Association of Vitamin D Supplementation with Cardiovascular Events: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Methods
2.1. Protocol and Guidance
2.2. Eligibility Criteria
2.3. Information Sources and Search Strategy
2.4. Study Selection
2.5. Data Collection
2.6. Risk of Bias Assessment
2.7. Quality of Evidence
2.8. Data Synthesis
2.9. Trial Sequential Analysis
2.10. Subgroup Analysis
2.11. Sensitivity Analyses
3. Results
3.1. Characteristics of Included Studies
3.2. Quality of Evidence and Risk of Bias
3.3. Cardiovascular Mortality
3.4. Myocardial Infarction and Stroke
3.5. Total Cardiovascular Events and Cerebrovascular Events
3.6. Other Analyses
4. Discussion
4.1. Comparison with Other Studies
4.2. Implications for Future Research
4.3. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Holick, M.F. The vitamin D epidemic and its health consequences. J. Nutr. 2005, 135, 2739s–2748s. [Google Scholar] [CrossRef] [PubMed]
- Weyland, P.G.; Grant, W.B.; Howie-Esquivel, J. Does sufficient evidence exist to support a causal association between vitamin D status and cardiovascular disease risk? An assessment using Hill’s criteria for causality. Nutrients 2014, 6, 3403–3430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.H.; O’Keefe, J.H.; Bell, D.; Hensrud, D.D.; Holick, M.F. Vitamin D deficiency an important, common, and easily treatable cardiovascular risk factor? J. Am. Coll. Cardiol. 2008, 52, 1949–1956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wimalawansa, S.J. Vitamin D and cardiovascular diseases: Causality. J. Steroid Biochem. Mol. Biol. 2018, 175, 29–43. [Google Scholar] [CrossRef]
- Bjelakovic, G.; Gluud, L.L.; Nikolova, D.; Whitfield, K.; Wetterslev, J.; Simonetti, R.G.; Bjelakovic, M.; Gluud, C. Vitamin D supplementation for prevention of mortality in adults. Cochrane Database Syst. Rev. 2014, Cd007470. [Google Scholar] [CrossRef] [PubMed]
- Bolland, M.J.; Grey, A.; Gamble, G.D.; Reid, I.R. The effect of vitamin D supplementation on skeletal, vascular, or cancer outcomes: A trial sequential meta-analysis. Lancet Diabetes Endocrinol. 2014, 2, 307–320. [Google Scholar] [CrossRef]
- Barbarawi, M.; Kheiri, B.; Zayed, Y.; Barbarawi, O.; Dhillon, H.; Swaid, B.; Yelangi, A.; Sundus, S.; Bachuwa, G.; Alkotob, M.L.; et al. Vitamin D Supplementation and Cardiovascular Disease Risks in More Than 83,000 Individuals in 21 Randomized Clinical Trials: A Meta-analysis. JAMA Cardiol. 2019, 4, 765–776. [Google Scholar] [CrossRef] [PubMed]
- Ford, J.A.; MacLennan, G.S.; Avenell, A.; Bolland, M.; Grey, A.; Witham, M. Cardiovascular disease and vitamin D supplementation: Trial analysis, systematic review, and meta-analysis. Am. J. Clin. Nutr. 2014, 100, 746–755. [Google Scholar] [CrossRef]
- Anderson, J.L.; May, H.T.; Horne, B.D.; Bair, T.L.; Hall, N.L.; Carlquist, J.F.; Lappe, D.L.; Muhlestein, J.B.; Intermountain Heart Collaborative Study, G. Relation of vitamin D deficiency to cardiovascular risk factors, disease status, and incident events in a general healthcare population. Am. J. Cardiol. 2010, 106, 963–968. [Google Scholar] [CrossRef] [PubMed]
