The Potential of Spirulina platensis to Ameliorate the Adverse Effects of Highly Active Antiretroviral Therapy (HAART)
Abstract
:1. Introduction
2. The Roles of HIV and HAART in MetS
3. Spirulina Species
3.1. Role of Spirulina in the Inhibition of Oxidative Stress
3.2. Multitargeted Therapeutic Roles of SP
3.3. Mechanism of Action
4. Common Highly Active Antiretroviral Therapy (HAART) Combinations
5. Mechanism of HAART-Induced Oxidative Stress, Inflammation, and Mitochondrial Dysfunction
6. Combined and Synergistic Therapeutic Actions of HAART and SP
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. HIV/AIDS. Available online: https://www.who.int/news-room/fact-sheets/detail/hiv-aids (accessed on 30 November 2021).
- UNAIDS. Joint United Nations Programme on HIV/AIDS (UNAIDS). Global Report: UNAIDS Report on the Global AIDS Epidemic 2021; Global HIV & AIDS Statistics: Fact Sheet; Joint United Nations Programme on HIV/AIDS: Geneva, Switzerland, 2021. [Google Scholar]
- UNAIDS. Global HIV & AIDS Statistics—2020 Fact. Available online: https://www.unaids.org/en/resources/fact-sheet (accessed on 11 September 2021).
- Release, S. Mid-Year Population Estimates 2021. Statistics South Africa. 2021. Available online: http://www.statssa.gov.za/publications/P0302/P03022021.pdf (accessed on 18 November 2021).
- UNAIDS. HIV and AIDS Estimates. Available online: https://www.unaids.org/en/regionscountries/countries/southafrica (accessed on 11 September 2021).
- National Institute on Drug Abuse (NIDA). What Is HAART? Available online: https://www.drugabuse.gov/publications/research-reports/hivaids/what-haart (accessed on 30 November 2021).
- Mohan, J.; Ghazi, T.; Chuturgoon, A.A. A Critical Review of the Biochemical Mechanisms and Epigenetic Modifications in HIV- and Antiretroviral-Induced Metabolic Syndrome. Int. J. Mol. Sci. 2021, 22, 12020. [Google Scholar] [CrossRef] [PubMed]
- Manda, K.R.; Banerjee, A.; Banks, W.A.; Ercal, N. Highly active antiretroviral therapy drug combination induces oxidative stress and mitochondrial dysfunction in immortalized human blood–brain barrier endothelial cells. Free Radic. Biol. Med. 2011, 50, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Blas-Garcia, A.; Apostolova, N.; Esplugues, J.V. Oxidative stress and mitochondrial impairment after treatment with anti-HIV drugs: Clinical implications. Curr. Pharm. Des. 2011, 17, 4076–4086. [Google Scholar] [CrossRef] [PubMed]
- Ngondi, J.L.; Oben, J.; Forkah, D.M.; Etame, L.H.; Mbanya, D. The effect of different combination therapies on oxidative stress markers in HIV infected patients in Cameroon. AIDS Res. Ther. 2006, 3, 19. [Google Scholar] [CrossRef] [Green Version]
- Masiá, M.; Padilla, S.; Bernal, E.; Almenar, M.V.; Molina, J.; Hernández, I.; Graells, M.L.; Gutiérrez, F. Influence of antiretroviral therapy on oxidative stress and cardiovascular risk: A prospective cross-sectional study in HIV-infected patients. Clin. Ther. 2007, 29, 1448–1455. [Google Scholar] [CrossRef]
- Mondal, D.; Pradhan, L.; Ali, M.; Agrawal, K.C. HAART drugs induce oxidative stress in human endothelial cells and increase endothelial recruitment of mononuclear cells. Cardiovasc. Toxicol. 2004, 4, 287–302. [Google Scholar] [CrossRef]
- Finamore, A.; Palmery, M.; Bensehaila, S.; Peluso, I. Antioxidant, immunomodulating, and microbial-modulating activities of the sustainable and ecofriendly spirulina. Oxidative Med. Cell. Longev. 2017, 2017, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Nyakudya, T.T.; Tshabalala, T.; Dangarembizi, R.; Erlwanger, K.H.; Ndhlala, A.R. The potential therapeutic value of medicinal plants in the management of metabolic disorders. Molecules 2020, 25, 2669. [Google Scholar] [CrossRef]
- Kim, D.S.; Choi, M.H.; Shin, H.J. Extracts of Moringa oleifera leaves from different cultivation regions show both antioxidant and antiobesity activities. J. Food Biochem. 2020, 44, e13282. [Google Scholar] [CrossRef]
- Pérez-Torres, I.; Ruiz-Ramírez, A.; Baños, G.; El-Hafidi, M. Hibiscus sabdariffa Linnaeus (Malvaceae), curcumin and resveratrol as alternative medicinal agents against metabolic syndrome. Cardiovasc. Hematol. Agents Med. Chem. 2013, 11, 25–37. [Google Scholar] [CrossRef]
- Mujawdiya, P.K.; Kapur, S. Mangiferin: A potential natural molecule for management of metabolic syndrome. Int. J. Pharm. Pharm. Sci. 2015, 7, 9–13. [Google Scholar]
- Kränkel, N.; Bahls, M.; van Craenenbroeck, E.M.; Adams, V.; Serratosa, L.; Solberg, E.E.; Hansen, D.; Dörr, M.; Kemps, H. Exercise training to reduce cardiovascular risk in patients with metabolic syndrome and type 2 diabetes mellitus: How does it work? Eur. J. Prev. Cardiol. 2019, 26, 701–708. [Google Scholar] [CrossRef] [PubMed]
- Opie, L.H. Metabolic syndrome. Circulation 2007, 115, e32–e35. [Google Scholar] [CrossRef] [PubMed]
- Marrone, G.; Guerriero, C.; Palazzetti, D.; Lido, P.; Marolla, A.; Di Daniele, F.; Noce, A. Vegan diet health benefits in metabolic syndrome. Nutrients 2021, 13, 817. [Google Scholar] [CrossRef] [PubMed]
- Bashandy, S.A.; El Awdan, S.A.; Ebaid, H.; Alhazza, I.M. Antioxidant potential of Spirulina platensis mitigates oxidative stress and reprotoxicity induced by sodium arsenite in male rats. Oxidative Med. Cell. Longev. 2016, 2016, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estrada, J.P.; Bescós, P.B.; del Fresno, A.V. Antioxidant activity of different fractions of Spirulina platensis protean extract. Il Farm. 2001, 56, 497–500. [Google Scholar] [CrossRef]
- Iyer Uma, M.; Sophia, A.; Uliyar, V.M. Glycemic and lipemic responses of selected spirulina-supplemented rice-based recipes in normal subjects. Age Years 1999, 22, 1–8. [Google Scholar]
- Serban, M.C.; Sahebkar, A.; Dragan, S.; Stoichescu-Hogea, G.; Ursoniu, S.; Andrica, F.; Banach, M. A systematic review and meta-analysis of the impact of Spirulina supplementation on plasma lipid concentrations. Clin. Nutr. 2016, 35, 842–851. [Google Scholar] [CrossRef]
- Zheng, J.; Inoguchi, T.; Sasaki, S.; Maeda, Y.; McCarty, M.F.; Fujii, M.; Ikeda, N.; Kobayashi, K.; Sonoda, N.; Takayanagi, R. Phycocyanin and phycocyanobilin from Spirulina platensis protect against diabetic nephropathy by inhibiting oxidative stress. Am. J. Physiol. -Regul. Integr. Comp. Physiol. 2013, 304, R110–R120. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Liu, Z. Determination and purification of beta-carotene in Spirulina maximum. Chin. J. Chromatogr. 2001, 19, 85–87. [Google Scholar]
- Miranda, M.S.; Cintra, R.G.; Barros, S.; Mancini-Filho, J. Antioxidant activity of the microalga Spirulina maxima. Braz. J. Med. Biol. Res. 1998, 31, 1075–1079. [Google Scholar] [CrossRef] [PubMed]
