Selenium Intake and its Interaction with Iron Intake Are Associated with Cognitive Functions in Chinese Adults: A Longitudinal Study
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Study Sample
2.2. Outcome Variable: Cognitive Function
2.3. Exposure Variable: Dietary Intake of Selenium
2.4. Covariates
2.5. Statistical Analyses
3. Results
3.1. Association between Selenium Intake and Global Cognitive Function
3.2. Association between Selenium Intake and Self-Reported Memory
3.3. Weight Status Modifies the Association between Selenium Intake and Global Cognitive Function
3.4. Subgroup Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fleming, R.; Zeisel, J.; Arch, K.B.B. World Alzheimer Report 2020; Alzheimer’s Disease International (ADI): London, UK, 2020. [Google Scholar]
- WHO. Dementia. 2022. Available online: https://www.who.int/en/news-room/fact-sheets/detail/dementia (accessed on 15 December 2021).
- Shreenath, A.P.; Ameer, M.A.; Dooley, J. Selenium Deficiency. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Liu, B.; Xu, G.; Yang, W.; Strathearn, L.; Snetselaar, L.G.; Bao, W. Association between serum selenium concentrations and learning disability in a nationally representative sample of U.S. children. Nutr. Neurosci. 2021, 25, 1558–1564. [Google Scholar] [CrossRef] [PubMed]
- Solovyev, N.D. Importance of selenium and selenoprotein for brain function: From antioxidant protection to neuronal signalling. J. Inorg. Biochem. 2015, 153, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Weber, G.F.; Maertens, P.; Meng, X.Z.; Pippenger, C.E. Glutathione peroxidase deficiency and childhood seizures. Lancet 1991, 337, 1443–1444. [Google Scholar] [CrossRef]
- Robberecht, H.; De Bruyne, T.; Davioud-Charvet, E.; Mackrill, J.; Hermans, N. Selenium Status in Elderly People: Longevity and Age-Related Diseases. Curr. Pharm. Des. 2019, 25, 1694–1706. [Google Scholar] [CrossRef] [PubMed]
- Fukui, K.; Omoi, N.O.; Hayasaka, T.; Shinnkai, T.; Suzuki, S.; Abe, K.; Urano, S. Cognitive impairment of rats caused by oxidative stress and aging, and its prevention by vitamin E. Ann. N. Y. Acad. Sci. 2002, 959, 275–284. [Google Scholar] [CrossRef]
- Nogueira, C.W.; Rocha, J.B. Toxicology and pharmacology of selenium: Emphasis on synthetic organoselenium compounds. Arch. Toxicol. 2011, 85, 1313–1359. [Google Scholar] [CrossRef]
- Oliveira, C.S.; Piccoli, B.C.; Aschner, M.; Rocha, J. Chemical Speciation of Selenium and Mercury as Determinant of Their Neurotoxicity. Adv. Neurobiol. 2017, 18, 53–83. [Google Scholar]
- Lemly, A.D. Aquatic selenium pollution is a global environmental safety issue. Ecotoxicol. Environ. Saf. 2004, 59, 44–56. [Google Scholar] [CrossRef] [Green Version]
- Dolgova, N.V.; Hackett, M.J.; MacDonald, T.C.; Nehzati, S.; James, A.K.; Krone, P.H.; George, G.N.; Pickering, I.J. Distribution of selenium in zebrafish larvae after exposure to organic and inorganic selenium forms. Metallomics 2016, 8, 305–312. [Google Scholar] [CrossRef] [Green Version]