- Pentti, K.; Tuppurainen, M.T.; Honkanen, R.; Sandini, L.; Kröger, H.; Alhava, E.; Saarikoski, S. Use of calcium supplements and the risk of coronary heart disease in 52-62-year-old women: The Kuopio Osteoporosis Risk Factor and Prevention Study. Maturitas 2009, 63, 73–78. [Google Scholar] [CrossRef]
- Moyer, V.A.; U.S. Preventive Services Task Force. Vitamin, mineral, and multivitamin supplements for the primary prevention of cardiovascular disease and cancer: U.S. Preventive services Task Force recommendation statement. Ann. Intern. Med. 2014, 160, 558–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatterjee, R.; Fuss, P.; Vickery, E.M.; LeBlanc, E.S.; Sheehan, P.R.; Lewis, M.R.; Dolor, R.J.; Johnson, K.C.; Kashyap, S.R.; Nelson, J.; et al. Vitamin D Supplementation for Prevention of Cancer: The D2d Cancer Outcomes (D2dCA) Ancillary Study. J. Clin. Endocrinol. Metab. 2021, 106, 2767–2778. [Google Scholar] [CrossRef] [PubMed]
- Neale, R.E.; Baxter, C.; Romero, B.D.; McLeod, D.S.A.; English, D.R.; Armstrong, B.K.; Ebeling, P.R.; Hartel, G.; Kimlin, M.G.; O’Connell, R.; et al. The D-Health Trial: A randomised controlled trial of the effect of vitamin D on mortality. Lancet Diabetes Endocrinol. 2022, 10, 120–128. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gotzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. Ann. Intern. Med. 2009, 151, W65–W94. [Google Scholar] [CrossRef] [Green Version]
- Shinichi, A. Cochrane Handbook for Systematic Reviews of Interventions. Online Kensaku 2014, 35, 154–155. [Google Scholar]
- Higgins, J.P.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savovic, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guyatt, G.H.; Oxman, A.D.; Vist, G.E.; Kunz, R.; Falck-Ytter, Y.; Alonso-Coello, P.; Schunemann, H.J.; Group, G.W. GRADE: An emerging consensus on rating quality of evidence and strength of recommendations. BMJ (Clin. Res. Ed.) 2008, 336, 924–926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higgins, J.P.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef]
- Brok, J.; Thorlund, K.; Gluud, C.; Wetterslev, J. Trial sequential analysis reveals insufficient information size and potentially false positive results in many meta-analyses. J. Clin. Epidemiol. 2008, 61, 763–769. [Google Scholar] [CrossRef]
- Inkovaara, J.; Gothoni, G.; Halttula, R.; Heikinheimo, R.; Tokola, O. Calcium, vitamin D and anabolic steroid in treatment of aged bones: Double-blind placebo-controlled long-term clinical trial. Age Ageing 1983, 12, 124–130. [Google Scholar] [CrossRef]
- Komulainen, M.; Kröger, H.; Tuppurainen, M.T.; Heikkinen, A.M.; Alhava, E.; Honkanen, R.; Jurvelin, J.; Saarikoski, S. Prevention of femoral and lumbar bone loss with hormone replacement therapy and vitamin D3 in early postmenopausal women: A population-based 5-year randomized trial. J. Clin. Endocrinol. Metab. 1999, 84, 546–552. [Google Scholar] [CrossRef] [PubMed]
- Bischoff, H.A.; Stähelin, H.B.; Dick, W.; Akos, R.; Knecht, M.; Salis, C.; Nebiker, M.; Theiler, R.; Pfeifer, M.; Begerow, B.; et al. Effects of vitamin D and calcium supplementation on falls: A randomized controlled trial. J. Bone Miner. Res. 2003, 18, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, D.P.; Doll, R.; Khaw, K.T. Effect of four monthly oral vitamin D3 (cholecalciferol) supplementation on fractures and mortality in men and women living in the community: Randomised