Metabolic Score for Insulin Resistance (METS-IR) and Circulating Cytokines in Older Persons: The Role of Gender and Body Mass Index
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Study Design
2.2. Clinical and Biochemical Variable Assessment
2.3. Multiplex Assay
2.4. Statistical Analyses
3. Results
3.1. Sample Characteristics
3.2. Plasma Cytokines and METS-IR in the Overall Population
3.3. Plasma Cytokines, METS-IR, and Gender
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barzilai, N.; Huffman, D.M.; Muzumdar, R.H.; Bartke, A. The critical role of metabolic pathways in aging. Diabetes 2012, 61, 1315–1322. [Google Scholar] [CrossRef] [Green Version]
- Sanada, F.; Taniyama, Y.; Muratsu, J.; Otsu, R.; Shimizu, H.; Rakugi, H.; Morishita, R. Source of Chronic Inflammation in Aging. Front. Cardiovasc. Med. 2018, 5, 12. [Google Scholar] [CrossRef] [Green Version]
- He, W.; Yuan, T.; Choezom, D.; Hunkler, H.; Annamalai, K.; Lupse, B.; Maedler, K. Ageing potentiates diet-induced glucose intolerance, β-cell failure and tissue inflammation through TLR4. Sci. Rep. 2018, 8, 2767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno-Fernandez, M.E.; Sharma, V.; Stankiewicz, T.E.; Oates, J.R.; Doll, J.R.; Damen, M.S.M.A.; Almanan, M.A.T.A.; Chougnet, C.A.; Hildeman, D.A.; Divanovic, S. Aging mitigates the severity of obesity-associated metabolic sequelae in a gender independent manner. Nutr. Diabetes 2021, 11, 15. [Google Scholar] [CrossRef] [PubMed]
- Brüünsgaard, H.; Pedersen, B.K. Age-related inflammatory cytokines and disease. Immunol. Allergy Clin. North Am. 2003, 23, 15–39. [Google Scholar] [CrossRef]
- Bruunsgaard, H.; Pedersen, M.; Pedersen, B.K. Aging and pro-inflammatory cytokines. Curr. Opin. Hematol. 2001, 8, 131–136. [Google Scholar] [CrossRef]
- Shoelson, S.E.; Lee, J.; Goldfine, A.B. Inflammation and insulin resistance. J. Clin. Investig. 2006, 116, 1793–1801. [Google Scholar] [CrossRef]
- Martinez, K.E.; Tucker, L.A.; Bailey, B.W.; LeCheminant, J.D. Expanded normal weight obesity and insulin resistance in US adults of the national health and nutrition examination survey. J. Diabetes Res. 2017, 2017, 9502643. [Google Scholar] [CrossRef]
- Makki, K.; Froguel, P.; Wolowczuk, I. Adipose Tissue in Obesity-Related Inflammation and Insulin Resistance: Cells, Cytokines, and Chemokines. ISRN Inflamm. 2013, 2013, 139239. [Google Scholar] [CrossRef] [Green Version]
- Tataranni, P.A.; Ortega, E. A burning question: Does an adipokine-induced activation of the immune system mediate the effect of overnutrition on type 2 diabetes? Diabetes 2005, 54, 917–927. [Google Scholar] [CrossRef] [Green Version]
- Das, A.; Mukhopadhyay, S. The Evil Axis of Obesity, Inflammation and Type-2 Diabetes. Endocr. Metab. Immune Disord. Drug Targets 2012, 11, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Dandona, P.; Aljada, A.; Bandyopadhyay, A. Inflammation: The link between insulin resistance, obesity and diabetes. Trends Immunol. 2004, 25, 4–7. [Google Scholar] [CrossRef] [PubMed]
