Carotenoids in Palliative Care—Is There Any Benefit from Carotenoid Supplementation in the Adjuvant Treatment of Cancer-Related Symptoms?
Abstract
:1. Introduction
2. Carotenoids as an Adjuvant Treatment of Neuropathic Pain
2.1. Crocetin/Crocin
2.2. Astaxanthin
2.3. Other Xanthophylls: β-Cryptoxanthin and Fucoxanthin
2.4. Bixin
2.5. Lycopene
Carotenoid | Study Description | Main Results | References |
---|---|---|---|
Crocetin | SNI-induced neuropathic pain in mice; crocetin administered intrathecally at doses of 5–50 mg/kg body mass for up to 12 days starting 3 days before the surgery. | Alleviation of mechanical and thermal allodynia in a dose-dependent manner. Reduction of SNI-induced increased levels of TNF-α and IL-1β. Restoration of SNI-induced reduction of MnSOD level in the sciatic nerve and the spinal cord. | Wang et al. (2017) [14]. |
Crocetin | Formalin-induced orofacial pain in laboratory rats; crocetin administered into the cerebral fourth ventricle at doses of 2.5, 5 and 10 μg. | Crocetin at doses 5 and 10 μg significantly attenuated the first and the second phases of formalin-induced orofacial pain. | Erfanparast et al. (2020) [23] |
Crocin | CCI-induced neuropathic pain in male rats; crocin administered intracerebroventricularly at dose of 6 µg or intraperitoneally at a dose of 60 µg/kg. | Centrally administered crocin significantly decreased thermal hyperalgesia and mechanical allodynia. Peripheral injection significantly decreased mechanical allodynia but not thermal hyperalgesia. | Vafaei et al. (2020) [25] |
Crocin | CCI-induced neuropathic pain in male rats; crocin administered intraperitoneally at a dose of 60 µg/kg. | Significantly decreased thermal hyperalgesia and mechanical allodynia. | Safakhah et al. (2020) [26] |
Crocin | CCI-induced neuropathic pain in male rats; crocin administered intraperitoneally at doses of 12.5, 25 and 50 mg/kg. | No analgesic effect. | Amin et al. (2012) [28] |
Crocin | STZ-induced model of diabetic neuropathy; crocin administered intraperitoneally at a dose of 30 mg/kg | Alleviation of thermal allodynia. Reduced histopathological degenerative changes of sciatic nerve. Restoration of STZ-induced reduction of MDA level in the sciatic nerve. | Farshid and Tamaddonfard (2015) [29] |
Crocin | Capsaicin-induced orofacial pain in male rats; crocin administered intracerebroventricularly at doses of 2.5, 10 and 40 µg. | Crocin at doses 10 and 40 μg significantly decreased severity of pain. | Tamaddonfard et al. (2015) [30] |
Crocin | Formalin-induced pain in rats; crocin administered intraperitoneally at doses of 50, 100 and 200 mg/kg. | Significant reduction of pain. Crocin at a dose of 100 mg/kg significantly increased morphine-induced antinociception. Crocin at a dose of 400 mg/kg significantly suppressed locomotor activities. | Tamaddonfard et Hamzeh-Gooshchi (2010) [27] |
Crocin | Carrageenan-induced inflammatory pain in male rats; crocin administered intraperitoneally at doses of 25, 50 and 100 mg/kg. | Reduced pain responses. Attenuated edema. Decreased number of neutrophils infiltrated the site of carrageenan application. | Tamaddonfard et al. (2013) [31] |
Astaxanthin | SNL-induced neuropathic pain in mice; astaxanthin administered intraperitoneally at doses of 5 and 10 mg/kg. | Significant alleviation of mechanical allodynia and thermal hyperalgesia in a dose-dependent manner. Decreased: - expression of IL-1β, IL-6, IL-17, TNFα, - phosphorylation of ERK1/2 and p38 MAPK, - activation of NF-κB p65 and - increased secretion of IL-10 in the spinal dorsal horn cells. | Zhao et al. (2021) [33] |
Astaxanthin | SCI-induced neuropathic pain in laboratory mice. | Significant alleviation of mechanical allodynia. Decreased expression of COX-2, TNFα, IL-1β, and IL-6. Reduction in the level of oxidative stress. Histopathologically confirmed protective effect against SCI-induced injury of white matter and motor neurons. | Masoudi et al. (2021) [37] |
Astaxanthin | SCI-induced neuropathic pain in male rats; 10 µL of 0.2 mM astaxanthin solution administered intrathecally. | Decreased expression of TNF-α, p-p38 MAPK and NMDA receptor NR2B subunit in spinal cord. Histopathologically confirmed protective effect against SCI-induced injury of white matter and motor neurons. | Fakhri et al. (2018) [38] |
Astaxanthin | CCI-induced neuropathic pain in male rats; astaxanthin administered intraperitoneally at doses of 5 and 10 mg/kg. | Significant attenuation of mechanical allodynia and thermal hyperalgesia. | Sharma et al. (2018) [19] |
Trans-astaxanthin | CCI-induced neuropathic pain in male mice; trans-astaxanthin administered orally at doses of 10, 40 and 80 mg/kg twice a day, began 7 days after the surgical procedure and continued for 3 weeks. | Ameliorated mechanical allodynia and thermal hyperalgesia. Reversed CCI-induced increase of IDO expression and KYN/TRY ratio and decreased 5-HT)/TRY and 5-HT/5-HIAA ratios in hippocampus and spinal cord. Trans-astaxanthin at dose of 80mg/kg reduced IL-1β, IL-6 and TNF-α expression in hippocampus and spinal cord. | Jiang et al. (2018) [40] |