double blind controlled trial. BMJ 2003, 326, 469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grant, A.M.; Avenell, A.; Campbell, M.K.; McDonald, A.M.; MacLennan, G.S.; McPherson, G.C.; Anderson, F.H.; Cooper, C.; Francis, R.M.; Donaldson, C.; et al. Oral vitamin D3 and calcium for secondary prevention of low-trauma fractures in elderly people (Randomised Evaluation of Calcium Or vitamin D, RECORD): A randomised placebo-controlled trial. Lancet 2005, 365, 1621–1628. [Google Scholar] [CrossRef]
- Lappe, J.M.; Travers-Gustafson, D.; Davies, K.M.; Recker, R.R.; Heaney, R.P. Vitamin D and calcium supplementation reduces cancer risk: Results of a randomized trial. Am. J. Clin. Nutr. 2007, 85, 1586–1591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prince, R.L.; Austin, N.; Devine, A.; Dick, I.M.; Bruce, D.; Zhu, K. Effects of ergocalciferol added to calcium on the risk of falls in elderly high-risk women. Arch. Intern. Med. 2008, 168, 103–108. [Google Scholar] [CrossRef] [Green Version]
- Zhu, K.; Devine, A.; Dick, I.M.; Wilson, S.G.; Prince, R.L. Effects of calcium and vitamin D supplementation on hip bone mineral density and calcium-related analytes in elderly ambulatory Australian women: A five-year randomized controlled trial. J. Clin. Endocrinol. Metab. 2008, 93, 743–749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanders, K.M.; Stuart, A.L.; Williamson, E.J.; Simpson, J.A.; Kotowicz, M.A.; Young, D.; Nicholson, G.C. Annual high-dose oral vitamin D and falls and fractures in older women: A randomized controlled trial. JAMA 2010, 303, 1815–1822. [Google Scholar] [CrossRef] [Green Version]
- Witham, M.D.; Price, R.J.; Struthers, A.D.; Donnan, P.T.; Messow, C.M.; Ford, I.; McMurdo, M.E. Cholecalciferol treatment to reduce blood pressure in older patients with isolated systolic hypertension: The VitDISH randomized controlled trial. JAMA Intern. Med. 2013, 173, 1672–1679. [Google Scholar] [CrossRef]
- Baron, J.A.; Barry, E.L.; Mott, L.A.; Rees, J.R.; Sandler, R.S.; Snover, D.C.; Bostick, R.M.; Ivanova, A.; Cole, B.F.; Ahnen, D.J.; et al. A Trial of Calcium and Vitamin D for the Prevention of Colorectal Adenomas. N. Engl. J. Med. 2015, 373, 1519–1530. [Google Scholar] [CrossRef] [PubMed]
- Jorde, R.; Sollid, S.T.; Svartberg, J.; Schirmer, H.; Joakimsen, R.M.; Njølstad, I.; Fuskevåg, O.M.; Figenschau, Y.; Hutchinson, M.Y. Vitamin D 20,000 IU per Week for Five Years Does Not Prevent Progression From Prediabetes to Diabetes. J. Clin. Endocrinol. Metab. 2016, 101, 1647–1655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scragg, R.; Stewart, A.W.; Waayer, D.; Lawes, C.M.M.; Toop, L.; Sluyter, J.; Murphy, J.; Khaw, K.T.; Camargo, C.A., Jr. Effect of Monthly High-Dose Vitamin D Supplementation on Cardiovascular Disease in the Vitamin D Assessment Study: A Randomized Clinical Trial. JAMA Cardiol. 2017, 2, 608–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zittermann, A.; Ernst, J.B.; Prokop, S.; Fuchs, U.; Dreier, J.; Kuhn, J.; Knabbe, C.; Birschmann, I.; Schulz, U.; Berthold, H.K.; et al. Effect of vitamin D on all-cause mortality in heart failure (EVITA): A 3-year randomized clinical trial with 4000 IU vitamin D daily. Eur. Heart J. 2017, 38, 2279–2286. [Google Scholar] [CrossRef] [Green Version]