- Riss, J.; Décordé, K.; Sutra, T.; Delage, M.; Baccou, J.C.; Jouy, N.; Brune, J.P.; Oréal, H.; Cristol, J.P.; Rouanet, J.M. Phycobiliprotein C-phycocyanin from Spirulina platensis is powerfully responsible for reducing oxidative stress and NADPH oxidase expression induced by an atherogenic diet in hamsters. J. Agric. Food Chem. 2007, 55, 7962–7967. [Google Scholar] [CrossRef] [PubMed]
- Abdelkhalek, N.K.; Ghazy, E.W.; Abdel-Daim, M.M. Pharmacodynamic interaction of Spirulina platensis and deltamethrin in freshwater fish Nile tilapia, Oreochromis niloticus: Impact on lipid peroxidation and oxidative stress. Environ. Sci. Pollut. Res. 2015, 22, 3023–3031. [Google Scholar] [CrossRef] [PubMed]
- Nawrocka, D.; Kornicka, K.; Śmieszek, A.; Marycz, K. Spirulina platensis improves mitochondrial function impaired by elevated oxidative stress in adipose-derived mesenchymal stromal cells (ASCs) and intestinal epithelial cells (IECs), and enhances insulin sensitivity in equine metabolic syndrome (EMS) horses. Mar. Drugs 2017, 15, 237. [Google Scholar] [CrossRef] [Green Version]
- Jadaun, P.; Yadav, D.; Bisen, P.S. Spirulina platensis prevents high glucose-induced oxidative stress mitochondrial damage mediated apoptosis in cardiomyoblasts. Cytotechnology 2018, 70, 523–536. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.Y.; Hou, Y.J.; Fu, X.Y.; Fu, X.T.; Ma, J.K.; Yang, M.F.; Sun, B.L.; Fan, C.D.; Oh, J. Selenium-containing protein from selenium-enriched spirulina platensis attenuates cisplatin-induced apoptosis in MC3T3-E1 Mouse preosteoblast by inhibiting mitochondrial dysfunction and ROS-Mediated oxidative damage. Front. Physiol. 2019, 9, 1907. [Google Scholar] [CrossRef]
- Oriquat, G.A.; Ali, M.A.; Mahmoud, S.A.; Eid, R.M.; Hassan, R.; Kamel, M.A. Improving hepatic mitochondrial biogenesis as a postulated mechanism for the antidiabetic effect of Spirulina platensis in comparison with metformin. Appl. Physiol. Nutr. Metab. 2019, 44, 357–364. [Google Scholar] [CrossRef]
- Izadi, M.; Fazilati, M. Extraction and purification of phycocyanin from spirulina platensis and evaluating its antioxidant and anti-inflammatory activity. Asian J. Green Chem. 2018, 2, 364–379. [Google Scholar]
- Pelizer, L.H.; Danesi, E.D.G.; de O Rangel, C.; Sassano, C.E.; Carvalho, J.C.M.; Sato, S.; Moraes, I.O. Influence of inoculum age and concentration in Spirulina platensis cultivation. J. Food Eng. 2003, 56, 371–375. [Google Scholar] [CrossRef]
- Pina-Pérez, M.C.; Brück, W.M.; Brück, T.; Beyrer, M. Microalgae as healthy ingredients for functional foods. In The Role of Alternative and Innovative Food Ingredients and Products in Consumer Wellness; Elsevier: Amsterdam, The Netherlands, 2019; pp. 103–137. [Google Scholar]
- Uddin, A.J.; Mahbuba, S.; Rahul, S.; Ifaz, M.; Ahmad, H. Super food Spirulina (Spirulina platensis): Prospect and scopes in Bangladesh. Int. J. Bus. Soc. Sci. Res. 2018, 6, 51–55. [Google Scholar]
- Li Vecchi, V.; Maggi, P.; Rizzo, M.; Montalto, G. The metabolic syndrome and HIV infection. Curr. Pharm. Des. 2014, 20, 4975–5003. [Google Scholar] [CrossRef] [PubMed]
- Aounallah, M.; Dagenais-Lussier, X.; El-Far, M.; Mehraj, V.; Jenabian, M.A.; Routy, J.P.; van Grevenynghe, J. Current topics in HIV pathogenesis, part 2: Inflammation drives a Warburg-like effect on the metabolism of HIV-infected subjects. Cytokine Growth Factor Rev. 2016, 28, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Palios, J.; Kadoglou, N.P.; Lampropoulos, S. The pathophysiology of HIV-/HAART-related metabolic syndrome leading to cardiovascular disorders: The emerging role of adipokines. Exp. Diabetes Res. 2011, 2012, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbaro, G.; Iacobellis, G. Metabolic syndrome associated with HIV and highly active antiretroviral therapy. Curr. Diabetes Rep. 2009, 9, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Rogalska-Płońska, M.; Grzeszczuk, A.; Rogalski, P.; Łucejko, M.; Flisiak, R. Metabolic syndrome in HIV infected adults in Poland. Kardiol. Pol. Pol. Heart J. 2018, 76, 548–553. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, K.A.; Peer, N.; Mills, E.J.; Kengne, A.P. A meta-analysis of the metabolic syndrome prevalence in the global HIV-infected population. PLoS ONE 2016, 11, e0150970. [Google Scholar] [CrossRef] [Green Version]
- Ataro, Z.; Ashenafi, W. Metabolic syndrome and associated factors among adult HIV positive people on antiretroviral therapy in Jugal hospital, Harar, Eastern Ethiopia. East Afr. J. Health Biomed. Sci. 2020, 4, 13–24. [Google Scholar]
- Aiuti, F.; Mezzaroma, I. Failure to reconstitute CD4+ T-cells despite suppression of HIV replication under HAART. AIDS Rev. 2006, 8, 88–97. [Google Scholar]
- Baker, R.G.; Hayden, M.S.; Ghosh, S. NF-κB, inflammation, and metabolic disease. Cell Metab. 2011, 13, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Nasi, M.; De Biasi, S.; Gibellini, L.; Bianchini, E.; Pecorini, S.; Bacca, V.; Guaraldi, G.; Mussini, C.; Pinti, M.; Cossarizza, A. Ageing and inflammation in patients with HIV infection. Clin. Exp. Immunol. 2017, 187, 44–52. [Google Scholar] [CrossRef] [Green Version]
- Lucas, G.M.; Ross, M.J.; Stock, P.G.; Shlipak, M.G.; Wyatt, C.M.; Gupta, S.K.; Atta, M.G.; Wools-Kaloustian, K.K.; Pham, P.A.; Bruggeman, L.A.; et al. Clinical practice guideline for the management of chronic kidney disease in patients infected with HIV: 2014 update by the HIV Medicine Association of the Infectious Diseases Society of America. Clin. Infect. Dis. 2014, 59, e96–e138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, S. Molecular systematics of oxygenic photosynthetic bacteria. Orig. Algae Plast. 1997, 11, 13–52. [Google Scholar]
- Whitton, B.A. Diversity, ecology, and taxonomy of the cyanobacteria. In Photosynthetic Prokaryotes; Springer: Berlin/Heidelberg, Germany, 1992; pp. 1–51. [Google Scholar]
- Vonshak, A. Spirulina Platensis Arthrospira: Physiology, Cell-Biology and Biotechnology; CRC Press: Boca Raton, FL, USA, 1997. [Google Scholar]
- Gershwin, M.E.; Belay, A. Spirulina in Human Nutrition and Health; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Khan, Z.; Bhadouria, P.; Bisen, P. Nutritional and therapeutic potential of Spirulina. Curr. Pharm. Biotechnol. 2005, 6, 373–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karkos, P.D.; Leong, S.C.; Karkos, C.D.; Sivaji, N.; Assimakopoulos, D.A. Spirulina in clinical practice: Evidence-based human applications. Evid.-Based Complementary Altern. Med. 2011, 2011, 1–3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciferri, O. Spirulina, the edible microorganism. Microbiol. Rev. 1983, 47, 551. [Google Scholar] [CrossRef]