- Gayoso-Diz, P.; Otero-Gonzalez, A.; Rodriguez-Alvarez, M.X.; Gude, F.; Cadarso-Suarez, C.; García, F.; De Francisco, A. Insulin resistance index (HOMA-IR) levels in a general adult population: Curves percentile by gender and age. The EPIRCE study. Diabetes Res. Clin. Pract. 2011, 94, 146–155. [Google Scholar] [CrossRef]
- Bello-Chavolla, O.Y.; Almeda-Valdes, P.; Gomez-Velasco, D.; Viveros-Ruiz, T.; Cruz-Bautista, I.; Romo-Romo, A.; Sánchez-Lázaro, D.; Meza-Oviedo, D.; Vargas-Vázquez, A.; Campos, O.A.; et al. METS-IR, a novel score to evaluate insulin sensitivity, is predictive of visceral adiposity and incident type 2 diabetes. Eur. J. Endocrinol. 2018, 178, 533–544. [Google Scholar] [CrossRef] [Green Version]
- Chait, A.; den Hartigh, L.J. Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. Front. Cardiovasc. Med. 2020, 7, 22. [Google Scholar] [CrossRef] [Green Version]
- Artemniak-Wojtowicz, D.; Pyrżak, B.; Kucharska, A.M. Obesity and chronic inflammation crosslinking. Cent. Eur. J. Immunol. 2020, 45, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Ellulu, M.S.; Patimah, I.; Khaza’ai, H.; Rahmat, A.; Abed, Y. Obesity & inflammation: The linking mechanism & the complications. Arch. Med. Sci. 2017, 13, 851–863. [Google Scholar] [PubMed]
- Schmidt, F.M.; Weschenfelder, J.; Sander, C.; Minkwitz, J.; Thormann, J.; Chittka, T.; Mergl, R.; Kirkby, K.C.; Faßhauer, M.; Stumvoll, M.; et al. Inflammatory cytokines in general and central obesity and modulating effects of physical Activity. PLoS ONE 2015, 10, e0121971. [Google Scholar] [CrossRef]
- Rehman, K.; Akash, M.S.H. Mechanisms of inflammatory responses and development of insulin resistance: How are they interlinked? J. Biomed. Sci. 2016, 23, 87. [Google Scholar] [CrossRef] [Green Version]
- Al-Mansoori, L.; Al-Jaber, H.; Prince, M.S.; Elrayess, M.A. Role of Inflammatory Cytokines, Growth Factors and Adipokines in Adipogenesis and Insulin Resistance. Inflammation 2022, 45, 31–44. [Google Scholar] [CrossRef]
- Lodolce, J.P.; Burkett, P.R.; Koka, R.M.; Boone, D.L.; Ma, A. Regulation of lymphoid homeostasis by interleukin-15. Cytokine Growth Factor Rev. 2002, 13, 429–439. [Google Scholar] [CrossRef]
- Shi, J.; Fan, J.; Su, Q.; Yang, Z. Cytokines and Abnormal Glucose and Lipid Metabolism. Front. Endocrinol. 2019, 10, 703. [Google Scholar] [CrossRef] [PubMed]
- Barra, N.G.; Chew, M.V.; Holloway, A.C.; Ashkar, A.A. Interleukin-15 treatment improves glucose homeostasis and insulin sensitivity in obese mice. Diabetes Obes. Metab. 2012, 14, 190–193. [Google Scholar] [CrossRef]
- Pedersen, B.K.; Febbraio, M.A. Muscles, exercise and obesity: Skeletal muscle as a secretory organ. Nat. Rev. Endocrinol. 2012, 8, 457–465. [Google Scholar] [CrossRef]