- Naderi, M.; Puar, P.; Zonouzi-Marand, M.; Chivers, D.P.; Niyogi, S.; Kwong, R.W.M. A comprehensive review on the neuropathophysiology of selenium. Sci. Total Environ. 2021, 767, 144329. [Google Scholar] [CrossRef]
- Vinceti, M.; Guidetti, D.; Pinotti, M.; Rovesti, S.; Merlin, M.; Vescovi, L.; Bergomi, M.; Vivoli, G. Amyotrophic lateral sclerosis after long-term exposure to drinking water with high selenium content. Epidemiology 1996, 7, 529–532. [Google Scholar] [CrossRef] [PubMed]
- Callaghan, B.; Feldman, D.; Gruis, K.; Feldman, E. The association of exposure to lead, mercury, and selenium and the development of amyotrophic lateral sclerosis and the epigenetic implications. Neurodegener. Dis. 2011, 8, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Bergomi, M.; Vinceti, M.; Nacci, G.; Pietrini, V.; Brätter, P.; Alber, D.; Ferrari, A.; Vescovi, L.; Guidetti, D.; Sola, P.; et al. Environmental exposure to trace elements and risk of amyotrophic lateral sclerosis: A population-based case-control study. Environ. Res. 2002, 89, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Dinh, Q.T.; Cui, Z.; Huang, J.; Tran, T.A.T.; Wang, D.; Yang, W.; Zhou, F.; Wang, M.; Yu, D.; Liang, D. Selenium distribution in the Chinese environment and its relationship with human health: A review. Environ. Int. 2018, 112, 294–309. [Google Scholar] [CrossRef] [PubMed]
- Rayman, M.P. Selenium intake, status, and health: A complex relationship. Hormones 2020, 19, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Wang, T.; Li, Q.; Li, D. Prevention of Keshan Disease by Selenium Supplementation: A Systematic Review and Meta-analysis. Biol. Trace Elem. Res. 2018, 186, 98–105. [Google Scholar] [CrossRef]
- Chen, J. An original discovery: Selenium deficiency and Keshan disease (an endemic heart disease). Asia Pac. J. Clin. Nutr. 2012, 21, 320–326. [Google Scholar]
- Lei, X.; Hu, Y.; McArdle, J.J.; Smith, J.P.; Zhao, Y. Gender Differences in Cognition among Older Adults in China. J. Hum. Resour. 2012, 47, 951–971. [Google Scholar]
- Duff, K.; Tometich, D.; Dennett, K. The Modified Telephone Interview for Cognitive Status is More Predictive of Memory Abilities Than the Mini-Mental State Examination. J. Geriatr. Psychiatry Neurol. 2015, 28, 193–197. [Google Scholar] [CrossRef] [Green Version]
- Plassman, B.L.; Welsh, K.A.; Helms, M.; Brandt, J.; Page, W.F.; Breitner, J.C. Intelligence and education as predictors of cognitive state in late life: A 50-year follow-up. Neurology 1995, 45, 1446–1450. [Google Scholar] [CrossRef]
- Ding, D.; Zhao, Q.; Guo, Q.; Meng, H.; Wang, B.; Luo, J.; Mortimer, J.A.; Borenstein, A.R.; Hong, Z. Prevalence of mild cognitive impairment in an urban community in China: A cross-sectional analysis of the Shanghai Aging Study. Alzheimer’s Dement. 2015, 11, 300–309. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y. Chinese Food Composition Table 2004; Peking University Medical Press: Beijing, China, 2005. [Google Scholar]