Beta-cryptoxanthin | SNI-induced neuropathic pain in male mice; β-cryptoxanthin administered orally at a daily dose of 10 mg for 28 consecutive days. | Significant reduction of tactile allodynia. | Park et al. (2017) [41] |
Fucoxanthin | UVB-induced trigeminal pain in rats; fucoxanthin administered orally at doses of 0.1, 1 and 10 mg/kg for 6 days. | Reduction of p-p38 MAPK and TRPV1 expression in trigeminal ganglia neurons. Decreased number of GFAP-positive neural cells in trigeminal ganglia. | Chen et al. (2019) [42] |
Bixin | STZ-induced neuropathic pain in laboratory mice; bixin administered orally at doses of 10, 30 and 90 mg/kg for 17 days. | Bixin in doses of 30 and 90 mg/kg significantly alleviated mechanical allodynia and anxious behaviors. | Gasparin et al. (2021) [44] |
Lycopene | SNL-induced neuropathic pain in laboratory mice; lycopene administered intrathecally at a dose of 10 nmol. | Repeated lycopene administration prevented the occurrence of mechanical hypersensitivity. | Zhang et al. (2016) [45] |
Lycopene | STZ-induced neuropathic pain in laboratory mice; lycopene administered orally at a dose of 4 mg/kg body weight for 4 weeks. | Significant alleviation of thermal hyperalgesia and cold allodynia. | Kuhad and Chopra (2008) [46] |
Lycopene | STZ-induced neuropathic pain in laboratory mice; lycopene administered orally at doses of 1, 2 and 4 mg/kg body weight for 4 weeks. | Significant alleviation of thermal hyperalgesia. Reduced TNF-α and NO release in a dose-dependent manner | Kuhad et al. (2008) [47] |
3. Carotenoids in Cancer Cachexia
3.1. Astaxanthin
3.2. Lycopene
3.3. β-Cryptoxanthin
4. Carotenoids and Cancer-Induced Fatigue
Symptom (Carotenoid) | Study Description | Main Results | References |
---|---|---|---|
Neuropathic pain (crocin) | Randomized, double-blind, placebo-controlled clinical trial; 171 patients (aged 25–89) with mild to severe symptomatic chemotherapy-induced peripheral neuropathy for at least one month, randomly assigned to two groups: crocin 30 mg daily p.o. vs. placebo for 8 weeks. A crossover study performed with a 2-week washout period. | Average neuropathic pain decreased significantly in the crocin group: −2.5 (54.3%) by NRS −0.8 (33.3%) by NCIC-CTC scale −0.04 (23.5%) by ECOG neuropathic scale −0.8 (47%) by WHO scale −0.4 (12.9%) by BPI −8.3 (36.2%) by McGill pain rating index −7.2 (10.8%) by SDS −0.9 (30%) by NPS compared with placebo (p < 0.05). | Bozorgi et al. (2021) [32] |
Pain (lycopene) | Randomized clinical trial; 54 patients with metastatic prostatic cancer, randomly assigned to two groups: orchidectomy alone (27 patients) vs. orchidectomy plus lycopene (OL) 2 mg twice daily orally (27 patients). The mean (range) follow-up of the patient still alive was 25.5 (24–28 months). | 11 patients in the orchidectomy and 21 in the OL group had a complete response (CR, defined as the serum PSA < 4 ng/mL and/or a normal bone scan) (p < 0.05). It was observed a linear relationship between the response based on the bone scan and the requirement of analgesics. Patients with CR in both groups required no analgesics, this was more expressed in the OL group (25% vs. 15%). | Ansari et Gupta (2003) [48] |
Pain (lycopene) | Clinical trial; 20 consecutive patients (aged 56–90) with metastatic hormone-refractory prostate cancer; lycopene in the dose of 10 mg daily orally administered for 3 months. Bone pain present in 16 patients; 9 required nonopioid analgesics, 7 opioid analgesics. | Ten (62%) patients managed to cut down the dose of analgesics on daily basis: 6 patients from nonopioid group and 4 from opioid group (more detailed information has not been provided). | Ansari et Gupta (2004) [49] |
Cancer-related fatigue (total carotenoids, β-cryptoxanthin, lutein, zeaxanthin and lycopene) | Pilot, randomized clinical trial; 30 breast cancer survivors, who had completed cancer treatments, were randomized: 15 receiving the diet rich in fruit, vegetables, whole grains, and omega-3 fatty acid-rich foods (FRD) and 15 receiving the control diet (GHC), for 3 months. | The intervention significantly alleviated fatigue in FRD group compared to GHC group (p = 0.01). Serum total carotenoids, lutein, zeaxanthin, β-cryptoxanthin, and lycopene were significantly increased. | Zick et al. (2017) [57] |