- Manson, J.E.; Cook, N.R.; Lee, I.M.; Christen, W.; Bassuk, S.S.; Mora, S.; Gibson, H.; Gordon, D.; Copeland, T.; D’Agostino, D.; et al. Vitamin D Supplements and Prevention of Cancer and Cardiovascular Disease. N. Engl. J. Med. 2018, 380, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Brohult, J.; Jonson, B. Effects of Large Doses of Calciferol on Patients with Rheumatoid Arthritis: A Double-Blind Clinical Trial. Scand. J. Rheumatol. 1973, 2, 173–176. [Google Scholar] [CrossRef] [PubMed]
- Avenell, A.; MacLennan, G.S.; Jenkinson, D.J.; McPherson, G.C.; McDonald, A.M.; Pant, P.R.; Grant, A.M.; Campbell, M.K.; Anderson, F.H.; Cooper, C.; et al. Long-Term Follow-Up for Mortality and Cancer in a Randomized Placebo-Controlled Trial of Vitamin D3and/or Calcium (RECORD Trial). J. Clin. Endocrinol. Metab. 2012, 97, 614–622. [Google Scholar] [CrossRef] [Green Version]
- Lehouck, A.; Mathieu, C.; Carremans, C.; Baeke, F.; Verhaegen, J.; Van Eldere, J.; Decallonne, B.; Bouillon, R.; Decramer, M.; Janssens, W. High doses of vitamin D to reduce exacerbations in chronic obstructive pulmonary disease: A randomized trial. Ann. Intern. Med. 2012, 156, 105–114. [Google Scholar] [CrossRef] [Green Version]
- Lewis, J.R.; Zhu, K.; Prince, R.L. Adverse events from calcium supplementation: Relationship to errors in myocardial infarction self-reporting in randomized controlled trials of calcium supplementation. J. Bone Min. Res. 2012, 27, 719–722. [Google Scholar] [CrossRef]
- Bolland, M.J.; Avenell, A.; Baron, J.A.; Grey, A.; MacLennan, G.S.; Gamble, G.D.; Reid, I.R. Effect of calcium supplements on risk of myocardial infarction and cardiovascular events: Meta-analysis. BMJ 2010, 341, c3691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolland, M.J.; Grey, A.; Avenell, A.; Gamble, G.D.; Reid, I.R. Calcium supplements with or without vitamin D and risk of cardiovascular events: Reanalysis of the Women’s Health Initiative limited access dataset and meta-analysis. BMJ 2011, 342, d2040. [Google Scholar] [CrossRef] [Green Version]
- Ott, S.M. Calcitriol Treatment Is Not Effective in Postmenopausal Osteoporosis. Ann. Intern. Med. 1989, 110, 267–274. [Google Scholar] [CrossRef]
- Grady, D.; Halloran, B.; Cummings, S.; Leveille, S.; Wells, L.; Black, D.; Byl, N. 1,25-Dihydroxyvitamin D3 and muscle strength in the elderly: A randomized controlled trial. J. Clin. Endocrinol. Metab. 1991, 73, 1111–1117. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Maruoka, H.; Oizumi, K. Amelioration of hemiplegia-associated osteopenia more than 4 years after stroke by 1 alpha-hydroxyvitamin D-3 and calcium supplementation. Stroke 1997, 28, 736–739. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Kuno, H.; Kaji, M.; Saruwatari, N.; Oizumi, K. Effect of ipriflavone on bone in elderly hemiplegic stroke patients with hypovitaminosis D. Am. J. Phys. Med. Rehabil. 1999, 78, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Manabe, S.; Kuno, H.; Oizumi, K. Amelioration of osteopenia and hypovitaminosis D by 1 alpha-hydroxyvitamin D3 in elderly patients with Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 1999, 66, 64–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallagher, J.C.; Fowler, S.E.; Detter, J.R.; Sherman, S.S. Combination treatment with estrogen and calcitriol in the prevention of age-related bone loss. J. Clin. Endocrinol. Metab. 2001, 86, 3618–3628. [Google Scholar] [CrossRef] [PubMed]