- Hu, F.B.; Stampfer, M.J.; Rimm, E.; Ascherio, A.; Rosner, B.A.; Spiegelman, D.; Willett, W.C. Dietary fat and coronary heart disease: A comparison of approaches for adjusting for total energy intake and modeling repeated dietary measurements. Am. J. Epidemiol. 1999, 149, 531–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ainsworth, B.E.; Haskell, W.L.; Whitt, M.C.; Irwin, M.L.; Swartz, A.M.; Strath, S.J.; O’Brien, W.L.; Bassett, D.J.; Schmitz, K.H.; Emplaincourt, P.O.; et al. Compendium of physical activities: An update of activity codes and MET intensities. Med. Sci. Sports Exerc. 2000, 32, S498–S504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, B.F. Predictive values of body mass index and waist circumference for risk factors of certain related diseases in Chinese adults—Study on optimal cut-off points of body mass index and waist circumference in Chinese adults. Biomed. Environ. Sci. 2002, 15, 83–96. [Google Scholar]
- Mecocci, P.; Polidori, M.C. Antioxidant clinical trials in mild cognitive impairment and Alzheimer’s disease. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2012, 1822, 631–638. [Google Scholar] [CrossRef]
- Li, S.; Sun, W.; Zhang, D. Association of Zinc, Iron, Copper, and Selenium Intakes with Low Cognitive Performance in Older Adults: A Cross-Sectional Study from National Health and Nutrition Examination Survey (NHANES). J. Alzheimer’s Dis. 2019, 72, 1145–1157. [Google Scholar] [CrossRef]
- Berr, C.; Balansard, B.; Arnaud, J.; Roussel, A.M.; Alpérovitch, A. Cognitive decline is associated with systemic oxidative stress: The EVA study. Etude Du Vieil. Artériel. J. Am. Geriatr. Soc. 2000, 48, 1285–1291. [Google Scholar] [CrossRef]
- Gao, S.; Jin, Y.; Hall, K.S.; Liang, C.; Unverzagt, F.W.; Ji, R.; Murrell, J.R.; Cao, J.; Shen, J.; Ma, F.; et al. Selenium Level and Cognitive Function in Rural Elderly Chinese. Am. J. Epidemiol. 2007, 165, 955–965. [Google Scholar] [CrossRef] [Green Version]
- Giacoppo, S.; Galuppo, M.; Calabrò, R.S.; Aleo, G.; Marra, A.; Sessa, E.; Bua, D.G.; Potortì, A.G.; Dugo, G.; Bramanti, P.; et al. Heavy Metals and Neurodegenerative Diseases: An Observational Study. Biol. Trace Elem. Res. 2014, 161, 151–160. [Google Scholar] [CrossRef]
- Cardoso, B.; Szymlek-Gay, E.; Roberts, B.; Formica, M.; Gianoudis, J.; Connell, S.; Nowson, C.; Daly, R. Selenium Status Is Not Associated with Cognitive Performance: A Cross-Sectional Study in 154 Older Australian Adults. Nutrients 2018, 10, 1847. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, B.R.; Hare, D.J.; Bush, A.I.; Li, Q.; Fowler, C.J.; Masters, C.L.; Martins, R.N.; Ganio, K.; Lothian, A.; Mukherjee, S.; et al. Selenium Levels in Serum, Red Blood Cells, and Cerebrospinal Fluid of Alzheimer’s Disease Patients: A Report from the Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL). J. Alzheimer’s Dis. 2017, 57, 183–193. [Google Scholar]