Frailty status (lutein/zeaxanthin, α-carotene, β-carotene, lycopene, and β-cryptoxanthin) | Cross-sectional FRAILOMIC study; associations between plasma carotenoids and patients’ frailty status (robust, pre-frail, and frail) determined using Fried’s frailty criteria, assessed by general linear and logistic regression models. The analysis included 1450 participants (mean age 77.5 ± 6.5 years). | Robust participants had significantly higher lutein/zeaxanthin, α-carotene, β-carotene, lycopene, β-cryptoxanthin concentrations than frail subjects. Frail subjects were more likely to be in the lowest than in the highest tertile for α-carotene (1.69; 1.00–2.88), β-carotene (1.84; 1.13–2.99), lycopene (1.94; 1.24–3.05), lutein/zeaxanthin (3.60; 2.34–5.53), and β-cryptoxanthin (3.02; 1.95–4.69) than robust subjects. | Kochlik et al. (2019) [59]. |
Frailty syndrome (total carotenoids, α-carotene, β-carotene, lutein, lycopene, β-cryptoxanthin) | Systematic review; to evaluate the association between selected single or total carotenoids and frailty syndrome; a total of 11 trials with 27 792 participants (aged 20–94) were included in qualitative synthesis. | Higher dietary and plasma levels of carotenoids, taken individually or cumulatively, were found to reduce the odds of physical frailty syndrome. | Zupo et al. (2022) [94] |
5. Carotenoid Supplementation in Palliative Care Patients—Is It Worth It? Summary
Author Contributions
Funding
Conflicts of Interest
References
- Milani, A.; Basirnejad, M.; Shahbazi, S.; Bolhassani, A. Carotenoids: Biochemistry, pharmacology and treatment. Br. J. Pharmacol. 2017, 174, 1290–1324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maoka, T. Carotenoids as natural functional pigments. J. Nat. Med. 2020, 74, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langi, P.; Kiokias, S.; Varzakas, T.; Proestos, C. Carotenoids: From Plants to Food and Feed Industries. Methods Mol. Biol. 2018, 1852, 57–71. [Google Scholar] [CrossRef] [PubMed]
- Al-Ishaq, R.K.; Overy, A.J.; Büsselberg, D. Phytochemicals and Gastrointestinal Cancer: Cellular Mechanisms and Effects to Change Cancer Progression. Biomolecules 2020, 10, 105. [Google Scholar] [CrossRef] [Green Version]
- Donaldson, M.S. A carotenoid health index based on plasma carotenoids and health outcomes. Nutrients 2011, 3, 1003–1022. [Google Scholar] [CrossRef] [Green Version]
- Hajizadeh-Sharafabad, F.; Zahabi, E.S.; Malekahmadi, M.; Zarrin, R.; Alizadeh, M. Carotenoids supplementation and inflammation: A systematic review and meta-analysis of randomized clinical trials. Crit. Rev. Food Sci. Nutr. 2021, 1–17. [Google Scholar] [CrossRef]
- Negrati, M.; Razza, C.; Biasini, C.; Di Nunzio, C.; Vancini, A.; Dall’Asta, M.; Lovotti, G.; Trevisi, E.; Rossi, F.; Cavanna, L. Mediterranean Diet Affects Blood Circulating Lipid-Soluble Micronutrients and Inflammatory Biomarkers in a Cohort of Breast Cancer Survivors: Results from the SETA Study. Nutrients 2021, 13, 3482. [Google Scholar] [CrossRef]
- Nicklett, E.J.; Szanton, S.; Sun, K.; Ferrucci, L.; Fried, L.P.; Guralnik, J.M.; Semba, R.D. Neighborhood socioeconomic status is associated with serum carotenoid concentrations in older, community-dwelling women. J. Nutr. 2011, 141, 284–289. [Google Scholar] [CrossRef] [Green Version]
- Ventafridda, V. According to the 2002 WHO definition of palliative care. Palliat. Med. 2006, 20, 159. [Google Scholar] [CrossRef]
- Zasowska-Nowak, A.; Nowak, P.J.; Ciałkowska-Rysz, A. High-Dose Vitamin C in Advanced-Stage Cancer Patients. Nutrients 2021, 13, 735. [Google Scholar] [CrossRef]
- Nayak, M.G.; George, A.; Vidyasagar, M.S.; Mathew, S.; Nayak, S.; Nayak, B.S.; Shashidhara, Y.N.; Kamath, A. Quality of Life among Cancer Patients. Indian J. Palliat. Care 2017, 23, 445–450. [Google Scholar] [CrossRef]
- Jensen, T.S.; Baron, R.; Haanpää, M.; Kalso, E.; Loeser, J.D.; Rice, A.S.C.; Treede, R.D. A new definition of neuropathic pain. Pain 2011, 152, 2204–2205. [Google Scholar] [CrossRef]
- Bennett, M.I.; Rayment, C.; Hjermstad, M.; Aass, N.; Caraceni, A.; Kaasa, S. Prevalence and aetiology of neuropathic pain in cancer patients: A systematic review. Pain 2012, 153, 359–365. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, G.; Qiao, Y.; Feng, C.; Zhao, X. Crocetin attenuates spared nerve injury-induced neuropathic pain in mice. J. Pharmacol. Sci. 2017, 135, 141–147. [Google Scholar] [CrossRef]
- Dworkin, R.H.; O’Connor, A.B.; Backonja, M.; Farrar, J.T.; Finnerup, N.B.; Jensen, T.S.; Kalso, E.A.; Loeser, J.D.; Miaskowski, C.; Nurmikko, T.J.; et al. Pharmacologic management of neuropathic pain: Evidence-based recommendations. Pain 2007, 132, 237–251. [Google Scholar] [CrossRef]
- Greco, M.T.; Roberto, A.; Corli, O.; Deandrea, S.; Bandieri, E.; Cavuto, S.; Apolone, G. Quality of cancer pain management: An update of a systematic review of undertreatment of patients with cancer. J. Clin. Oncol. 2014, 32, 4149–4154. [Google Scholar] [CrossRef] [Green Version]
- Erfanparast, A.; Tamaddonfard, E.; Taati, M.; Dabbaghi, M. Effects of crocin and safranal, saffron constituents, on the formalin-induced orofacial pain in rats. Avicenna J. Phytomed. 2015, 5, 392–402. [Google Scholar]