- Dukas, L.; Bischoff, H.A.; Lindpaintner, L.S.; Schacht, E.; Birkner-Binder, D.; Damm, T.N.; Thalmann, B.; Stahelin, H.B. Alfacalcidol reduces the number of fallers in a community-dwelling elderly population with a minimum calcium intake of more than 500 mg daily. J. Am. Geriatr. Soc. 2004, 52, 230–236. [Google Scholar] [CrossRef]
- Sato, Y.; Iwamoto, J.; Kanoko, T.; Satoh, K. Low-dose vitamin D prevents muscular atrophy and reduces falls and hip fractures in women after stroke: A randomized controlled trial. Cerebrovasc. Dis. 2005, 20, 187–192. [Google Scholar] [CrossRef]
- Mora, S.; Manson, J.E. Aspirin for Primary Prevention of Atherosclerotic Cardiovascular Disease: Advances in Diagnosis and Treatment. JAMA Intern. Med. 2016, 176, 1195–1204. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
Author & Year | Mean/Median Age (SD/Range), y | Female | Participants (Vitamin D/no Vitamin D) | Baseline 25(OH)D (nmol/L) (Vitamin D/no Vitamin D) | After Administration 25(OH)D (nmol/L) (Vitamin D/no Vitamin D) | Intervention | Control | Primary Outcome | Region | Follow-Up |
---|---|---|---|---|---|---|---|---|---|---|
Brohult 1973 [35] | 52 (18 to 69) | 68% | 25/25 | NS/NS | NS/NS | vitamin D3 (100,000 IU) daily | placebo | bone mineral density | Sweden | 1-year |
Inkovaara 1983 [20] | 79.5 (65 to 97) | 17% | 45/42 | NS/NS | NS/NS | vitamin D3 (1000 IU) daily | placebo | Biochemistry | Tampere, Finland | 1-year |
Komulainen 1998 [21] | 52.7 (52 to 53) | 100% | 228/230 | NS/NS | NS/NS | vitamin D3 (300 IU) daily for four year and (100 IU) daily for the last year | placebo | bone mineral density | Kuopio, Finland | 5-year |
Trivedi 2003 [23] | 75 (65 to 85) | 24% | 1345/1341 | NS/NS | 74/53 | vitamin D3 (100,000 IU) four-monthly | placebo | Fracture | the United Kingdom | 5-year |
Lappe 2007 [25] | 66.7 (7.3) | 100% | 446/445 | 72/72 | 96/71 | vitamin D3 (1000 IU) plus calcium (1400 to 1500 mg) daily | calcium (1400 to 1500 mg) daily | bone mineral density | Nebraska, the USA | 4-year |
Prince 2008 [26] | 77.2 (4.6) | 100% | 151/151 | 45/44 | 60/44 | vitamin D2 1000 IU plus calcium 1000 mg daily | calcium (1000 mg) daily | Falls | Western Australia | 1-year |
Zhu 2008 [27] | 74.8 (2.6) | 100% | 39/40 | 70/67 | 106/64 | vitamin D2 (1000 IU) plus calcium (1200 mg) daily | calcium (1200 mg) daily | bone mineral density | Perth, Australia | 5-year |
Sanders 2010 [28] | 76 (73 to 80) | 100% | 1131/1125 | 53/45 | 52/45 | vitamin D3 (500,000 IU) yearly | placebo | falls and fractures | Victoria, Australia | 3-year |
Avenell 2012 [36] | 77 (6) | 85% | 2649/2643 | 38/38 | NS/NS | vitamin D3 (800 IU) daily | placebo | Fracture | the United Kingdom | 3.75-year |
Lehouck 2012 [37] | 68 (9) | 20% | 91/91 | 50/50 | 130/54 | vitamin D 100,000 IU every 4 weeks | placebo | Exacerbations in Chronic Obstructive Pulmonary Disease | Leuven, Belgium | 1-year |
Witham 2013 [29] | 77 | 48% | 80/79 | 45/45 | 65/45 | vitamin D3 (100,000 IU) three-monthly | placebo | 25OHD levels | Scotland | 1-year |