- Vinceti, M.; Solovyev, N.; Mandrioli, J.; Crespi, C.M.; Bonvicini, F.; Arcolin, E.; Georgoulopoulou, E.; Michalke, B. Cerebrospinal fluid of newly diagnosed amyotrophic lateral sclerosis patients exhibits abnormal levels of selenium species including elevated selenite. Neurotoxicology 2013, 38, 25–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinceti, M.; Chiari, A.; Eichmüller, M.; Rothman, K.J.; Filippini, T.; Malagoli, C.; Weuve, J.; Tondelli, M.; Zamboni, G.; Nichelli, P.F. A selenium species in cerebrospinal fluid predicts conversion to Alzheimer’s dementia in persons with mild cognitive impairment. Alzheimer’s Res. Ther. 2017, 9, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, K.; Luo, X.; Xu, K.; Murthy, M.V. Role of oxidative stress in neurodegeneration: Recent developments in assay methods for oxidative stress and nutraceutical antioxidants. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2004, 28, 771–799. [Google Scholar] [CrossRef]
- de la Monte, S.M.; Tong, M.; Lester-Coll, N.; Plater, M., Jr.; Wands, J.R. Therapeutic rescue of neurodegeneration in experimental type 3 diabetes: Relevance to Alzheimer’s disease. J. Alzheimer’s Dis. 2006, 10, 89–109. [Google Scholar] [CrossRef]
- Swerdlow, R.H.; Burns, J.M.; Khan, S.M. The Alzheimer’s disease mitochondrial cascade hypothesis: Progress and perspectives. Biochim. Et Biophys. Acta (BBA)-Mol. Basis Dis. 2014, 1842, 1219–1231. [Google Scholar] [CrossRef] [Green Version]
- Solovyev, N. Selenoprotein P and its potential role in Alzheimer’s disease. Hormones 2020, 19, 73–79. [Google Scholar] [CrossRef]
- Zhang, S.; Rocourt, C.; Cheng, W. Selenoproteins and the aging brain. Mech. Ageing Dev. 2010, 131, 253–260. [Google Scholar] [CrossRef]
- Adwas, A.A.; Elsayed, A.; Azab, A.E.; Quwaydir, F.A. Oxidative stress and antioxidant mechanisms in human body. J. Appl. Biotechnol. Bioeng. 2019, 6, 43–47. [Google Scholar]
- Shi, Z.; Li, M.; Wang, Y.; Liu, J.; El-Obeid, T. High iron intake is associated with poor cognition among Chinese old adults and varied by weight status—A 15-y longitudinal study in 4852 adults. Am. J. Clin. Nutr. 2019, 109, 109–116. [Google Scholar] [CrossRef]
- Shi, Z.; El-Obeid, T.; Li, M.; Xu, X.; Liu, J. Iron-related dietary pattern increases the risk of poor cognition. Nutr. J. 2019, 18, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Logroscino, G.; Gao, X.; Chen, H.; Wing, A.; Ascherio, A. Dietary iron intake and risk of Parkinson’s disease. Am. J. Epidemiol. 2008, 168, 1381–1388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powers, K.M.; Smith-Weller, T.; Franklin, G.M.; Longstreth, W.J.; Swanson, P.D.; Checkoway, H. Parkinson’s disease risks associated with dietary iron, manganese, and other nutrient intakes. Neurology 2003, 60, 1761–1766. [Google Scholar] [CrossRef] [PubMed]
- Schröder, N.; Figueiredo, L.S.; de Lima, M.N. Role of brain iron accumulation in cognitive dysfunction: Evidence from animal models and human studies. J. Alzheimers Dis. 2013, 34, 797–812. [Google Scholar] [CrossRef]
- Ward, R.J.; Zucca, F.A.; Duyn, J.H.; Crichton, R.R.; Zecca, L. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol. 2014, 13, 1045–1060. [Google Scholar] [CrossRef] [Green Version]
- Lavado, L.K.; Zhang, M.H.; Patel, K.; Khan, S.; Patel, U.K. Biometals as Potential Predictors of the Neurodegenerative Decline in Alzheimer’s Disease. Cureus 2019, 11, e5573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.T.; Ali, G.C.; Guerchet, M.; Prina, A.M.; Chan, K.Y.; Prince, M.; Brayne, C. Prevalence of dementia in mainland China, Hong Kong and Taiwan: An updated systematic review and meta-analysis. Int. J. Epidemiol. 2018, 47, 709–719. [Google Scholar] [CrossRef] [Green Version]