- Malcangio, M. Role of the immune system in neuropathic pain. Scand. J. Pain 2019, 20, 33–37. [Google Scholar] [CrossRef]
- Sharma, K.; Sharma, D.; Sharma, M.; Sharma, N.; Bidve, P.; Prajapati, N.; Kalia, K.; Tiwari, V. Astaxanthin ameliorates behavioral and biochemical alterations in in-vitro and in-vivo model of neuropathic pain. Neurosci. Lett. 2018, 674, 162–170. [Google Scholar] [CrossRef]
- José Bagur, M.; Alonso Salinas, G.L.; Jiménez-Monreal, A.M.; Chaouqi, S.; Llorens, S.; Martínez-Tomé, M.; Alonso, G.L. Saffron: An Old Medicinal Plant and a Potential Novel Functional Food. Molecules 2017, 23, 30. [Google Scholar] [CrossRef] [Green Version]
- Hashemzaei, M.; Mamoulakis, C.; Tsarouhas, K.; Georgiadis, G.; Lazopoulos, G.; Tsatsakis, A.; Shojaei Asrami, E.; Rezaee, R. Crocin: A fighter against inflammation and pain. Food Chem. Toxicol. 2020, 143, 111521. [Google Scholar] [CrossRef]
- Samarghandian, S.; Borji, A. Anticarcinogenic effect of saffron (Crocus sativus L.) and its ingredients. Pharmacogn. Res. 2014, 6, 99–107. [Google Scholar] [CrossRef] [Green Version]
- Erfanparast, A.; Tamaddonfard, E.; Henareh-Chareh, F. Central H2 histaminergic and alpha-2 adrenergic receptors involvement in crocetin-induced antinociception in orofacial formalin pain in rats. Vet. Res. Forum 2020, 11, 229–234. [Google Scholar] [CrossRef]
- Wang, J.F.; Xu, H.J.; He, Z.L.; Yin, Q.; Cheng, W. Crocin Alleviates Pain Hyperalgesia in AIA Rats by Inhibiting the Spinal Wnt5a/. Neural Plast. 2020, 2020, 4297483. [Google Scholar] [CrossRef]
- Vafaei, A.A.; Safakhah, H.A.; Jafari, S.; Tavasoli, A.; Rashidy-Pour, A.; Ghanbari, A.; Seyedinia, S.A.; Tarahomi, P. Role of Cannabinoid Receptors in Crocin—Induced Hypoalgesia in Neuropathic Pain in Rats. J. Exp. Pharmacol. 2020, 12, 97–106. [Google Scholar] [CrossRef]
- Safakhah, H.A.; Vafaei, A.A.; Tavasoli, A.; Jafari, S.; Ghanbari, A. Role of Muscarinic Receptors in Hypoalgesia Induced by Crocin in Neuropathic Pain Rats. Sci. World J. 2020, 2020, 4046256. [Google Scholar] [CrossRef]
- Tamaddonfard, E.; Hamzeh-Gooshchi, N. Effect of crocin on the morphine-induced antinociception in the formalin test in rats. Phytother. Res. 2010, 24, 410–413. [Google Scholar] [CrossRef]
- Amin, B.; Hosseinzadeh, H. Evaluation of aqueous and ethanolic extracts of saffron, Crocus sativus L., and its constituents, safranal and crocin in allodynia and hyperalgesia induced by chronic constriction injury model of neuropathic pain in rats. Fitoterapia 2012, 83, 888–895. [Google Scholar] [CrossRef]
- Farshid, A.A.; Tamaddonfard, E. Histopathological and behavioral evaluations of the effects of crocin, safranal and insulin on diabetic peripheral neuropathy in rats. Avicenna J. Phytomed. 2015, 5, 469–478. [Google Scholar]
- Tamaddonfard, E.; Tamaddonfard, S.; Pourbaba, S. Effects of intra-fourth ventricle injection of crocin on capsaicin-induced orofacial pain in rats. Avicenna J. Phytomed. 2015, 5, 450–457. [Google Scholar]
- Tamaddonfard, E.; Farshid, A.A.; Eghdami, K.; Samadi, F.; Erfanparast, A. Comparison of the effects of crocin, safranal and diclofenac on local inflammation and inflammatory pain responses induced by carrageenan in rats. Pharmacol. Rep. 2013, 65, 1272–1280. [Google Scholar] [CrossRef]
- Bozorgi, H.; Ghahremanfard, F.; Motaghi, E.; Zamaemifard, M.; Zamani, M.; Izadi, A. Effectiveness of crocin of saffron (Crocus sativus L.) against chemotherapy-induced peripheral neuropathy: A randomized, double-blind, placebo-controlled clinical trial. J. Ethnopharmacol. 2021, 281, 114511. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Tao, X.; Song, T. Astaxanthin alleviates neuropathic pain by inhibiting the MAPKs and NF-κB pathways. Eur. J. Pharmacol. 2021, 912, 174575. [Google Scholar] [CrossRef] [PubMed]
- Donoso, A.; González-Durán, J.; Muñoz, A.A.; González, P.A.; Agurto-Muñoz, C. Therapeutic uses of natural astaxanthin: An evidence-based review focused on human clinical trials. Pharmacol. Res. 2021, 166, 105479. [Google Scholar] [CrossRef]
- Fakhri, S.; Abbaszadeh, F.; Dargahi, L.; Jorjani, M. Astaxanthin: A mechanistic review on its biological activities and health benefits. Pharmacol. Res. 2018, 136, 1–20. [Google Scholar] [CrossRef]
- Chang, M.X.; Xiong, F. Astaxanthin and its Effects in Inflammatory Responses and Inflammation-Associated Diseases: Recent Advances and Future Directions. Molecules 2020, 25, 5342. [Google Scholar] [CrossRef]
- Masoudi, A.; Jorjani, M.; Alizadeh, M.; Mirzamohammadi, S.; Mohammadi, M. Anti-inflammatory and antioxidant effects of astaxanthin following spinal cord injury in a rat animal model. Brain Res. Bull. 2021, 177, 324–331. [Google Scholar] [CrossRef]