- Kamata, K.; Piao, Z.; Suzuki, S.; Fujimori, T.; Tajiri, W.; Nagai, K.; Iyoda, T.; Yamada, A.; Hayakawa, T.; Ishiwara, M.; et al. Spirulina-templated metal microcoils with controlled helical structures for THz electromagnetic responses. Sci. Rep. 2014, 4, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.K.; Saleh, A.M. Spirulina-an overview. Int. J. Pharm. Pharm. Sci. 2012, 4, 9–15. [Google Scholar]
- Henrikson, R. Earth Food Spirulina; Ronore Enterprises, Inc.: Laguna Beach, CA, USA, 1989; p. 187. [Google Scholar]
- Ferruzzi, M.G.; Blakeslee, J. Digestion, absorption, and cancer preventative activity of dietary chlorophyll derivatives. Nutr. Res. 2007, 27, 1–12. [Google Scholar] [CrossRef]
- Hosikian, A.; Lim, S.; Halim, R.; Danquah, M.K. Chlorophyll extraction from microalgae: A review on the process engineering aspects. Int. J. Chem. Eng. 2010, 2010, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Hoseini, S.M.; Khosravi-Darani, K.; Mozafari, M.R. Nutritional and medical applications of spirulina microalgae. Mini Rev. Med. Chem. 2013, 13, 1231–1237. [Google Scholar] [CrossRef]
- Asghari, A.; Fazilati, M.; Latifi, A.M.; Salavati, H.; Choopani, A. A review on antioxidant properties of Spirulina. J. Appl. Biotechnol. Rep. 2016, 3, 345–351. [Google Scholar]
- Wu, Q.; Liu, L.; Miron, A.; Klímová, B.; Wan, D.; Kuča, K. The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: An overview. Arch. Toxicol. 2016, 90, 1817–1840. [Google Scholar] [CrossRef] [PubMed]
- Deng, R.; Chow, T.J. Hypolipidemic, antioxidant, and antiinflammatory activities of microalgae Spirulina. Cardiovasc. Ther. 2010, 28, e33–e45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, W.L.; Lim, Y.W.; Radhakrishnan, A.K.; Lim, P.E. Protective effect of aqueous extract from Spirulina platensis against cell death induced by free radicals. BMC Complementary Altern. Med. 2010, 10, 1–8. [Google Scholar] [CrossRef] [Green Version]
- McCarty, M.F. ‘‘Iatrogenic Gilbert syndrome’’–A strategy for reducing vascular and cancer risk by increasing plasma unconjugated bilirubin. Med. Hypotheses 2007, 69, 974–994. [Google Scholar] [CrossRef]
- Balachandran, P.; Pugh, N.D.; Ma, G.; Pasco, D.S. Toll-like receptor 2-dependent activation of monocytes by Spirulina polysaccharide and its immune enhancing action in mice. Int. Immunopharmacol. 2006, 6, 1808–1814. [Google Scholar] [CrossRef]
- Mao, T.; Water, J.V.d.; Gershwin, M.E. Effects of a Spirulina-based dietary supplement on cytokine production from allergic rhinitis patients. J. Med. Food 2005, 8, 27–30. [Google Scholar] [CrossRef] [Green Version]
- Chamorro, G.; Pérez-Albiter, M.; Serrano-García, N.; Mares-Sámano, J.J.; Rojas, P. Spirulina maxima pretreatment partially protects against 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine neurotoxicity. Nutr. Neurosci. 2006, 9, 207–212. [Google Scholar] [CrossRef]
- Hernández-Corona, A.; Nieves, I.; Meckes, M.; Chamorro, G.; Barron, B.L. Antiviral activity of Spirulina maxima against herpes simplex virus type 2. Antivir. Res. 2002, 56, 279–285. [Google Scholar] [CrossRef]
- Luescher-Mattli, M. Algae, a possible source for new drugs in the treatment of HIV and other viral diseases. Curr. Med. Chem. -Anti-Infect. Agents 2003, 2, 219–225. [Google Scholar] [CrossRef]
- Hayashi, T.; Hayashi, K.; Maeda, M.; Kojima, I. Calcium spirulan, an inhibitor of enveloped virus replication, from a blue-green alga Spirulina platensis. J. Nat. Prod. 1996, 59, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Ayehunie, S.; Belay, A.; Baba, T.W.; Ruprecht, R.M. Inhibition of HIV-1 replication by an aqueous extract of Spirulina platensis (Arthrospira platensis). J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 1998, 18, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, M.; Jetley, U.K.; Khan, M.A.; Zutshi, S.; Fatma, T. Effect of heavy metal stress on proline, malondialdehyde, and superoxide dismutase activity in the cyanobacterium Spirulina platensis-S5. Ecotoxicol. Environ. Saf. 2007, 66, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Roberts, S.J.; Datla, S.R.; Dusting, G.J. NO modulates NADPH oxidase function via heme oxygenase-1 in human endothelial cells. Hypertension 2006, 48, 950–957. [Google Scholar] [CrossRef] [Green Version]
- Bhat, V.B.; Madyastha, K. C-phycocyanin: A potent peroxyl radical scavenger in vivo and in vitro. Biochem. Biophys. Res. Commun. 2000, 275, 20–25. [Google Scholar] [CrossRef]
- Ashaolu, T.J.; Samborska, K.; Lee, C.C.; Tomas, M.; Capanoglu, E.; Tarhan, Ö.; Taze, B.; Jafari, S.M. Phycocyanin, a super functional ingredient from algae; properties, purification characterization, and applications. Int. J. Biol. Macromol. 2021, 193, 2320–2331. [Google Scholar] [CrossRef]
- Grover, P.; Bhatnagar, A.; Kumari, N.; Bhatt, A.N.; Nishad, D.K.; Purkayastha, J. C-Phycocyanin-a novel protein from Spirulina platensis-In vivo toxicity, antioxidant and immunomodulatory studies. Saudi J. Biol. Sci. 2021, 28, 1853–1859. [Google Scholar] [CrossRef]
- Lima, F.A.V.; Joventino, I.P.; Joventino, F.P.; de Almeida, A.C.; Neves, K.R.T.; do Carmo, M.R.; Leal, L.K.A.M.; de Andrade, G.M.; de Barros Viana, G.S. Neuroprotective activities of Spirulina platensis in the 6-OHDA model of Parkinson’s disease are related to its anti-inflammatory effects. Neurochem. Res. 2017, 42, 3390–3400. [Google Scholar] [CrossRef]
- Kamble, S.P.; Gaikar, R.B.; Padalia, R.B.; Shinde, K.D. Extraction and purification of C-phycocyanin from dry Spirulina powder and evaluating its antioxidant, anticoagulation and prevention of DNA damage activity. J. Appl. Pharm. Sci. 2013, 3, 149. [Google Scholar]
- Joventino, I.P.; Alves, H.G.; Neves, L.C.; Pinheiro-Joventino, F.; Leal, L.K.A.; Neves, S.A.; Ferreira, F.V.; Brito, G.A.C.; Viana, G.B. The microalga Spirulina platensis presents anti-inflammatory action as well as hypoglycemic and hypolipidemic properties in diabetic rats. J. Complementary Integr. Med. 2012, 9, 1–19. [Google Scholar] [CrossRef]
- Anbarasan, V.; Kumar, V.K.; Kumar, P.S.; Venkatachalam, T. In vitro evaluation of antioxidant activity of blue green algae Spirulina platensis. Int. J. Pharm. Sci. Res. 2011, 2, 2616. [Google Scholar]
- Romay, C.; Delgado, R.; Remirez, D.; Gonzalez, R.; Rojas, A. Effects of phycocyanin extract on tumor necrosis factor-α and nitrite levels in serum of mice treated with endotoxin. Arzneimittelforschung 2001, 51, 733–736. [Google Scholar] [CrossRef] [PubMed]
- Remirez, D.; Fernández, V.; Tapia, G.; González, R.; Videla, L.A. Influence of C-phycocyanin on hepatocellular parameters related to liver oxidative stress and Kupffer cell functioning. Inflamm. Res. 2002, 51, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Mishra, S.; Ghosh, P. Antioxidant potential of C-phycocyanin isolated from cyanobacterial species Lyngbya, Phormidium and Spirulina spp. Indian J. Biochem. Biophys. 2006, 43, 25–31. [Google Scholar] [PubMed]