- Song, F.; Cho, M.S. Geography of Food Consumption Patterns between South and North China. Foods 2017, 6, 34. [Google Scholar] [CrossRef] [Green Version]
- Burk, R.F. Selenium, an antioxidant nutrient. Nutr. Clin. Care 2002, 5, 75–79. [Google Scholar] [CrossRef]
- Mayne, S.T. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids; National Academies Press (US): Washington, DC, USA, 2000. [Google Scholar]
- Cronk, B.B.; Johnson, D.K.; Burns, J.M.; Initiative, A.S.D.N. Body mass index and cognitive decline in mild cognitive impairment. Alzheimer Dis. Assoc. Disord. 2010, 24, 126. [Google Scholar] [CrossRef] [Green Version]
- Besser, L.M.; Gill, D.P.; Monsell, S.E.; Brenowitz, W.; Meranus, D.; Kukull, W.; Gustafson, D.R. Body mass index, weight change, and clinical progression in mild cognitive impairment and Alzheimer’s disease. Alzheimer Dis. Assoc. Disord. 2014, 28, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qizilbash, N.; Gregson, J.; Johnson, M.E.; Pearce, N.; Douglas, I.; Wing, K.; Evans, S.J.; Pocock, S.J. BMI and risk of dementia in two million people over two decades: A retrospective cohort study. Lancet Diabetes Endocrinol. 2015, 3, 431–436. [Google Scholar] [PubMed]
Q1 | Q2 | Q3 | Q4 | p-Value | |
---|---|---|---|---|---|
n = 1189 | n = 1095 | n = 1145 | n = 1232 | ||
Age (years) | 65.9 (8.6) | 63.7 (8.0) | 62.1 (7.0) | 62.0 (6.7) | <0.001 |
Sex | <0.001 | ||||
Men | 424 (35.7%) | 456 (41.6%) | 594 (51.9%) | 763 (61.9%) | |
Women | 765 (64.3%) | 639 (58.4%) | 551 (48.1%) | 469 (38.1%) | |
Income | <0.001 | ||||
Low | 509 (43.3%) | 355 (32.7%) | 323 (28.3%) | 276 (22.8%) | |
Medium | 362 (30.8%) | 363 (33.4%) | 391 (34.3%) | 280 (23.2%) | |
High | 304 (25.9%) | 369 (33.9%) | 427 (37.4%) | 652 (54.0%) | |
Education | <0.001 | ||||
Low | 870 (85.9%) | 811 (80.9%) | 722 (67.9%) | 645 (57.1%) | |
Medium | 80 (7.9%) | 112 (11.2%) | 206 (19.4%) | 225 (19.9%) | |
High | 63 (6.2%) | 79 (7.9%) | 135 (12.7%) | 260 (23.0%) | |
Urbanization | <0.001 | ||||
Low | 425 (35.7%) | 313 (28.6%) | 264 (23.1%) | 181 (14.7%) | |
Medium | 355 (29.9%) | 326 (29.8%) | 320 (27.9%) | 297 (24.1%) | |
High | 409 (34.4%) | 456 (41.6%) | 561 (49.0%) | 754 (61.2%) | |
Region | <0.001 | ||||
North | 430 (39.9%) | 367 (36.4%) | 461 (45.6%) | 658 (59.3%) | |
South | 647 (60.1%) | 640 (63.6%) | 551 (54.4%) | 451 (40.7%) | |
Smoking | <0.001 | ||||
Non-smoker | 845 (71.5%) | 788 (72.2%) | 749 (65.5%) | 750 (60.9%) | |
Ex-smoker | 45 (3.8%) | 38 (3.5%) | 38 (3.3%) | 49 (4.0%) | |
Current smoker | 292 (24.7%) | 266 (24.4%) | 357 (31.2%) | 433 (35.1%) | |
Survey year | <0.001 | ||||
1997 | 611 (51.4%) | 527 (48.1%) | 486 (42.4%) | 428 (34.7%) | |
2000 | 189 (15.9%) | 183 (16.7%) | 180 (15.7%) | 245 (19.9%) | |
2004 | 271 (22.8%) | 239 (21.8%) | 282 (24.6%) | 314 (25.5%) | |
2006 | 118 (9.9%) | 146 (13.3%) | 197 (17.2%) | 245 (19.9%) | |