- Fakhri, S.; Dargahi, L.; Abbaszadeh, F.; Jorjani, M. Astaxanthin attenuates neuroinflammation contributed to the neuropathic pain and motor dysfunction following compression spinal cord injury. Brain Res. Bull. 2018, 143, 217–224. [Google Scholar] [CrossRef]
- Mohammadi, S.; Fakhri, S.; Mohammadi-Farani, A.; Farzaei, M.H.; Abbaszadeh, F. Astaxanthin engages the l-arginine/NO/cGMP/KATP channel signaling pathway toward antinociceptive effects. Behav. Pharmacol. 2021, 32, 607–614. [Google Scholar] [CrossRef]
- Jiang, X.; Yan, Q.; Liu, F.; Jing, C.; Ding, L.; Zhang, L.; Pang, C. Chronic trans-astaxanthin treatment exerts antihyperalgesic effect and corrects co-morbid depressive like behaviors in mice with chronic pain. Neurosci. Lett. 2018, 662, 36–43. [Google Scholar] [CrossRef]
- Park, G.; Horie, T.; Iezaki, T.; Okamoto, M.; Fukasawa, K.; Kanayama, T.; Ozaki, K.; Onishi, Y.; Sugiura, M.; Hinoi, E. Daily oral intake of β-cryptoxanthin ameliorates neuropathic pain. Biosci. Biotechnol. Biochem. 2017, 81, 1014–1017. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.J.; Lee, C.J.; Lin, T.B.; Peng, H.Y.; Liu, H.J.; Chen, Y.S.; Tseng, K.W. Protective Effects of Fucoxanthin on Ultraviolet B-Induced Corneal Denervation and Inflammatory Pain in a Rat Model. Mar. Drugs 2019, 17, 152. [Google Scholar] [CrossRef] [Green Version]
- Pacheco, S.D.G.; Gasparin, A.T.; Jesus, C.H.A.; Sotomaior, B.B.; Ventura, A.C.S.S.; Redivo, D.D.B.; Cabrini, D.A.; Gaspari Dias, J.F.; Miguel, M.D.; Miguel, O.G.; et al. Antinociceptive and Anti-Inflammatory Effects of Bixin, a Carotenoid Extracted from the Seeds of Bixa orellana. Planta Med. 2019, 85, 1216–1224. [Google Scholar] [CrossRef]
- Gasparin, A.T.; Rosa, E.S.; Jesus, C.H.A.; Guiloski, I.C.; da Silva de Assis, H.C.; Beltrame, O.C.; Dittrich, R.L.; Pacheco, S.D.G.; Zanoveli, J.M.; da Cunha, J.M. Bixin attenuates mechanical allodynia, anxious and depressive-like behaviors associated with experimental diabetes counteracting oxidative stress and glycated hemoglobin. Brain Res. 2021, 1767, 147557. [Google Scholar] [CrossRef]
- Zhang, F.F.; Morioka, N.; Kitamura, T.; Fujii, S.; Miyauchi, K.; Nakamura, Y.; Hisaoka-Nakashima, K.; Nakata, Y. Lycopene ameliorates neuropathic pain by upregulating spinal astrocytic connexin 43 expression. Life Sci. 2016, 155, 116–122. [Google Scholar] [CrossRef]
- Kuhad, A.; Chopra, K. Lycopene ameliorates thermal hyperalgesia and cold allodynia in STZ-induced diabetic rat. Indian J. Exp. Biol. 2008, 46, 108–111. [Google Scholar]
- Kuhad, A.; Sharma, S.; Chopra, K. Lycopene attenuates thermal hyperalgesia in a diabetic mouse model of neuropathic pain. Eur. J. Pain 2008, 12, 624–632. [Google Scholar] [CrossRef]
- Ansari, M.S.; Gupta, N.P. A comparison of lycopene and orchidectomy vs orchidectomy alone in the management of advanced prostate cancer. BJU Int. 2003, 92, 375–378. [Google Scholar] [CrossRef] [Green Version]
- Ansari, M.S.; Gupta, N.P. Lycopene: A novel drug therapy in hormone refractory metastatic prostate cancer. Urol. Oncol. Semin. Orig. Investig. 2004, 22, 415–420. [Google Scholar] [CrossRef]
- Fearon, K.; Strasser, F.; Anker, S.D.; Bosaeus, I.; Bruera, E.; Fainsinger, R.L.; Jatoi, A.; Loprinzi, C.; MacDonald, N.; Mantovani, G.; et al. Definition and classification of cancer cachexia: An international consensus. Lancet Oncol. 2011, 12, 489–495. [Google Scholar] [CrossRef]
- Sadeghi, M.; Keshavarz-Fathi, M.; Baracos, V.; Arends, J.; Mahmoudi, M.; Rezaei, N. Cancer cachexia: Diagnosis, assessment, and treatment. Crit. Rev. Oncol. Hematol. 2018, 127, 91–104. [Google Scholar] [CrossRef]
- Peixoto da Silva, S.; Santos, J.M.O.; Costa ESilva, M.P.; Gil da Costa, R.M.; Medeiros, R. Cancer cachexia and its pathophysiology: Links with sarcopenia, anorexia and asthenia. J. Cachexia Sarcopenia Muscle 2020, 11, 619–635. [Google Scholar] [CrossRef]
- Baracos, V.E.; Martin, L.; Korc, M.; Guttridge, D.C.; Fearon, K.C.H. Cancer-associated cachexia. Nat. Rev. Dis. Primers 2018, 4, 17105. [Google Scholar] [CrossRef]
- Cremades, O.; Parrado, J.; Jover, M.; Collantes de Terán, L.; Gutiérrez, J.F.; Bautista Palomas, J.D. Nutritional treatment of cancer cachexia in rats. Eur. J. Nutr. 2007, 46, 347–353. [Google Scholar] [CrossRef]
- Van de Worp, W.R.P.H.; Schols, A.M.W.J.; Theys, J.; van Helvoort, A.; Langen, R.C.J. Nutritional Interventions in Cancer Cachexia: Evidence and Perspectives from Experimental Models. Front. Nutr. 2020, 7, 601329. [Google Scholar] [CrossRef]
- Stene, G.B.; Helbostad, J.L.; Balstad, T.R.; Riphagen, I.I.; Kaasa, S.; Oldervoll, L.M. Effect of physical exercise on muscle mass and strength in cancer patients during treatment—A systematic review. Crit. Rev. Oncol. 2013, 88, 573–593. [Google Scholar] [CrossRef] [Green Version]
- Zick, S.M.; Colacino, J.; Cornellier, M.; Khabir, T.; Surnow, K.; Djuric, Z. Fatigue reduction diet in breast cancer survivors: A pilot randomized clinical trial. Breast Cancer Res. Treat. 2017, 161, 299–310. [Google Scholar] [CrossRef]