- Cherng, S.C.; Cheng, S.N.; Tarn, A.; Chou, T.C. Anti-inflammatory activity of c-phycocyanin in lipopolysaccharide-stimulated RAW 264.7 macrophages. Life Sci. 2007, 81, 1431–1435. [Google Scholar] [CrossRef] [PubMed]
- Nasirian, F.; Dadkhah, M.; Moradi-Kor, N.; Obeidavi, Z. Effects of Spirulina platensis microalgae on antioxidant and anti-inflammatory factors in diabetic rats. Diabetes Metab. Syndr. Obes. Targets Ther. 2018, 11, 375. [Google Scholar] [CrossRef] [Green Version]
- Jensen, G.S.; Attridge, V.L.; Beaman, J.L.; Guthrie, J.; Ehmann, A.; Benson, K.F. Antioxidant and anti-inflammatory properties of an aqueous cyanophyta extract derived from arthrospira platensis: Contribution to bioactivities by the non-phycocyanin aqueous fraction. J. Med. Food 2015, 18, 535–541. [Google Scholar] [CrossRef] [Green Version]
- Gunes, S.; Tamburaci, S.; Dalay, M.C.; Deliloglu Gurhan, I. In vitro evaluation of Spirulina platensis extract incorporated skin cream with its wound healing and antioxidant activities. Pharm. Biol. 2017, 55, 1824–1832. [Google Scholar] [CrossRef] [Green Version]
- Romay, C.H.; Armesto, J.; Remirez, D.; González, R.; Ledon, N.; Garcia, I. Antioxidant and anti-inflammatory properties of C-phycocyanin from blue-green algae. Inflamm. Res. 1998, 47, 36–41. [Google Scholar] [CrossRef]
- Romay, C.; Ledon, N.; Gonzalez, R. Further studies on anti-inflammatory activity of phycocyanin in some animal models of inflammation. Inflamm. Res. 1998, 47, 334–338. [Google Scholar] [CrossRef]
- Gonzalez, R.; Rodriguez, S.; Romay, C.; González, A.; Armesto, J.; Remirez, D.; Merino, N. Anti-inflammatory activity of phycocyanin extract in acetic acid-induced colitis in rats. Pharmacol. Res. 1999, 39, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Remirez, D.; Ledon, N.; González, R. Role of histamine in the inhibitory effects of phycocyanin in experimental models of allergic inflammatory response. Mediat. Inflamm. 2002, 11, 81–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romay, C.H.; Gonzalez, R.; Ledon, N.; Remirez, D.; Rimbau, V. C-phycocyanin: A biliprotein with antioxidant, anti-inflammatory and neuroprotective effects. Curr. Protein Pept. Sci. 2003, 4, 207–216. [Google Scholar] [CrossRef]
- Khan, M.; Varadharaj, S.; Shobha, J.C.; Naidu, M.U.; Parinandi, N.L.; Kutala, V.K.; Kuppusamy, P. C-phycocyanin ameliorates doxorubicin-induced oxidative stress and apoptosis in adult rat cardiomyocytes. J. Cardiovasc. Pharmacol. 2006, 47, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Shih, C.M.; Cheng, S.N.; Wong, C.S.; Kuo, Y.L.; Chou, T.C. Antiinflammatory and antihyperalgesic activity of C-phycocyanin. Anesth. Analg. 2009, 108, 1303–1310. [Google Scholar] [CrossRef]
- Manconia, M.; Pendás, J.; Ledón, N.; Moreira, T.; Sinico, C.; Saso, L.; Fadda, A.M. Phycocyanin liposomes for topical anti-inflammatory activity: In-vitro in-vivo studies. J. Pharm. Pharmacol. 2009, 61, 423–430. [Google Scholar] [CrossRef]
- Khan, M.; Varadharaj, S.; Ganesan, L.P.; Shobha, J.C.; Naidu, M.U.; Parinandi, N.L.; Tridandapani, S.; Kutala, V.K.; Kuppusamy, P. C-phycocyanin protects against ischemia-reperfusion injury of heart through involvement of p38 MAPK and ERK signaling. Am. J. Physiol. -Heart Circ. Physiol. 2006, 290, H2136–H2145. [Google Scholar] [CrossRef] [Green Version]
- Li, X.L.; Xu, G.; Chen, T.; Wong, Y.S.; Zhao, H.L.; Fan, R.R.; Gu, X.M.; Tong, P.C.; Chan, J.C. Phycocyanin protects INS-1E pancreatic beta cells against human islet amyloid polypeptide-induced apoptosis through attenuating oxidative stress and modulating JNK and p38 mitogen-activated protein kinase pathways. Int. J. Biochem. Cell Biol. 2009, 41, 1526–1535. [Google Scholar] [CrossRef]
- Sadek, K.M.; Lebda, M.A.; Nasr, S.M.; Shoukry, M. Spirulina platensis prevents hyperglycemia in rats by modulating gluconeogenesis and apoptosis via modification of oxidative stress and MAPK-pathways. Biomed. Pharmacother. 2017, 92, 1085–1094. [Google Scholar] [CrossRef]
- Schafer, F.Q.; Wang, H.P.; Kelley, E.E.; Cueno, K.L.; Buettner, S.M.A.G. Comparing β-carotene, vitamin E and nitric oxide as membrane antioxidants. Biol. Chem. 2002, 383, 671–681. [Google Scholar] [CrossRef]
- Bai, S.K.; Lee, S.J.; Na, H.J.; Ha, K.S.; Han, J.A.; Lee, H.; Kwon, Y.G.; Chung, C.K.; Kim, Y.M. β-Carotene inhibits inflammatory gene expression in lipopolysaccharide-stimulated macrophages by suppressing redox-based NF-κB activation. Exp. Mol. Med. 2005, 37, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Katsuura, S.; Imamura, T.; Bando, N.; Yamanishi, R. β-Carotene and β-cryptoxanthin but not lutein evoke redox and immune changes in RAW264 murine macrophages. Mol. Nutr. Food Res. 2009, 53, 1396–1405. [Google Scholar] [CrossRef] [PubMed]
- Strasky, Z.; Zemankova, L.; Nemeckova, I.; Rathouska, J.; Wong, R.J.; Muchova, L.; Subhanova, I.; Vanikova, J.; Vanova, K.; Vitek, L.; et al. Spirulina platensis and phycocyanobilin activate atheroprotective heme oxygenase-1: A possible implication for atherogenesis. Food Funct. 2013, 4, 1586–1594. [Google Scholar] [CrossRef] [PubMed]
- Jensen, G.S.; Drapeau, C.; Lenninger, M.; Benson, K.F. Clinical safety of a high dose of Phycocyanin-enriched aqueous extract from Arthrospira (Spirulina) platensis: Results from a randomized, double-blind, placebo-controlled study with a focus on anticoagulant activity and platelet activation. J. Med. Food 2016, 19, 645–653. [Google Scholar] [CrossRef] [Green Version]
- Piovan, A.; Battaglia, J.; Filippini, R.; Dalla Costa, V.; Facci, L.; Argentini, C.; Pagetta, A.; Giusti, P.; Zusso, M. Pre-and Early Post-treatment With Arthrospira platensis (Spirulina) Extract Impedes Lipopolysaccharide-triggered Neuroinflammation in Microglia. Front. Pharmacol. 2021, 12, 1–10. [Google Scholar] [CrossRef]
- Eggleton, J.S.; Nagalli, S. Highly Active Antiretroviral Therapy (HAART); StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Chang, J.L.; Tsai, A.C.; Musinguzi, N.; Haberer, J.E.; Boum, Y.; Muzoora, C.; Bwana, M.; Martin, J.N.; Hunt, P.W.; Bangsberg, D.R.; et al. Depression and suicidal ideation among HIV-infected adults receiving efavirenz versus nevirapine in Uganda: A prospective cohort study. Ann. Intern. Med. 2018, 169, 146–155. [Google Scholar] [CrossRef]
- Lyseng-Williamson, K.A.; Reynolds, N.A.; Plosker, G.L. Tenofovir disoproxil fumarate. Drugs 2005, 65, 413–432. [Google Scholar] [CrossRef]
- Chen, Y.F.; Stampley, J.E.; Irving, B.A.; Dugas, T.R. Chronic nucleoside reverse transcriptase inhibitors disrupt mitochondrial homeostasis and promote premature endothelial senescence. Toxicol. Sci. 2019, 172, 445–456. [Google Scholar] [CrossRef]