Alcohol drinking | 272 (23.4%) | 300 (27.8%) | 388 (34.7%) | 472 (38.8%) | <0.001 |
Physical activity (MET) | 84.8 (100.4) | 96.3 (105.5) | 92.3 (101.2) | 78.9 (89.4) | <0.001 |
BMI (kg/m2) | 22.2 (3.7) | 22.7 (3.6) | 23.3 (3.5) | 23.9 (3.4) | <0.001 |
BMI ≥24 (kg/m2) | 293 (27.4%) | 339 (33.0%) | 426 (39.4%) | 543 (47.2%) | <0.001 |
Energy intake (kcal/day) | 1771.0 (520.8) | 2025.6 (549.9) | 2169.3 (587.5) | 2393.8 (667.0) | <0.001 |
Fat intake (g/day) | 51.2 (28.5) | 62.5 (35.7) | 69.0 (35.2) | 83.2 (38.9) | <0.001 |
Protein intake (g/day) | 47.5 (14.8) | 59.2 (16.1) | 66.7 (18.7) | 80.2 (26.3) | <0.001 |
Carbohydrate intake (g/day) | 277.2 (93.0) | 301.6 (98.2) | 313.3 (107.6) | 321.4 (118.0) | <0.001 |
Iron intake (g/day) | 15.5 (7.0) | 19.0 (8.0) | 20.9 (9.5) | 25.1 (17.0) | <0.001 |
Intake of fruit (g/day) | 13.1 (52.2) | 18.3 (83.8) | 21.6 (70.4) | 38.9 (100.9) | <0.001 |
Intake of fresh vegetables (g/day) | 249.2 (179.9) | 270.3 (162.4) | 281.3 (186.7) | 298.2 (173.4) | <0.001 |
Intake of meat (g/day) | 37.9 (49.5) | 65.0 (67.2) | 81.2 (77.6) | 111.1 (104.5) | <0.001 |
Most recent selenium intake (mg/day) | 21.6 (8.1) | 31.8 (9.4) | 39.6 (12.6) | 62.5 (62.4) | <0.001 |
Cumulative selenium intake (mg/day) | 22.3 (4.9) | 32.5 (2.2) | 40.3 (2.6) | 60.7 (22.9) | <0.001 |
Hypertension | 406 (37.0%) | 332 (31.7%) | 389 (35.6%) | 439 (37.4%) | 0.023 |
Diabetes | 31 (2.7%) | 29 (2.7%) | 32 (2.9%) | 57 (4.7%) | 0.011 |
Stroke | 28 (2.4%) | 20 (0.9%) | 19 (1.7%) | 33 (2.7%) | 0.29 |
Poor memory | 350 (29.7%) | 223 (20.7%) | 210 (18.4%) | 181 (14.8%) | <0.001 |
Memory decline | 574 (49.3%) | 446 (42.4%) | 397 (35.7%) | 362 (30.2%) | <0.001 |
Global cognitive function score <7 | 320 (26.9%) | 215 (19.6%) | 152 (13.3%) | 150 (12.2%) | <0.001 |
Quartiles of Selenium Intake | p-Value | |||||||
---|---|---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | |||||
Global cognitive function | ||||||||
Model 1 | 0.00 | 0.80 | (0.45–1.15) | 1.35 | (0.98–1.73) | 1.80 | (1.41–2.20) | 0.000 |
Model 2 | 0.00 | 0.32 | (−0.06–0.69) | 0.44 | (0.05–0.84) | 0.46 | (0.03–0.88) | 0.037 |
Model 3 | 0.00 | 0.32 | (−0.05–0.69) | 0.44 | (0.05–0.83) | 0.45 | (0.02–0.87) | 0.044 |
Model 4 | 0.00 | 0.28 | (−0.10–0.67) | 0.37 | (−0.03–0.78) | 0.42 | (−0.02–0.85) | 0.075 |
Model 5 | 0.00 | 0.27 | (−0.14–0.68) | 0.29 | (−0.15–0.72) | 0.48 | (0.01–0.95) | 0.074 |
Model 6 | 0.00 | 0.29 | (−0.12–0.70) | 0.26 | (−0.18–0.70) | 0.50 | (0.02–0.97) | 0.071 |
Quartiles of Selenium Intake | ||||||||
---|---|---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | p for Trend | ||||
Self-reported poor memory | ||||||||
Model 1 | 1.00 | 0.73 | (0.63–0.85) | 0.65 | (0.55–0.76) | 0.53 | (0.45–0.62) | <0.001 |
Model 2 | 1.00 | 0.80 | (0.68–0.94) | 0.75 | (0.63–0.90) | 0.68 | (0.56–0.83) | <0.001 |
Model 3 | 1.00 | 0.80 | (0.68–0.94) | 0.75 | (0.63–0.89) | 0.67 | (0.55–0.81) | <0.001 |
Model 4 | 1.00 | 0.80 | (0.68–0.95) | 0.78 | (0.65–0.94) | 0.67 | (0.55–0.83) | 0.001 |
Model 5 | 1.00 | 0.81 | (0.68–0.98) | 0.76 | (0.62–0.92) | 0.68 | (0.55–0.85) | 0.001 |