- O’Halloran, A.M.; Laird, E.J.; Feeney, J.; Healy, M.; Moran, R.; Beatty, S.; Nolan, J.M.; Molloy, A.M.; Kenny, R.A. Circulating Micronutrient Biomarkers Are Associated With 3 Measures of Frailty: Evidence From the Irish Longitudinal Study on Ageing. J. Am. Med. Dir. Assoc. 2020, 21, 240–247. [Google Scholar] [CrossRef] [Green Version]
- Kochlik, B.; Stuetz, W.; Pérès, K.; Pilleron, S.; Féart, C.; García García, F.J.; Bandinelli, S.; Gomez-Cabrero, D.; Rodriguez-Mañas, L.; Grune, T.; et al. Associations of fat-soluble micronutrients and redox biomarkers with frailty status in the FRAILOMIC initiative. J. Cachexia Sarcopenia Muscle 2019, 10, 1339–1346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kritchevsky, S.B.; Bush, A.J.; Pahor, M.; Gross, M.D. Serum carotenoids and markers of inflammation in nonsmokers. Am. J. Epidemiol. 2000, 152, 1065–1071. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.K.; Park, Y.S.; Choi, D.K.; Chang, H.I. Effects of astaxanthin on the production of NO and the expression of COX-2 and iNOS in LPS-stimulated BV2 microglial cells. J. Microbiol. Biotechnol. 2008, 18, 1990–1996. [Google Scholar] [PubMed]
- Yoshihisa, Y.; Rehman, M.U.; Shimizu, T. Astaxanthin, a xanthophyll carotenoid, inhibits ultraviolet-induced apoptosis in keratinocytes. Exp. Dermatol. 2014, 23, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Park, C.H.; Xu, F.H.; Roh, S.S.; Song, Y.O.; Uebaba, K.; Noh, J.S.; Yokozawa, T. Astaxanthin and Corni Fructus protect against diabetes-induced oxidative stress, inflammation, and advanced glycation end product in livers of streptozotocin-induced diabetic rats. J. Med. Food. 2015, 18, 337–344. [Google Scholar] [CrossRef]
- Shokri-Mashhadi, N.; Tahmasebi, M.; Mohammadi-Asl, J.; Zakerkish, M.; Mohammadshahi, M. The antioxidant and anti-inflammatory effects of astaxanthin supplementation on the expression of miR-146a and miR-126 in patients with type 2 diabetes mellitus: A randomised, double-blind, placebo-controlled clinical trial. Int. J. Clin. Pract. 2021, 75, e14022. [Google Scholar] [CrossRef]
- Andersen, L.P.; Holck, S.; Kupcinskas, L.; Kiudelis, G.; Jonaitis, L.; Janciauskas, D.; Permin, H.; Wadström, T. Gastric inflammatory markers and interleukins in patients with functional dyspepsia treated with astaxanthin. FEMS Immunol. Med. Microbiol. 2007, 50, 244–248. [Google Scholar] [CrossRef] [Green Version]
- Nishida, Y.; Nawaz, A.; Kado, T.; Takikawa, A.; Igarashi, Y.; Onogi, Y.; Wada, T.; Sasaoka, T.; Yamamoto, S.; Sasahara, M.; et al. Astaxanthin stimulates mitochondrial biogenesis in insulin resistant muscle via activation of AMPK pathway. J. Cachexia Sarcopenia Muscle 2020, 11, 241–258. [Google Scholar] [CrossRef] [Green Version]
- Van Steenwijk, H.P.; Bast, A.; de Boer, A. The Role of Circulating Lycopene in Low-Grade Chronic Inflammation: A Systematic Review of the Literature. Molecules 2020, 25, 4378. [Google Scholar] [CrossRef]
- Huang, C.S.; Fan, Y.E.; Lin, C.Y.; Hu, M.L. Lycopene inhibits matrix metalloproteinase-9 expression and down-regulates the binding activity of nuclear factor-kappa B and stimulatory protein-1. J. Nutr. Biochem. 2007, 18, 449–456. [Google Scholar] [CrossRef]
- Cha, J.H.; Kim, W.K.; Ha, A.W.; Kim, M.H.; Chang, M.J. Anti-inflammatory effect of lycopene in SW480 human colorectal cancer cells. Nutr. Res. Pract. 2017, 11, 90–96. [Google Scholar] [CrossRef] [Green Version]
- Luvizotto, R.E.A.; Nascimento, A.F.; Imaizumi, E.; Pierine, D.T.; Conde, S.J.; Correa, C.R.; Yeum, K.J.; Ferreira, A.L. Lycopene supplementation modulates plasma concentrations and epididymal adipose tissue mRNA of leptin, resistin and IL-6 in diet-induced obese rats. Br. J. Nutr. 2013, 110, 1803–1809. [Google Scholar] [CrossRef] [Green Version]
- Fenni, S.; Hammou, H.; Astier, J.; Bonnet, L.; Karkeni, E.; Couturier, C.; Tourniaire, F.; Landrier, J.F. Lycopene and tomato powder supplementation similarly inhibit high-fat diet induced obesity, inflammatory response, and associated metabolic disorders. Mol. Nutr. Food Res. 2017, 61, 1601083. [Google Scholar] [CrossRef] [PubMed]
- Burton-Freeman, B.; Talbot, J.; Park, E.; Krishnankutty, S.; Edirisinghe, I. Protective activity of processed tomato products on postprandial oxidation and inflammation: A clinical trial in healthy weight men and women. Mol. Nutr. Food Res. 2012, 56, 622–631. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Paik, J.K.; Kim, O.Y.; Park, H.W.; Lee, J.H.; Jang, Y. Effects of lycopene supplementation on oxidative stress and markers of endothelial function in healthy men. Atherosclerosis 2011, 215, 189–195. [Google Scholar] [CrossRef]
- Li, Y.F.; Chang, Y.Y.; Huang, H.C.; Wu, Y.C.; Yang, M.D.; Chao, P.M. Tomato juice supplementation in young women reduces inflammatory adipokine levels independently of body fat reduction. Nutrition 2015, 31, 691–696. [Google Scholar] [CrossRef]