Baron 2015 [30] | 58 (7) | 37% | 1130/1129 | 25/25 | 45/25 | vitamin D3 (1000 IU) daily plus calcium (1200 mg) daily | calcium (1200 mg) daily | adenomas incidence | the United States | 3-year |
Jorde 2016 [31] | 62 (9) | 49% | 256/255 | 60/61 | 95/59 | vitamin D3 (20,000 IU) weekly | placebo | progression to type 2 diabetes | Norway | 5-year |
Zittermann 2017 [33] | 55 (48 to 62) | 27% | 199/201 | 31/35 | 100/40 | vitamin D3 (4000 IU) daily | placebo | all-cause mortality | Germany | 3-year |
Scragg 2017 [32] | NS | 42% | 2558/2552 | 64/63 | 135/66 | vitamin D3 initial (200,000 IU) then vitamin D3 (100,000 IU) monthly | placebo | CVD and death | Auckland, New Zealand | 3.3-year |
Manson 2018 [34] | 67.1 (7.1) | 51% | 12,917/12,944 | 30/31 | 41/29 | vitamin D3 (2000 IU) daily | placebo | cancer and major cardiovascular events | the United States | 6-year |
Chatterjee 2021 [12] | 60 (9.9) | 44.5% | 1194/1191 | 70/70 | NS/NS | vitamin D3 4000 IU daily | placebo | cancer and major cardiovascular events | the United States | 2.9-year |
Neale 2022 [13] | 69 | 45.9% | 10,661/10,649 | NS/NS | NS/NS | vitamin D3 60,000 IU monthly | placebo | mortality | Multiple * | 5.7-year |
Outcome | No. of Patients (Studies) | Risk Ratio (95% CI) | I2 | Absolute Effect Estimates (per 1000) | Quality | ||
---|---|---|---|---|---|---|---|
Control | Vitamin D | Difference | |||||
Cardiovascular mortality | 41538 (6) | RR 0.96 (0.83 to 1.11) | 22% | 24 | 23 | −1 (−3 to 1) | High |
Stroke | 46093 (12) | RR 1.05 (0.92 to 1.20) | 0% | 18 | 19 | 1 (−1 to 4) | High |
Myocardial infarction | 46184 (14) | RR 0.97 (0.87 to 1.09) | 0% | 25 | 24 | −2 (−6 to 3) | High |
Cardiovascular events | 39046 (7) | RR 0.97 (0.91 to 1.04) | 27% | 68 | 66 | −2 (−6 to 3) | High |
Cerebrovascular events | 39359 (10) | RR 1.01 (0.87 to 1.18) | 0% | 16 | 16 | 0 (−2 to 3) | High |
Cardiovascular Mortality | Stroke | Myocardial Infarction | Cardiovascular Events | Cerebrovascular Events | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Subgroup Title | RR, 95%CI | p | RR, 95%CI | p | RR, 95%CI | p | RR, 95%CI | p | RR, 95%CI | p |
No. of patients | ||||||||||
≥2000 | 0.96 [0.87, 1.05] | 0.24 | 1.04 [0.90, 1.19] | 0.48 | 0.96 [0.86, 1.08] | 0.65 | 0.97 [0.88, 1.06] | 0.16 | 0.99 [0.84, 1.16] | 0.93 |
<2000 | 1.45 [0.72, 2.93] | 1.25 [0.73, 2.16] | 1.12 [0.58, 2.19] | 1.16 [0.91, 1.47] | 1.76 [0.76, 4.10] | |||||
No. of events | ||||||||||
≥200 | 0.95 [0.85, 1.07] | 0.54 | 1.03 [0.89, 1.19] | 0.48 | 0.96 [0.84, 1.09] | 0.77 | 0.95 [0.87, 1.04] | 0.04 | 0.99 [0.83, 1.17] | 0.57 |
<200 | 1.04 [0.81, 1.32] | 1.17 [0.83, 1.65] | 1.00 [0.80, 1.24] | 1.19 [0.97, 1.46] | 1.10 [0.78, 1.56] | |||||
Age | ||||||||||
≥70 | 0.92 [0.81, 1.03] | 0.18 | 1.09 [0.92, 1.30] | 0.44 | 0.99 [0.86, 1.14] | 0.72 | 0.89 [0.81, 0.99] | 0.08 | 1.10 [0.86, 1.41] | 0.33 |
<70 | 1.06 [0.89, 1.26] | 0.99 [0.80, 1.24] | 0.94 [0.77, 1.15] | 1.06 [0.90, 1.25] | 0.94 [0.77, 1.15] | |||||
Sex | ||||||||||
Female | NA | NA | 1.26 [0.64, 2.48] | 0.48 | 1.34 [0.73, 2.44] | 0.29 | 1.15 [0.62, 2.12] | 0.64 | 1.19 [0.52, 2.72] | 0.68 |
Both | 0.96 [0.88, 1.06] | 1.04 [0.91, 1.19] | 0.96 [0.85, 1.07] | 0.99 [0.89, 1.10] | 1.00 [0.86, 1.17] | |||||
Baseline 25(OH)D (nmol/L) | ||||||||||
≥50 | 0.92 [0.77, 1.11] | 0.56 | 1.06 [0.85, 1.32] | 0.57 | 0.95 [0.81, 1.11] | 0.96 | 0.94 [0.84, 1.06] | 0.36 | 1.01 [0.81, 1.26] | 0.73 |