- Martin, A.M.; Nolan, D.; Gaudieri, S.; Almeida, C.A.; Nolan, R.; James, I.; Carvalho, F.; Phillips, E.; Christiansen, F.T.; Purcell, A.W.; et al. Predisposition to abacavir hypersensitivity conferred by HLA-B * 5701 and a haplotypic Hsp70-Hom variant. Proc. Natl. Acad. Sci. USA 2004, 101, 4180–4185. [Google Scholar] [CrossRef] [Green Version]
- Kakuda, T. Pharmacology of nucleoside and nucleotide reverse transcriptase inhibitor-induced mitochondrial toxicity. Clin. Ther. 2000, 22, 685–708. [Google Scholar] [CrossRef]
- Günthard, H.F.; Saag, M.S.; Benson, C.A.; Del Rio, C.; Eron, J.J.; Gallant, J.E.; Hoy, J.F.; Mugavero, M.J.; Sax, P.E.; Thompson, M.A.; et al. Antiretroviral drugs for treatment and prevention of HIV infection in adults: 2018 recommendations of the International Antiviral Society–USA Panel. JAMA 2018, 320, 379–396. [Google Scholar]
- Yeni, P. Update on HAART in HIV. J. Hepatol. 2006, 44, S100–S103. [Google Scholar] [CrossRef] [PubMed]
- Eastone, J.A.; Decker, C.F. New-onset diabetes mellitus associated with use of protease inhibitor. Ann. Intern. Med. 1997, 127, 948. [Google Scholar] [CrossRef] [PubMed]
- Soliman, E.Z.; Lundgren, J.; Roediger, M.P.; Duprez, D.A.; Temesgen, Z.; Bickel, M.; Shlay, J.C.; Somboonwit, C.; Reiss, P.; Stein, J.; et al. Boosted protease inhibitors and the electrocardiographic measures of QT and PR durations. AIDS 2011, 25, 367–377. [Google Scholar] [CrossRef] [Green Version]
- Landovitz, R.J.; Ribaudo, H.J.; Ofotokun, I.; Na, L.H.; Godfrey, C.; Kuritzkes, D.R.; Sagar, M.; Brown, T.T.; Cohn, S.E.; McComsey, G.A.; et al. Efficacy and tolerability of 3 nonnucleoside reverse transcriptase inhibitor–sparing antiretroviral regimens for treatment-naive volunteers infected with HIV-1: A randomized, controlled equivalence trial. Ann. Intern. Med. 2014, 161, 461–471. [Google Scholar]
- Gutiérrez, F.; Fulladosa, X.; Barril, G.; Domingo, P. Renal tubular transporter-mediated interactions of HIV drugs: Implications for patient management. AIDS Rev. 2014, 16, 199–212. [Google Scholar]
- Hoffmann, C.; Welz, T.; Sabranski, M.; Kolb, M.; Wolf, E.; Stellbrink, H.J.; Wyen, C. Higher rates of neuropsychiatric adverse events leading to dolutegravir discontinuation in women and older patients. HIV Med. 2017, 18, 56–63. [Google Scholar] [CrossRef]
- Fettiplace, A.; Stainsby, C.; Winston, A.; Givens, N.; Puccini, S.; Vannappagari, V.; Hsu, R.; Fusco, J.; Quercia, R.; Aboud, M.; et al. Psychiatric Symptoms in Patients Receiving Dolutegravir. JAIDS J. Acquir. Immune Defic. Syndr. 2017, 74, 423–431. [Google Scholar] [CrossRef] [Green Version]
- Zash, R.; Makhema, J.; Shapiro, R.L. Neural-Tube Defects with Dolutegravir Treatment from the Time of Conception. N. Engl. J. Med. 2018, 379, 979–981. [Google Scholar] [CrossRef]
- Schafer, J.J.; E Squires, K. Integrase Inhibitors: A Novel Class of Antiretroviral Agents. Ann. Pharmacother. 2010, 44, 145–156. [Google Scholar] [CrossRef]
- Hazuda, D.J.; Felock, P.; Witmer, M.; Wolfe, A.; Stillmock, K.; Grobler, J.A.; Espeseth, A.; Gabryelski, L.; Schleif, W.; Blau, C.; et al. Inhibitors of Strand Transfer That Prevent Integration and Inhibit HIV-1 Replication in Cells. Science 2000, 287, 646–650. [Google Scholar] [CrossRef] [PubMed]
- Hardy, H.; Skolnik, P.R. Enfuvirtide, a New Fusion Inhibitor for Therapy of Human Immunodeficiency Virus Infection. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2004, 24, 198–211. [Google Scholar] [CrossRef] [PubMed]
- Dorr, P.; Westby, M.; Dobbs, S.; Griffin, P.; Irvine, B.; Macartney, M.; Mori, J.; Rickett, G.; Smith-Burchnell, C.; Napier, C.; et al. Maraviroc (UK-427,857), a Potent, Orally Bioavailable, and Selective Small-Molecule Inhibitor of Chemokine Receptor CCR5 with Broad-Spectrum Anti-Human Immunodeficiency Virus Type 1 Activity. Antimicrob. Agents Chemother. 2005, 49, 4721–4732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miao, M.; De Clercq, E.; Li, G. Clinical significance of chemokine receptor antagonists. Expert Opin. Drug Metab. Toxicol. 2020, 16, 11–30. [Google Scholar] [CrossRef] [PubMed]
- De Luca, A.; Pezzotti, P.; Boucher, C.; Döring, M.; Incardona, F.; Kaiser, R.; Lengauer, T.; Pfeifer, N.; Schülter, E.; Vandamme, A.-M.; et al. Clinical use, efficacy, and durability of maraviroc for antiretroviral therapy in routine care: A European survey. PLoS ONE 2019, 14, e0225381. [Google Scholar] [CrossRef]
- Shafer, R.; Vuitton, D. Highly active antiretroviral therapy (HAART) for the treatment of infection with human immunodeficiency virus type 1. Biomed. Pharmacother. 1999, 53, 73–86. [Google Scholar] [CrossRef]
- Kitahata, M.M.; Koepsell, T.D.; Deyo, R.A.; Maxwell, C.L.; Dodge, W.T.; Wagner, E.H. Physicians’ experience with the acquired immunodeficiency syndrome as a factor in patients’ survival. N. Engl. J. Med. 1996, 334, 701–707. [Google Scholar] [CrossRef]
- Cunningham, W.E.; Tisnado, D.M.; Lui, H.H.; Nakazono, T.T.; Carlisle, D.M. The effect of hospital experience on mortality among patients hospitalized with acquired immunodeficiency syndrome in California. Am. J. Med. 1999, 107, 137–143. [Google Scholar] [CrossRef]
- Rackal, J.M.; Tynan, A.-M.; Handford, C.D.; Rzeznikiewiz, D.; Agha, A.; Glazier, R. Provider training and experience for people living with HIV/AIDS. Cochrane Database Syst. Rev. 2011, 6, CD003938. [Google Scholar] [CrossRef] [Green Version]
- Ford, N.; Migone, C.; Calmy, A.; Kerschberger, B.; Kanters, S.; Nsanzimana, S.; Mills, E.J.; Meintjes, G.; Vitoria, M.; Doherty, M.; et al. Benefits and risks of rapid initiation of antiretroviral therapy. AIDS 2018, 32, 17–23. [Google Scholar] [CrossRef] [Green Version]
- Group, I.S.S. Initiation of antiretroviral therapy in early asymptomatic HIV infection. N. Engl. J. Med. 2015, 373, 795–807. [Google Scholar]
- Thompson, M.A.; Aberg, J.A.; Hoy, J.F.; Telenti, A.; Benson, C.; Cahn, P.; Eron, J.J.; Günthard, H.F.; Hammer, S.M.; Reiss, P.; et al. Antiretroviral treatment of adult HIV infection: 2012 recommendations of the International Antiviral Society–USA panel. Jama 2012, 308, 387–402. [Google Scholar] [CrossRef] [PubMed]
- Sax, P.E.; Tierney, C.; Collier, A.C.; Fischl, M.A.; Mollan, K.; Peeples, L.; Godfrey, C.; Jahed, N.C.; Myers, L.; Katzenstein, D.; et al. Abacavir–lamivudine versus tenofovir–emtricitabine for initial HIV-1 therapy. N. Engl. J. Med. 2009, 361, 2230–2240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Post, F.A.; Moyle, G.J.; Stellbrink, H.J.; Domingo, P.; Podzamczer, D.; Fisher, M.; Norden, A.G.; Cavassini, M.; Rieger, A.; Khuong-Josses, M.A.; et al. Randomized comparison of renal effects, efficacy, and safety with once-daily abacavir/lamivudine versus tenofovir/emtricitabine, administered with efavirenz, in antiretroviral-naive, HIV-1–infected adults: 48-week results from the ASSERT study. JAIDS J. Acquir. Immune Defic. Syndr. 2010, 55, 49–57. [Google Scholar] [CrossRef]