- Jacob, K.; Periago, M.J.; Böhm, V.; Berruezo, G.R. Influence of lycopene and vitamin C from tomato juice on biomarkers of oxidative stress and inflammation. Br. J. Nutr. 2008, 99, 137–146. [Google Scholar] [CrossRef]
- Gajendragadkar, P.R.; Hubsch, A.; Mäki-Petäjä, K.M.; Serg, M.; Wilkinson, I.B.; Cheriyan, J. Effects of oral lycopene supplementation on vascular function in patients with cardiovascular disease and healthy volunteers: A randomised controlled trial. PLoS ONE 2014, 9, e99070. [Google Scholar] [CrossRef]
- Riso, P.; Brusamolino, A.; Martinetti, A.; Porrini, M. Effect of a tomato drink intervention on insulin-like growth factor (IGF)-1 serum levels in healthy subjects. Nutr. Cancer. 2006, 55, 157–162. [Google Scholar] [CrossRef]
- Thies, F.; Masson, L.F.; Rudd, A.; Vaughan, N.; Tsang, C.; Brittenden, J.; Simpson, W.G.; Duthie, S.; Horgan, G.W.; Duthie, G. Effect of a tomato-rich diet on markers of cardiovascular disease risk in moderately overweight, disease-free, middle-aged adults: A randomized controlled trial. Am. J. Clin. Nutr. 2012, 95, 1013–1022. [Google Scholar] [CrossRef] [Green Version]
- Markovits, N.; Ben Amotz, A.; Levy, Y. The effect of tomato-derived lycopene on low carotenoids and enhanced systemic inflammation and oxidation in severe obesity. Isr. Med. Assoc. J. 2009, 11, 598–601. [Google Scholar]
- Ghavipour, M.; Saedisomeolia, A.; Djalali, M.; Sotoudeh, G.; Eshraghyan, M.R.; Moghadam, A.M.; Wood, L.G. Tomato juice consumption reduces systemic inflammation in overweight and obese females. Br. J. Nutr. 2013, 109, 2031–2035. [Google Scholar] [CrossRef]
- Colmán-Martínez, M.; Martínez-Huélamo, M.; Valderas-Martínez, P.; Arranz-Martínez, S.; Almanza-Aguilera, E.; Corella, D.; Estruch, R.; Lamuela-Raventós, R.M. trans-Lycopene from tomato juice attenuates inflammatory biomarkers in human plasma samples: An intervention trial. Mol. Nutr. Food Res. 2017, 61, 1600993. [Google Scholar] [CrossRef] [PubMed]
- Biddle, M.J.; Lennie, T.A.; Bricker, G.V.; Kopec, R.E.; Schwartz, S.J.; Moser, D.K. Lycopene dietary intervention: A pilot study in patients with heart failure. J. Cardiovasc. Nurs. 2015, 30, 205–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Upritchard, J.E.; Sutherland, W.H.; Mann, J.I. Effect of supplementation with tomato juice, vitamin E, and vitamin C on LDL oxidation and products of inflammatory activity in type 2 diabetes. Diabetes Care. 2000, 23, 733–738. [Google Scholar] [CrossRef] [Green Version]
- Xaplanteris, P.; Vlachopoulos, C.; Pietri, P.; Terentes-Printzios, D.; Kardara, D.; Alexopoulos, N.; Aznaouridis, K.; Miliou, A.; Stefanadis, C. Tomato paste supplementation improves endothelial dynamics and reduces plasma total oxidative status in healthy subjects. Nutr. Res. 2012, 32, 390–394. [Google Scholar] [CrossRef]
- Riso, P.; Visioli, F.; Erba, D.; Testolin, G.; Porrini, M. Lycopene and vitamin C concentrations increase in plasma and lymphocytes after tomato intake. Effects on cellular antioxidant protection. Eur. J. Clin. Nutr. 2004, 58, 1350–1358. [Google Scholar] [CrossRef]
- Porrini, M.; Riso, P.; Brusamolino, A.; Berti, C.; Guarnieri, S.; Visioli, F. Daily intake of a formulated tomato drink affects carotenoid plasma and lymphocyte concentrations and improves cellular antioxidant protection. Br. J. Nutr. 2005, 93, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.R.; Wang, Y.Y.; Dan, X.G.; Kumar, A.; Ye, T.Z.; Yu, Y.Y.; Yang, L.G. Anti-inflammatory potential of β-cryptoxanthin against LPS-induced inflammation in mouse Sertoli cells. Reprod. Toxicol. 2016, 60, 148–155. [Google Scholar] [CrossRef]
- Liu, C.; Bronson, R.T.; Russell, R.M.; Wang, X.D. β-Cryptoxanthin supplementation prevents cigarette smoke-induced lung inflammation, oxidative damage, and squamous metaplasia in ferrets. Cancer Prev. Res. 2011, 4, 1255–1266. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Shi, D.; Wang, X.; Zhang, Y.; Duan, W.; Li, Y. β-cryptoxanthin alleviates myocardial ischaemia/reperfusion injury by inhibiting NF-κB-mediated inflammatory signalling in rats. Arch. Physiol. Biochem. 2020, 128, 1–8. [Google Scholar] [CrossRef]
- Sahin, K.; Orhan, C.; Akdemir, F.; Tuzcu, M.; Sahin, N.; Yılmaz, I.; Juturu, V. β-Cryptoxanthin ameliorates metabolic risk factors by regulating NF-κB and Nrf2 pathways in insulin resistance induced by high-fat diet in rodents. Food Chem. Toxicol. 2017, 107 Pt. A, 270–279. [Google Scholar] [CrossRef]
- Walston, J.; McBurnie, M.A.; Newman, A.; Tracy, R.P.; Kop, W.J.; Hirsch, C.H.; Gottdiener, J.; Fried, L.P. Frailty and activation of the inflammation and coagulation systems with and without clinical comorbidities: Results from the Cardiovascular Health Study. Arch. Intern. Med. 2002, 162, 2333–2341. [Google Scholar] [CrossRef] [PubMed]