<50 | 0.98 [0.86, 1.12] | 1.03 [0.87, 1.22] | 0.94 [0.80, 1.12] | 1.04 [0.86, 1.25] | 0.96 [0.76, 1.20] | |||||
After administration 25(OH)D (nmol/L) * | ||||||||||
≥75 | 1.25 [0.74, 2.13] | 0.87 | 1.05 [0.65, 1.68] | 0.86 | 0.93 [0.77, 1.12] | 0.34 | 1.07 [0.92, 1.26] | 0.32 | 0.96 [0.57, 1.63] | 0.97 |
<75 | 0.99 [0.84, 1.18] | 1.01 [0.85, 1.20] | 0.96 [0.83, 1.10] | 0.91 [0.82, 1.01] | 1.01 [0.85, 1.20] | |||||
Published year | ||||||||||
Before 2017 | 0.92 [0.82, 1.03] | 0.17 | 1.12 [0.94, 1.33] | 0.48 | 0.98 [0.85, 1.12] | 0.83 | 0.89 [0.81, 0.99] | 0.04 | 1.12 [0.89, 1.43] | 0.23 |
In or after 2017 | 1.06 [0.90, 1.26] | 0.95 [0.77, 1.17] | 0.95 [0.78, 1.16] | 1.03 [0.94, 1.13] | 0.93 [0.76, 1.14] | |||||
Type of vitamin D | ||||||||||
Vitamin D3 | 0.96 [0.87, 1.06] | 0.48 | 1.05 [0.92, 1.20] | 0.48 | 0.97 [0.87, 1.08] | 0.75 | 1.00 [0.90, 1.10] | 0.76 | 1.01 [0.86, 1.18] | 0.99 |
Vitamin D2 | 3.00 [0.13, 70.30] | 1.00 [0.21, 4.88] | 1.35 [0.18, 10.30] | 0.83 [0.26, 2.67] | 1.01 [0.27, 3.78] | |||||
Daily dose equivalent | ||||||||||
≥2000 IU | 1.06 [0.90, 1.26] | 0.15 | 0.96 [0.78, 1.18] | 0.48 | 0.93 [0.77, 1.13] | 0.63 | 1.03 [0.94, 1.13] | 0.04 | 0.93 [0.76, 1.14] | 0.23 |
<2000 IU | 0.92 [0.81, 1.03] | 1.11 [0.94, 1.32] | 0.99 [0.86, 1.14] | 0.89 [0.81, 0.99] | 1.12 [0.89, 1.43] | |||||
Timing | ||||||||||
Daily | 0.98 [0.88, 1.10] | 0.56 | 1.05 [0.89, 1.23] | 0.48 | 0.99 [0.84, 1.17] | 0.71 | 1.03 [0.92, 1.15] | 0.43 | 1.00 [0.81, 1.25] | 0.95 |
Intermittently | 0.92 [0.77, 1.11] | 1.05 [0.84, 1.32] | 0.95 [0.81, 1.11] | 0.96 [0.83, 1.10] | 1.01 [0.81, 1.26] | |||||
Residential status | ||||||||||
Community | 1.00 [0.87, 1.15] | 0.44 | 1.00 [0.86, 1.17] | 0.48 | 0.98 [0.87, 1.11] | 0.60 | 0.99 [0.90, 1.09] | NA | 0.99 [0.85, 1.16] | 0.20 |
Institution | 0.93 [0.81, 1.06] | 1.18 [0.92, 1.51] | 0.90 [0.68, 1.20] | NA | 1.80 [0.73, 4.46] | |||||
Follow-up | ||||||||||
≥3 years | 0.96 [0.87, 1.06] | 0.49 | 1.04 [0.91, 1.20] | 0.48 | 0.96 [0.86, 1.08] | 0.89 | 0.98 [0.89, 1.09] | 0.34 | 0.99 [0.84, 1.16] | 0.16 |
<3 years | 1.31 [0.54, 3.16] | 1.15 [0.58, 2.29] | 0.89 [0.28, 2.78] | 1.22 [0.79, 1.87] | 1.90 [0.77, 4.70] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pei, Y.-Y.; Zhang, Y.; Peng, X.-C.; Liu, Z.-R.; Xu, P.; Fang, F. Association of Vitamin D Supplementation with Cardiovascular Events: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 3158. https://doi.org/10.3390/nu14153158
Pei Y-Y, Zhang Y, Peng X-C, Liu Z-R, Xu P, Fang F. Association of Vitamin D Supplementation with Cardiovascular Events: A Systematic Review and Meta-Analysis. Nutrients. 2022; 14(15):3158. https://doi.org/10.3390/nu14153158
Chicago/Turabian StylePei, Yi-Yan, Yu Zhang, Xing-Chen Peng, Zhe-Ran Liu, Ping Xu, and Fang Fang. 2022. "Association of Vitamin D Supplementation with Cardiovascular Events: A Systematic Review and Meta-Analysis" Nutrients 14, no. 15: 3158. https://doi.org/10.3390/nu14153158
APA StylePei, Y. -Y., Zhang, Y., Peng, X. -C., Liu, Z. -R., Xu, P., & Fang, F. (2022). Association of Vitamin D Supplementation with Cardiovascular Events: A Systematic Review and Meta-Analysis. Nutrients, 14(15), 3158. https://doi.org/10.3390/nu14153158