- Glover, M.; Hebert, V.Y.; Nichols, K.; Xue, S.Y.; Thibeaux, T.M.; Zavecz, J.A.; Dugas, T.R. Overexpression of mitochondrial antioxidant manganese superoxide dismutase (MnSOD) provides protection against AZT- or 3TC-induced endothelial dysfunction. Antivir. Res. 2014, 111, 136–142. [Google Scholar] [CrossRef] [Green Version]
- Brown, L.; Jin, J.; Ferrell, D.; Sadic, E.; Obregon, D.; Smith, A.J.; Tan, J.; Giunta, B. Efavirenz Promotes β-Secretase Expression and Increased Aβ1-40,42 via Oxidative Stress and Reduced Microglial Phagocytosis: Implications for HIV Associated Neurocognitive Disorders (HAND). PLoS ONE 2014, 9, e95500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canale, D.; De Bragança, A.C.; Gonçalves, J.G.; Shimizu, M.H.M.; Sanches, T.R.; Andrade, L.; Volpini, R.A.; Seguro, A.C. Vitamin D Deficiency Aggravates Nephrotoxicity, Hypertension and Dyslipidemia Caused by Tenofovir: Role of Oxidative Stress and Renin-Angiotensin System. PLoS ONE 2014, 9, e103055. [Google Scholar] [CrossRef]
- Venhoff, N.; Setzer, B.; Melkaoui, K.; A Walker, U. Mitochondrial Toxicity of Tenofovir, Emtricitabine and Abacavir Alone and in Combination with Additional Nucleoside Reverse Transcriptase Inhibitors. Antivir. Ther. 2007, 12, 1075–1086. [Google Scholar] [CrossRef]
- Bonomini, F.; Rodella, L.F.; Rezzani, R. Metabolic Syndrome, Aging and Involvement of Oxidative Stress. Aging Dis. 2015, 6, 109–120. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, W.; Paes, P.; dos Santos, A.; Machado, D.; Navarro, A.; Frenandes, A. Impact of progressive resistance training in Brazilian HIV patients with lipodystrophy. J. AIDS Clin. Res. 2013, 4, 2. [Google Scholar] [CrossRef]
- Sharma, B. Anti-HIV-1 drug toxicity and management strategies. Neurobehav. HIV Med. 2011, 3, 27–40. [Google Scholar] [CrossRef] [Green Version]
- Csányi, G. Oxidative Stress in Cardiovascular Disease; Multidisciplinary Digital Publishing Institute: Basel, Switzerland, 2014. [Google Scholar]
- McColl, D.J.; Margot, N.; Chen, S.-S.; Harris, J.; Borroto-Esoda, K.; Miller, M.D. Reduced Emergence of the M184V/I Resistance Mutation When Antiretroviral-Naïve Subjects Use Emtricitabine Versus Lamivudine in Regimens Composed of Two NRTIs Plus the NNRTI Efavirenz. HIV Clin. Trials 2011, 12, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.Y.; Jonas, A.; DeKlerk, M.; Shiningavamwe, A.; Desta, T.; Badi, A.; Morris, L.; Hunt, G.M.; Ledwaba, J.; Sheehan, H.B.; et al. Population-Based Surveillance of HIV Drug Resistance Emerging on Treatment and Associated Factors at Sentinel Antiretroviral Therapy Sites in Namibia. JAIDS J. Acquir. Immune Defic. Syndr. 2015, 68, 463–471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gulick, R.M.; Ribaudo, H.J.; Shikuma, C.M.; Lustgarten, S.; Squires, K.E.; Meyer, W.A., III; Acosta, E.P.; Schackman, B.R.; Pilcher, C.D.; Murphy, R.L.; et al. Triple-nucleoside regimens versus efavirenz-containing regimens for the initial treatment of HIV-1 infection. N. Engl. J. Med. 2004, 350, 1850–1861. [Google Scholar] [CrossRef] [PubMed]
- Robbins, G.K.; De Gruttola, V.; Shafer, R.W.; Smeaton, L.M.; Snyder, S.W.; Pettinelli, C.; Dubé, M.P.; Fischl, M.A.; Pollard, R.B.; Delapenha, R.; et al. Comparison of sequential three-drug regimens as initial therapy for HIV-1 infection. N. Engl. J. Med. 2003, 349, 2293–2303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rakhmanina, N.Y.; la Porte, C.J. Therapeutic drug monitoring of antiretroviral drugs in the management of human immunodeficiency virus infection. Ther. Drug Monit. Newer Drugs Biomark. 2012, 373, 374–389. [Google Scholar]
- EACS. European AIDS Clinical Society Guidelines. Amsterdam, The Netherlands, Version 6. 2011. Available online: https://www.eacsociety.org/media/2011_eacsguidelines-v6.0-english_oct.pdf (accessed on 6 December 2021).
- Gilks, C.F.; Crowley, S.; Ekpini, R.; Gove, S.; Perriens, J.; Souteyrand, Y.; Sutherland, D.; Vitoria, M.; Guerma, T.; De Cock, K. The WHO public-health approach to antiretroviral treatment against HIV in resource-limited settings. Lancet 2006, 368, 505–510. [Google Scholar] [CrossRef]
- Kahana, S.Y.; Rohan, J.; Allison, S.; Frazier, T.W.; Drotar, D. A Meta-Analysis of Adherence to Antiretroviral Therapy and Virologic Responses in HIV-Infected Children, Adolescents, and Young Adults. AIDS Behav. 2012, 17, 41–60. [Google Scholar] [CrossRef]
- Sliwa, K.; Hilfiker-Kleiner, D.; Petrie, M.C.; Mebazaa, A.; Pieske, B.; Buchmann, E.; Regitz-Zagrosek, V.; Schaufelberger, M.; Tavazzi, L.; van Veldhuisen, D.J.; et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of peripartum cardiomyopathy: A position statement from the Heart Failure Association of the European Society of Cardiology Working Group on peripartum cardiomyopathy. Eur. J. Hear. Fail. 2010, 12, 767–778. [Google Scholar] [CrossRef] [Green Version]
- Schinazi, R.F.; Lloyd, R.M.; Nguyen, M.H.; Cannon, D.L.; McMillan, A.; Ilksoy, N.; Chu, C.K.; Liotta, D.C.; Bazmi, H.Z.; Mellors, J.W. Characterization of human immunodeficiency viruses resistant to oxathiolane-cytosine nucleosides. Antimicrob. Agents Chemother. 1993, 37, 875–881. [Google Scholar] [CrossRef] [Green Version]
- Maserati, R.; De Silvestri, A.; Uglietti, A.; Colao, G.; Di Biagio, A.; Bruzzone, B.; Di Pietro, M.; Re, M.C.; Tinelli, C.; Zazzi, M. Emerging mutations at virological failure of HAART combinations containing tenofovir and lamivudine or emtricitabine. AIDS 2010, 24, 1013–1018. [Google Scholar] [CrossRef] [PubMed]
- Schinazi, R.F.; McMillan, A.; Cannon, D.; Mathis, R.; Lloyd, R.M.; Peck, A.; Sommadossi, J.P.; Clair, M.S.; Wilson, J.; A Furman, P. Selective inhibition of human immunodeficiency viruses by racemates and enantiomers of cis-5-fluoro-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]cytosine. Antimicrob. Agents Chemother. 1992, 36, 2423–2431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Margot, N.A.; Enejosa, J.; Cheng, A.K.; Miller, M.D.; McColl, D.J. Development of HIV-1 drug resistance through 144 weeks in antiretroviral-naive subjects on emtricitabine, tenofovir disoproxil fumarate, and efavirenz compared with lamivudine/zidovudine and efavirenz in study GS-01-934. JAIDS J. Acquir. Immune Defic. Syndr. 2009, 52, 209–221. [Google Scholar] [CrossRef] [PubMed]
- Mugwanya, K.K.; John-Stewart, G.; Baeten, J. Safety of oral tenofovir disoproxil fumarate-based HIV pre-exposure prophylaxis use in lactating HIV-uninfected women. Expert Opin. Drug Saf. 2017, 16, 867–871. [Google Scholar] [CrossRef] [PubMed]