- Koelman, L.; Pivovarova-Ramich, O.; Pfeiffer, A.F.H.; Grune, T.; Aleksandrova, K. Cytokines for evaluation of chronic inflammatory status in ageing research: Reliability and phenotypic characterisation. Immun. Ageing 2019, 16, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alberro, A.; Iribarren-Lopez, A.; Sáenz-Cuesta, M.; Matheu, A.; Vergara, I.; Otaegui, D. Inflammaging markers characteristic of advanced age show similar levels with frailty and dependency. Sci. Rep. 2021, 11, 4358. [Google Scholar] [CrossRef] [PubMed]
- Zupo, R.; Castellana, F.; De Nucci, S.; Sila, A.; Aresta, S.; Buscemi, C.; Randazzo, C.; Buscemi, S.; Triggiani, V.; De Pergola, G.; et al. Role of Dietary Carotenoids in Frailty Syndrome: A Systematic Review. Biomedicines 2022, 10, 632. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.Z.; Valencia, A.P.; VanDoren, M.P.; Shankland, E.G.; Roshanravan, B.; Conley, K.E.; Marcinek, D.J. Astaxanthin supplementation enhances metabolic adaptation with aerobic training in the elderly. Physiol. Rep. 2021, 9, e14887. [Google Scholar] [CrossRef]
- Liu, S.Z.; Ali, A.S.; Campbell, M.D.; Kilroy, K.; Shankland, E.G.; Roshanravan, B.; Marcinek, D.J.; Conley, K.E. Building strength, endurance, and mobility using an astaxanthin formulation with functional training in elderly. J. Cachexia Sarcopenia Muscle 2018, 9, 826–833. [Google Scholar] [CrossRef]
- Baralic, I.; Andjelkovic, M.; Djordjevic, B.; Dikic, N.; Radivojevic, N.; Suzin-Zivkovic, V.; Radojevic-Skodric, S.; Pejic, S. Effect of Astaxanthin Supplementation on Salivary IgA, Oxidative Stress, and Inflammation in Young Soccer Players. Evid.-Based Complement. Altern. Med. 2015, 2015, 783761. [Google Scholar] [CrossRef]
- Klinkenberg, L.J.; Res, P.T.; Haenen, G.R.; Bast, A.; van Loon, L.J.; van Dieijen-Visser, M.P.; Meex, S.J. Effect of antioxidant supplementation on exercise-induced cardiac troponin release in cyclists: A randomized trial. PLoS ONE 2013, 8, e79280. [Google Scholar] [CrossRef]
- Safakhah, H.A.; Damghanian, F.; Bandegi, A.R.; Miladi-Gorji, H. Effect of crocin on morphine tolerance and serum BDNF levels in a rat model of neuropathic pain. Pharmacol. Rep. 2020, 72, 305–313. [Google Scholar] [CrossRef]
- Böhm, V.; Lietz, G.; Olmedilla-Alonso, B.; Phelan, D.; Reboul, E.; Bánati, D.; Borel, P.; Corte-Real, J.; de Lera, A.R.; Desmarchelier, C.; et al. From carotenoid intake to carotenoid blood and tissue concentrations—implications for dietary intake recommendations. Nutr. Rev. 2021, 79, 544–573. [Google Scholar] [CrossRef]
- Haseen, F.; Cantwell, M.M.; O’Sullivan, J.M.; Murray, L.J. Is there a benefit from lycopene supplementation in men with prostate cancer? A systematic review. Prostate Cancer Prostatic Dis. 2009, 12, 325–332. [Google Scholar] [CrossRef]
- Middha, P.; Weinstein, S.J.; Männistö, S.; Albanes, D.; Mondul, A.M. β-Carotene Supplementation and Lung Cancer Incidence in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study: The Role of Tar and Nicotine. Nicotine Tob. Res. 2019, 21, 1045–1050. [Google Scholar] [CrossRef] [Green Version]
- Redlich, C.A.; Chung, J.S.; Cullen, M.R.; Blaner, W.S.; Van Bennekum, A.M.; Berglund, L. Effect of long-term beta-carotene and vitamin A on serum cholesterol and triglyceride levels among participants in the Carotene and Retinol Efficacy Trial (CARET). Atherosclerosis 1999, 145, 425–432. [Google Scholar] [CrossRef]
- Rock, C.L.; Swendseid, M.E. Plasma carotenoid levels in anorexia nervosa and in obese patients. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1993; Volume 214, pp. 116–123. [Google Scholar] [CrossRef]
Is There Any Benefit from Supplementation of Carotenoids in the Treatment of Cancer-Related Symptoms? |
---|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zasowska-Nowak, A.; Nowak, P.J.; Cialkowska-Rysz, A. Carotenoids in Palliative Care—Is There Any Benefit from Carotenoid Supplementation in the Adjuvant Treatment of Cancer-Related Symptoms? Nutrients 2022, 14, 3183. https://doi.org/10.3390/nu14153183
Zasowska-Nowak A, Nowak PJ, Cialkowska-Rysz A. Carotenoids in Palliative Care—Is There Any Benefit from Carotenoid Supplementation in the Adjuvant Treatment of Cancer-Related Symptoms? Nutrients. 2022; 14(15):3183. https://doi.org/10.3390/nu14153183
Chicago/Turabian StyleZasowska-Nowak, Anna, Piotr Jan Nowak, and Aleksandra Cialkowska-Rysz. 2022. "Carotenoids in Palliative Care—Is There Any Benefit from Carotenoid Supplementation in the Adjuvant Treatment of Cancer-Related Symptoms?" Nutrients 14, no. 15: 3183. https://doi.org/10.3390/nu14153183
APA StyleZasowska-Nowak, A., Nowak, P. J., & Cialkowska-Rysz, A. (2022). Carotenoids in Palliative Care—Is There Any Benefit from Carotenoid Supplementation in the Adjuvant Treatment of Cancer-Related Symptoms? Nutrients, 14(15), 3183. https://doi.org/10.3390/nu14153183