Scholar] [CrossRef]
- Jahandideh, F.; Chakrabarti, S.; Majumder, K.; Li, Q.; Panahi, S.; Morton, J.S.; Davidge, S.T.; Wu, J. Egg white protein hydrolysate reduces blood pressure, improves vascular relaxation and modifies aortic angiotensin II receptors expression in spontaneously hypertensive rats. J. Funct. Foods 2016, 27, 667–673. [Google Scholar] [CrossRef] [Green Version]
- Jahandideh, F.; Majumder, K.; Chakrabarti, S.; Morton, J.S.; Panahi, S.; Kaufman, S.; Davidge, S.T.; Wu, J. Beneficial effects of simulated gastro-intestinal digests of fried egg and its fractions on blood pressure, plasma lipids and oxidative stress in spontaneously hypertensive rats. PLoS ONE 2014, 9, e115006. [Google Scholar] [CrossRef] [Green Version]
- UniProt. UniProtKB ID [P01012 (OVAL_CHICK)] of Chicken Egg White Protein. Available online: https://www.uniprot.org/ (accessed on 10 June 2021).
- Barrett, G.C.; Elmore, D.T. Amino Acids and Peptides, 1st ed.; Cambridge University Press: Cambrigde, UK, 1998. [Google Scholar] [CrossRef]
- Rosenthal, G. Plant Nonprotein Amino and Imino Acids: Biological, Biochemical, and Toxicological Properties, 1st ed.; Academic Press: New York, NY, USA, 1982. [Google Scholar]
- Hazra, S.; Szewczak, A.; Ort, S.; Konrad, M.; Lavie, A. Post-translational phosphorylation of serine 74 of human deoxycytidine kinase favors the enzyme adopting the open conformation making it competent for nucleoside binding and release. Biochemistry 2011, 50, 2870–2880. [Google Scholar] [CrossRef] [Green Version]
- McSorley, T.; Ort, S.; Hazra, S.; Lavie, A.; Konrad, M. Mimicking phosphorylation of Ser-74 on human deoxycytidine kinase selectively increases catalytic activity for dC and dC analogues. FEBS Lett. 2008, 582, 720724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Machine Learning Algorithms | Variants | Accuracy (%) | AUC |
---|---|---|---|
Decision trees | Fine | 76.9 | 0.66 |
Coarse | 80.6 | 0.65 | |
Logistic regression | - | 80.1 | 0.66 |
Support vector machine | Linear kernel | 80.1 | 0.63 |
Quadratic kernel | 80.4 | 0.66 | |
Cubic kernel | 77.8 | 0.64 | |
RBF kernel | 81.0 | 0.68 | |
k-nearest neighbour | Fine | 78.2 | 0.63 |
Cosine | 80.7 | 0.66 |
Features | p-Value | Significant | |
---|---|---|---|
PseAAC | A (alanine) | 0.6881 | No |
C (cysteine) | 0.0023 | Yes † | |
D (aspartic acid) | 0.8265 | No | |
E (glutamic acid) | 9.2421 × 10 | Yes | |
F (phenylalanine) | 0.4242 | No | |
G (glycine) | 4.3718 × 10 | Yes | |
H (histidine) | 0.4542 | No | |
I (isoleucine) | 0.8942 | No | |
K (lysine) | 0.1785 | No | |
L (leucine) | 0.8502 | No | |
M (methionine) | 0.9626 | No | |
N (asparagine) | 0.3234 | No | |
P (proline) | 0.0873 | No | |
Q (glutamine) | 0.6676 | No | |
R (arginine) | 0.1939 | No | |
S (serine) | 0.3363 | No | |
T (threonine) | 0.8461 | No | |
V (valine) | 0.5726 | No | |
W (tryptophan) | 0.0066 | Yes | |
Y (tyrosine) | 1.0596 × 10 | Yes | |
Sequence order effect | 0.0142 | Yes * | |
Structural | Molecular weight | 0.0210 | Yes * |
R | 0.0301 | Yes * | |
0.0723 | No | ||
0.8902 | No | ||
0.0016 | Yes | ||
0.3122 | No | ||
Volume | 0.0138 | Yes * |
Features | Best Accuracy (%) |
---|---|
Reference value (Entire space) | 81.0 |
PseAAC | 82.6 |
Structural | 84.5 |
MRMR | 82.2 |
SIDR () | 83.5 |
SIDR () | 85.0 |
MRMR ∩ SIDR | 83.2 |
MRMR ∪ SIDR | 84.9 |
Performance Metrics | Reference Value | PseAAC | Structural | MRMR | SIDR | MRMR ∩ SIDR | MRMR ∪ SIDR | |
---|---|---|---|---|---|---|---|---|
p = 0.01 | p = 0.05 | |||||||
Accuracy (%) | 84.91 | 85.47 | 85.33 | 84.49 | 84.07 | 86.17 | 84.07 | 85.61 |
AUC | 0.9966 | 0.9769 | 0.9531 | 0.9093 | 0.7118 | 0.8718 | 0.7621 | 0.9905 |
Sensitivity (%) | 63.15 | 55.17 | 87.50 | 68.18 | 86.66 | 85.29 | 73.91 | 80.76 |
Specificity (%) | 84.02 | 84.19 | 83.38 | 82.56 | 82.45 | 84.31 | 82.82 | 85.78 |
MCC | 0.2880 | 0.2738 | 0.3252 | 0.2233 | 0.2524 | 0.3774 | 0.2551 | 0.3728 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.F.; Kalyan, G.; Chakrabarty, S.; Mursaleen, M. Hypertension: Constraining the Expression of ACE-II by Adopting Optimal Macronutrients Diet Predicted via Support Vector Machine. Nutrients 2022, 14, 2794. https://doi.org/10.3390/nu14142794
Khan MF, Kalyan G, Chakrabarty S, Mursaleen M. Hypertension: Constraining the Expression of ACE-II by Adopting Optimal Macronutrients Diet Predicted via Support Vector Machine. Nutrients. 2022; 14(14):2794. https://doi.org/10.3390/nu14142794
Chicago/Turabian StyleKhan, Mohammad Farhan, Gazal Kalyan, Sohom Chakrabarty, and M. Mursaleen. 2022. "Hypertension: Constraining the Expression of ACE-II by Adopting Optimal Macronutrients Diet Predicted via Support Vector Machine" Nutrients 14, no. 14: 2794. https://doi.org/10.3390/nu14142794
APA StyleKhan, M. F., Kalyan, G., Chakrabarty, S., & Mursaleen, M. (2022). Hypertension: Constraining the Expression of ACE-II by Adopting Optimal Macronutrients Diet Predicted via Support Vector Machine. Nutrients, 14(14), 2794. https://doi.org/10.3390/nu14142794