- Spinner, C.D.; Boesecke, C.; Zink, A.; Jessen, H.; Stellbrink, H.J.; Rockstroh, J.K.; Esser, S. HIV pre-exposure prophylaxis (PrEP): A review of current knowledge of oral systemic HIV PrEP in humans. Infection 2016, 44, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Fonner, V.A.; Dalglish, S.L.; Kennedy, C.E.; Baggaley, R.; O’Reilly, K.R.; Koechlin, F.M.; Rodolph, M.; Hodges-Mameletzis, I.; Grant, R. Effectiveness and safety of oral HIV preexposure prophylaxis for all populations. AIDS 2016, 30, 1973–1983. [Google Scholar] [CrossRef] [Green Version]
- Borroto-Esoda, K.; E Vela, J.; Myrick, F.; Ray, A.S.; Miller, M.D. In Vitro Evaluation of the Anti-HIV Activity and Metabolic Interactions of Tenofovir and Emtricitabine. Antivir. Ther. 2005, 11, 377–384. [Google Scholar] [CrossRef]
- De Ruiter, A.; Taylor, G.P.; Clayden, P.; Dhar, J.; Gandhi, K.; Gilleece, Y.; Harding, K.; Hay, P.; Kennedy, J.; Low-Beer, N.; et al. British HIV Association guidelines for the management of HIV infection in pregnant women 2012 (2014 interim review). HIV Med. 2014, 15, 1–77. [Google Scholar]
- Law, W.P.; Duncombe, C.J.; Mahanontharit, A.; Boyd, M.; Ruxrungtham, K.; Lange, J.M.A.; Phanuphak, P.; Cooper, D.A.; Dore, G.J. Impact of viral hepatitis co-infection on response to antiretroviral therapy and HIV disease progression in the HIV-NAT cohort. AIDS 2004, 18, 1169–1177. [Google Scholar] [CrossRef] [Green Version]
- Zdanowicz, M.M. The Pharmacology of HIV Drug Resistance. Am. J. Pharm. Educ. 2006, 70, 1–8. [Google Scholar] [CrossRef]
- Hare, C.B.; Mellors, J.; Krambrink, A.; Su, Z.; Skiest, D.; Margolis, D.M.; Patel, S.S.; Barnas, D.; Frenkel, L.; Coombs, R.W.; et al. Detection of nonnucleoside reverse-transcriptase inhibitor-resistant HIV-1 after discontinuation of virologically suppressive antiretroviral therapy. Clin. Infect. Dis. 2008, 47, 421–424. [Google Scholar] [CrossRef] [PubMed]
- Carr, A.; Samaras, K.; Chisholm, D.J.; A Cooper, D. Pathogenesis of HIV-1-protease inhibitor-associated peripheral lipodystrophy, hyperlipidaemia, and insulin resistance. Lancet 1998, 351, 1881–1883. [Google Scholar] [CrossRef]
- Del Valle, L.G.; Hernández, R.G.; Ávila, J.P. Oxidative stress associated to disease progression and toxicity during antiretroviral therapy in human immunodeficiency virus infection. J. Virol. Microbiol. 2013, 13, 15. [Google Scholar]
- Awodele, O.; O Olayemi, S.; A Nwite, J.; A Adeyemo, T. Investigation of the levels of oxidative stress parameters in HIV and HIV-TB co-infected patients. J. Infect. Dev. Ctries. 2011, 6, 79–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinti, M.; Nasi, M.; Gibellini, L.; Roat, E.; De Biasi, S.; Bertoncelli, L.; Cossarizza, A. The Role of Mitochondria in HIV Infection and Its Treatment. J. Exp. Clin. Med. 2010, 2, 145–155. [Google Scholar] [CrossRef]
- Mandas, A.; Iorio, E.L.; Congiu, M.G.; Balestrieri, C.; Mereu, A.; Cau, D.; Dessì, S.; Curreli, N. Oxidative Imbalance in HIV-1 Infected Patients Treated with Antiretroviral Therapy. J. Biomed. Biotechnol. 2009, 2009, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Apostolova, N.; Gomez-Sucerquia, L.; Moran, A.; Alvarez, A.; Blas-Garcia, A.; Esplugues, J. Enhanced oxidative stress and increased mitochondrial mass during Efavirenz-induced apoptosis in human hepatic cells. J. Cereb. Blood Flow Metab. 2010, 160, 2069–2084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estrada, V.; Monge, S.; Garre, G.; Sobrino, P.; Masiá, M.; Berenguer, J.; Portilla, J.; Viladés, C.; Martinez, E.; Blanco, J.; et al. Relationship between plasma bilirubin level and oxidative stress markers in HIV-infected patients on atazanavir-vs. efavirenz-based antiretroviral therapy. HIV Med. 2016, 17, 653–661. [Google Scholar] [CrossRef] [Green Version]
- Elias, A.; Ijeoma, O.; Edikpo, N.J.; Oputiri, D.; Geoffrey, O.-B.P. Tenofovir Renal Toxicity: Evaluation of Cohorts and Clinical Studies—Part One. Pharmacol. Pharm. 2013, 4, 651–662. [Google Scholar] [CrossRef]
- Fernandez-Fernandez, B.; Montoya-Ferrer, A.; Sanz, A.B.; Sanchez-Niño, M.D.; Izquierdo, M.C.; Poveda, J.; Sainz-Prestel, V.; Ortiz-Martin, N.; Parra-Rodriguez, A.; Selgas, R.; et al. Tenofovir Nephrotoxicity: 2011 Update. AIDS Res. Treat. 2011, 2011, 1–11. [Google Scholar] [CrossRef]
- Shafi, T.; Choi, M.; Racusen, L.; Spacek, L.; Berry, C.; Atta, M.; Fine, D. Ritonavir-induced acute kidney injury: Kidney biopsy findings and review of literature. Clin. Nephrol. 2011, 75, 60–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boffito, M. From concept to care: Pharmacokinetic boosting of protease inhibitors. PRN Noteb. 2004, 9, 15–18. [Google Scholar]
- Patel, A.K.; Ranjan, R.R.; Patel, A.R.; Patel, J.K.; Patel, K.K. Tenofovir-associated renal dysfunction in clinical practice: An observational cohort from western India. Indian J. Sex. Transm. Dis. AIDS 2010, 31, 30–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, Y.; Han, Y.; Xie, J.; Cui, Q.; Zhang, L.; Li, Y.; Li, Y.; Song, X.; Zhu, T.; Li, T. Impact of a tenofovir disoproxil fumarate plus ritonavir-boosted protease inhibitor-based regimen on renal function in HIV-infected individuals: A prospective, multicenter study. BMC Infect. Dis. 2013, 13, 301–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grigsby, I.F.; Pham, L.; Mansky, L.M.; Gopalakrishnan, R.; Mansky, K.C. Tenofovir-associated bone density loss. Ther. Clin. Risk Manag. 2010, 6, 41. [Google Scholar]
- Moss, D.M.; Neary, M.; Owen, A. The role of drug transporters in the kidney: Lessons from tenofovir. Front. Pharmacol. 2014, 5, 248. [Google Scholar] [CrossRef] [Green Version]
- Yeligar, S.M.; Guidot, D.M.; Brown, L.A.S.; Cribbs, S.K. HIV Infection Induces NADPH Oxidase Expression in Alveolar Macrophages of Otherwise Healthy Subjects. In C55 HIV-Associated Lung Diseases and Infections; American Thoracic Society: New York, NY, USA, 2015; p. A4720. [Google Scholar]
- Wang, X.; Liao, D.; Lin, P.H.; Yao, Q.; Chen, C. Highly active antiretroviral therapy drugs inhibit in vitro cholesterol efflux from human macrophage-derived foam cells. Lab. Investig. 2009, 89, 1355–1363. [Google Scholar] [CrossRef] [Green Version]
- So-Armah, K.; Freiberg, M.S. HIV and Cardiovascular Disease: Update on Clinical Events, Special Populations, and Novel Biomarkers. Curr. HIV/AIDS Rep. 2018, 15, 233–244. [Google Scholar] [CrossRef]
- Brouwer, E.S.; Napravnik, S.; Eron, J.J.; Stalzer, B.; Floris-Moore, M.; Simpson, R.J.; Stürmer, T. Effects of Combination Antiretroviral Therapies on the Risk of Myocardial Infarction Among HIV Patients. Epidemiology 2014, 25, 406–417. [Google Scholar] [CrossRef] [Green Version]
- Marcel, A.K.; Ekali, L.G.; Eugene, S.; Arnold, O.E.; Sandrine, E.D.; Von der Weid, D.; Gbaguidi, E.; Ngogang, J.; Mbanya, J.C. The effect of Spirulina platensis versus soybean on insulin resistance in HIV-infected patients: A randomized pilot study. Nutrients 2011, 3, 712–724. [Google Scholar] [CrossRef] [Green Version]