Model 6 | 1.00 | 0.80 | (0.67–0.96) | 0.75 | (0.61–0.91) | 0.68 | (0.54–0.84) | 0.001 |
Self-reported memory decline | ||||||||
Model 1 | 1.00 | 0.80 | (0.67–0.96) | 0.75 | (0.61–0.91) | 0.68 | (0.54–0.84) | <0.001 |
Model 2 | 1.00 | 0.82 | (0.72–0.93) | 0.65 | (0.57–0.74) | 0.51 | (0.45–0.59) | <0.001 |
Model 3 | 1.00 | 0.88 | (0.76–1.02) | 0.74 | (0.64–0.87) | 0.66 | (0.56–0.78) | <0.001 |
Model 4 | 1.00 | 0.88 | (0.76–1.02) | 0.74 | (0.64–0.87) | 0.66 | (0.56–0.78) | <0.001 |
Model 5 | 1.00 | 0.88 | (0.75–1.02) | 0.74 | (0.63–0.87) | 0.65 | (0.54–0.77) | <0.001 |
Model 6 | 1.00 | 0.85 | (0.73–1.01) | 0.71 | (0.60–0.85) | 0.65 | (0.54–0.78) | <0.001 |
Quartiles of Selenium Intake | |||||||||
---|---|---|---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | p Trend | p for Interaction | ||||
All | 1.00 | 0.76 | (0.63–0.92) | 0.70 | (0.57–0.87) | 0.69 | (0.54–0.87) | 0.001 | |
Income | 0.469 | ||||||||
Low | 1.00 | 0.66 | (0.50–0.89) | 0.64 | (0.46–0.90) | 0.48 | (0.32–0.71) | 0.000 | |
Medium | 1.00 | 0.87 | (0.63–1.20) | 0.69 | (0.49–0.99) | 0.77 | (0.51–1.17) | 0.087 | |
High | 1.00 | 0.85 | (0.56–1.30) | 0.82 | (0.52–1.29) | 0.96 | (0.61–1.52) | 0.930 | |
Overweight | 0.012 | ||||||||
No | 1.00 | 0.69 | (0.55–0.86) | 0.60 | (0.47–0.78) | 0.52 | (0.39–0.71) | 0.000 | |
Yes | 1.00 | 1.03 | (0.72–1.47) | 1.02 | (0.71–1.46) | 1.16 | (0.79–1.71) | 0.481 | |
Hypertension | 0.680 | ||||||||
No | 1.00 | 0.80 | (0.64–1.00) | 0.67 | (0.52–0.87) | 0.70 | (0.52–0.93) | 0.003 | |
Yes | 1.00 | 0.68 | (0.49–0.94) | 0.76 | (0.54–1.07) | 0.65 | (0.44–0.96) | 0.049 | |
sex | 0.513 | ||||||||
Men | 1.00 | 0.90 | (0.63–1.28) | 0.69 | (0.48–1.00) | 0.67 | (0.45–0.98) | 0.019 | |
Women | 1.00 | 0.70 | (0.56–0.88) | 0.71 | (0.54–0.92) | 0.72 | (0.53–0.98) | 0.016 | |
Urbanization | 0.439 | ||||||||
Low | 1.00 | 0.66 | (0.47–0.93) | 0.66 | (0.44–0.99) | 0.62 | (0.38–1.03) | 0.022 | |
Medium | 1.00 | 0.91 | (0.64–1.29) | 0.93 | (0.63–1.38) | 0.65 | (0.41–1.02) | 0.108 | |
High | 1.00 | 0.75 | (0.55–1.02) | 0.60 | (0.43–0.85) | 0.74 | (0.52–1.06) | 0.064 | |
Region | 0.005 | ||||||||
North | 1.00 | 0.90 | (0.61–1.33) | 0.79 | (0.53–1.17) | 1.26 | (0.84–1.90) | 0.385 | |
South | 1.00 | 0.70 | (0.55–0.89) | 0.66 | (0.50–0.88) | 0.50 | (0.35–0.72) | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, K.; Xie, C.; Li, Z.; Zeng, H.; Zhao, Y.; Shi, Z. Selenium Intake and its Interaction with Iron Intake Are Associated with Cognitive Functions in Chinese Adults: A Longitudinal Study. Nutrients 2022, 14, 3005. https://doi.org/10.3390/nu14153005
Jiang K, Xie C, Li Z, Zeng H, Zhao Y, Shi Z. Selenium Intake and its Interaction with Iron Intake Are Associated with Cognitive Functions in Chinese Adults: A Longitudinal Study. Nutrients. 2022; 14(15):3005. https://doi.org/10.3390/nu14153005
Chicago/Turabian StyleJiang, Ke, Changxiao Xie, Zhourong Li, Huan Zeng, Yong Zhao, and Zumin Shi. 2022. "Selenium Intake and its Interaction with Iron Intake Are Associated with Cognitive Functions in Chinese Adults: A Longitudinal Study" Nutrients 14, no. 15: 3005. https://doi.org/10.3390/nu14153005