- Winter, F.S.; Emakam, F.; Kfutwah, A.; Hermann, J.; Azabji-Kenfack, M.; Krawinkel, M.B. The Effect of Arthrospira platensis Capsules on CD4 T-Cells and Antioxidative Capacity in a Randomized Pilot Study of Adult Women Infected with Human Immunodeficiency Virus Not under HAART in Yaoundé, Cameroon. Nutrients 2014, 6, 2973–2986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ngo-Matip, M.-E.; Pieme, C.A.; Azabji-Kenfack, M.; Biapa, P.C.N.; Germaine, N.; Heike, E.; Moukette, B.M.; Emmanuel, K.; Philippe, S.; Mbofung, C.M.; et al. Effects of Spirulina platensis supplementation on lipid profile in HIV–infected antiretroviral naïve patients in Yaounde-Cameroon: A randomized trial study. Lipids Health Dis. 2014, 13, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ngo-Matip, M.E.; Pieme, C.A.; Azabji-Kenfack, M.; Moukette, B.M.; Korosky, E.; Stefanini, P.; Ngogang, J.Y.; Mbofung, C.M. Impact of daily supplementation of Spirulina platensis on the immune system of naïve HIV-1 patients in Cameroon: A 12-months single blind, randomized, multicenter trial. Nutr. J. 2015, 14, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koskey, S.; Okoth, F.; Waihenya, R. Monitoring of CD4+ T-cell counts in HIV infected patients on Arthrospira platensis supplement in Kisumu, Kenya. Afr. J. Health Sci. 2013, 24, 1–8. [Google Scholar]
- Moor, V.J.A.; Pieme, C.A.; Nkeck, J.R.; Nya, P.C.B.; Mondinde, G.I.; Amazia, F.; Kouanfack, C.; Assoumou, M.C.O.; Ngogang, J. Effects of Spirulina platensis on the Immune Status, Inflammatory and Oxidative Markers of HIV Patients on Antiretroviral Therapy in Cameroon. Acta Sci. Pharm. Sci. 2021, 5, 50–57. [Google Scholar] [CrossRef]
- Antonelli, M.; Donelli, D. Effects of Spirulina on CD4+ T-Lymphocyte Count in Patients with HIV Infection: A Literature Review. Biol. Life Sci. Forum 2022, 12, 6. [Google Scholar] [CrossRef]
HAART | Mechanism | Example | Adverse Effect |
---|---|---|---|
Nucleoside/Nucleotide reverse transcriptase inhibitors (NRTIs) | NRTIs require intracellular phosphorylation via host enzymes before they can inhibit viral replication. These agents are nucleoside or nucleotide analogs with an absent hydroxyl at the 3′ end that are incorporated into the growing viral DNA strand. They competitively bind to reverse transcriptase and cause premature DNA chain termination as they inhibit 3′ to 5′ phosphodiester bond formation. | abacavir, didanosine, lamivudine, stavudine, tenofovir, emtricitabine, atazanavir, and zidovudine | Mitochondrial toxicity, bone marrow suppression, anemia, and lipodystrophy. NRTIs inhibit mitochondrial DNA polymerase. Tenofovir may cause kidney injury or decreased bone mineral density or osteoporosis. Abacavir is associated with a CD8-mediated hypersensitivity reaction in patients with the HLA-B*5701 mutation. Didanosine is associated with a high risk of pancreatitis and hepatomegaly. |
Non-nucleoside reverse transcriptase inhibitors (NNRTIs) | NNRTIs bind to HIV reverse transcriptase at an allosteric, hydrophobic site. These agents cause a stereochemical change within reverse transcriptase, thus inhibiting nucleoside binding and inhibition of DNA polymerase. | delavirdine, efavirenz, nevirapine, rilpivirine | Temporary rashes but may progress to Stevens–Johnson’s syndrome. Hepatitis may progress to liver failure. Efavirenz may cause teratogenicity Risk of neural tube defects. NNRTIs (mostly rilpivirine) may result in QT prolongation. Numerous interactions with hepatic cytochrome P450 enzymes. Efavirenz is linked to various psychiatric and CNS effects, including, but not limited to: vivid dreams, delusions, sleep disturbances, dizziness, headaches, increased suicidality, psychosis-like behavior, and mania. |
Protease inhibitors (PIs) | PIs competitively inhibit the proteolytic cleavage of the gag/pol polyproteins in HIV-infected cells. These agents result in immature, noninfectious virions. PIs are administered with boosting agents such as ritonavir or cobicistat to patients that are failing their initial HAART combination. | atazanavir, darunavir, indinavir | Hepatotoxicity, insulin resistance, hyperglycemia, hyperlipidemia, lipodystrophy, and PR interval prolongation. Other PIs are inefficient and have a high resistance and increased risk of nephrolithiasis, hence indinavir and saquinavir are no longer used. |
Integrase strand transfer inhibitors (INSTIs) | Integrase inhibitors bind viral integrase and prevent viral DNA from being incorporated into the host cell chromosome. | dolutegravir, elvitegravir, raltegravir | Some patients may experience dizziness, sleep disturbances, or depression. Raltegravir and dolutegravir can cause rhabdomyolysis and myopathy. Dolutegravir can block the secretion of creatinine and occasionally cause a decrease in the GFR. It can also have interactions with several medications, including those that inhibit/induce CYP3A4 enzymes, metformin, rifampin, and antiepileptics. |
Fusion inhibitors (FIs) | Fusion inhibitors bind to the envelope glycoprotein gp41 and prevent viral fusion to the CD4 T-cells. | enfuvirtide | Enfuvirtide is generally well tolerated though some patients may experience injection site reactions. |
Chemokine receptor antagonists (CCR5 antagonists) | CCR5 antagonists selectively and reversibly block entry into the CD4 T-cells by preventing interaction between CD4 cells and the gp120 subunit of the viral envelope glycoprotein. | maraviroc | Some patients may experience dizziness or skin rashes. There is a risk of hepatotoxicity with allergic features, high risk of hepatic dysfunction. Drug–drug interactions should be a consideration if patients are taking concurrent CYP3A4 inhibitors or inducers. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sibiya, T.; Ghazi, T.; Chuturgoon, A. The Potential of Spirulina platensis to Ameliorate the Adverse Effects of Highly Active Antiretroviral Therapy (HAART). Nutrients 2022, 14, 3076. https://doi.org/10.3390/nu14153076
Sibiya T, Ghazi T, Chuturgoon A. The Potential of Spirulina platensis to Ameliorate the Adverse Effects of Highly Active Antiretroviral Therapy (HAART). Nutrients. 2022; 14(15):3076. https://doi.org/10.3390/nu14153076
Chicago/Turabian StyleSibiya, Thabani, Terisha Ghazi, and Anil Chuturgoon. 2022. "The Potential of Spirulina platensis to Ameliorate the Adverse Effects of Highly Active Antiretroviral Therapy (HAART)" Nutrients 14, no. 15: 3076. https://doi.org/10.3390/nu14153076
APA StyleSibiya, T., Ghazi, T., & Chuturgoon, A. (2022). The Potential of Spirulina platensis to Ameliorate the Adverse Effects of Highly Active Antiretroviral Therapy (HAART). Nutrients, 14(15), 3076. https://doi.org/10.3390/nu14153076