- Barra, N.G.; Reid, S.; MacKenzie, R.; Werstuck, G.; Trigatti, B.L.; Richards, C.; Holloway, A.C.; Ashkar, A.A. Interleukin-15 contributes to the regulation of murine adipose tissue and human adipocytes. Obesity 2010, 18, 1601–1607. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, A.R.; Hojman, P.; Erikstrup, C.; Fischer, C.P.; Plomgaard, P.; Mounier, R.; Mortensen, O.H.; Broholm, C.; Taudorf, S.; Krogh-Madsen, R.; et al. Association between interleukin-15 and obesity: Interleukin-15 as a potential regulator of fat mass. J. Clin. Endocrinol. Metab. 2008, 93, 4486–4493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herbst, R.S. Review of epidermal growth factor receptor biology. Int. J. Radiat. Oncol. Biol. Phys. 2004, 59, S21–S26. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Song, Y.; Wang, D.; Zhang, D.; Huang, X. Serum Levels of PDGF, EGF, and sFlt-1 in Patients with Polycystic Ovary Syndrome and Their Predictive Effects on Pregnancy Outcomes. Evidence-Based Complement. Altern. Med. 2021, 2021, 7118464. [Google Scholar] [CrossRef]
- Kurachi, H.; Adachi, H.; Ohtsuka, S.; Morishige, K.I.; Amemiya, K.; Keno, Y.; Shimomura, I.; Tokunaga, K.; Miyake, A.; Matsuzawa, Y.; et al. Involvement of epidermal growth factor in inducing obesity in ovariectomized mice. Am. J. Physiol. Endocrinol. Metab. 1993, 265, 97–106. [Google Scholar] [CrossRef]
- Herder, C.; Haastert, B.; Müller-Scholze, S.; Koenig, W.; Thorand, B.; Holle, R.; Wichmann, H.E.; Scherbaum, W.A.; Martin, S.; Kolb, H. Association of systemic chemokine concentrations with impaired glucose tolerance and type 2 diabetes: Results from the cooperative health research in the region of augsburg survey S4 (KORA S4). Diabetes 2005, 54, S11–S17. [Google Scholar] [CrossRef] [Green Version]
- Vasudevan, A.R.; Wu, H.; Xydakis, A.M.; Jones, P.H.; Smith, E.O.B.; Sweeney, J.F.; Corry, D.B.; Ballantyne, C.M. Eotaxin and obesity. J. Clin. Endocrinol. Metab. 2006, 91, 256–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.; Anshita, D.; Ravichandiran, V. MCP-1: Function, regulation, and involvement in disease. Int. Immunopharmacol. 2021, 101, 107598. [Google Scholar] [CrossRef] [PubMed]
- Kanda, H.; Tateya, S.; Tamori, Y.; Kotani, K.; Hiasa, K.I.; Kitazawa, R.; Kitazawa, S.; Miyachi, H.; Maeda, S.; Egashira, K.; et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J. Clin. Investig. 2006, 116, 1494–1505. [Google Scholar] [CrossRef]
- Nio, Y.; Yamauchi, T.; Iwabu, M.; Okada-Iwabu, M.; Funata, M.; Yamaguchi, M.; Ueki, K.; Kadowaki, T. Monocyte chemoattractant protein-1 (MCP-1) deficiency enhances alternatively activated M2 macrophages and ameliorates insulin resistance and fatty liver in lipoatrophic diabetic A-ZIP transgenic mice. Diabetologia 2012, 55, 3350–3358. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.F.; Shabayek, M.I.; Abdel Ghany, M.E.; El-Hefnawy, M.H.; El-Mesallamy, H.O. Role of CTRP3, CTRP9 and MCP-1 for the evaluation of T2DM associated coronary artery disease in Egyptian postmenopausal females. PLoS ONE 2018, 13, e0208038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, A.K.; O’Brien, M.; Mau, T.; Qi, N.; Yung, R. Adipose Tissue Senescence and Inflammation in Aging is Reversed by the Young Milieu. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2019, 74, 1709–1715. [Google Scholar] [CrossRef] [PubMed]
- Cartier, A.; Côté, M.; Lemieux, I.; Pérusse, L.; Tremblay, A.; Bouchard, C.; Després, G.P. Sex differences in inflammatory markers: what is the contribution of visceral adiposity? Am. J. Clin. Nutr. 2009, 89, 1307–1314. [Google Scholar] [CrossRef] [Green Version]
- Duarte, A.C.; Hrynchak, M.V.; Gonçalves, I.; Quintela, T.; Santos, C.R.A. Sex Hormone Decline and Amyloid β Synthesis, Transport and Clearance in the Brain. J. Neuroendocrinol. 2016, 28. [Google Scholar] [CrossRef]
Total Sample n = 132 | Men n = 50 | Women n = 82 | p | |
---|---|---|---|---|
Age, year | 78.5 ± 6.5 | 86.12 ± 6.45 | 78.1 ± 6.9 | 0.436 |
Weight | 67.2 ± 12.3 | 73.7 ± 10.5 | 63.3 ± 11.7 | <0.0001 |
Height | 159.1 ± 9.1 | 167.2 ± 6.8 | 154.2 ± 167.2 | <0.0001 |
BMI | 26.4 ± 4.2 | 26.3 ± 3.4 | 26.5 ± 4.6 | 0.746 |
Glucose (mg/dL) | 102.1 ± 28.5 | 103.5 ± 26.6 | 101.2 ± 29.7 | 0.661 |
Cholesterol total (mg/dL) | 205.0 ± 42.7 | 193.7 ± 47.4 | 212.0 ± 38.7 | 0.017 |
LDL-Cholesterol (mg/dL) | 122.4 ± 36.9 | 112.8 ± 39.1 | 127.9 ± 34.8 | 0.037 |
HDL-Cholesterol (mg/dL) | 57.7 ± 14.7 | 53.0 ± 14.3 | 60.5 ± 14.3 | 0.004 |
Triglicerides (mg/dL) | 129.4 ± 57.3 | 131.4 ± 68.4 | 128.1 ± 49.7 | 0.749 |
CRP (mg/L) | 0.47 ± 0.68 | 0.52 ± 0.92 | 0.45 ± 0.54 | 0.628 |
Clearance creatinine (BIS1) | 67.5 ± 21.6 | 66.8 ± 21.6 | 67.9 ± 21.7 | 0.796 |
METS-IR | 38.4 ± 8.0 | 39.2 ± 8.2 | 37.9 ± 7.8 | 0.345 |
B | CI 95% | p | |
---|---|---|---|
Model 1 | |||
Age | −0.168 | −0.375; 0.040 | 0.112 |
Gender | 1.319 | −1.487; 4.125 | 0.354 |
IL-15 | −0.508 | −0.990; 0.025 | 0.039 |
Model 2 | |||
Age | 0.110 | 0.019; 0.201 | 0.018 |
Gender | 1.734 | 0.542; 2.926 | 0.005 |
IL-15 | −0.090 | −0.121; -0.301 | 0.400 |
BMI | 1.755 | 1.611; 1.899 | <0.0001 |
Men n = 50 | Women n = 82 | p | |
---|---|---|---|
EGF | 40.7 ± 54.0 | 48.6 ± 40.8 | 0.633 |
Eotaxin | 142.8 ± 70.1 | 147.7 ± 93.6 | 0.749 |
G-CSF | 35.1 ± 17.6 | 45.5 ± 45.2 | 0.092 |
GM-CSF | 6.5 ± 2.6 | 7.8 ± 5.1 | 0.107 |
INF-A2 | 50.6 ± 14.1 | 54.7 ± 21.5 | 0.239 |
INF- gamma | 6.7 ± 2.4 | 7.6 ± 4.1 | 0.160 |
IL-10 | 1.7 ± 1.8 | 2.5 ± 5.7 | 0.298 |
IL-12 p 40 | 9.0 ± 19.5 | 20.8 ± 42.0 | 0.066 |
IL-12 p 70 | 6.9 ± 3.5 | 7.3 ± 8.0 | 0.772 |
IL-13 | 14.2 ± 5.9 | 11.2 ± 5.5 | 0.770 |
IL-15 | 2.2 ± 1.26 | 2.6 ± 3.4 | 0.442 |
IL-17 | 8.3 ± 2.3 | 8.1 ± 3.7 | 0.730 |
IL-1 RA | 22.6 ± 12.0 | 31.2 ± 15.2 | 0.734 |
IL-1 a | 53.4 ±11.8 | 54.8 ± 27.4 | 0.750 |
IL-1 b | 2.7 ± 0.8 | 3.1 ± 1.8 | 0.195 |
IL-2 | 0.9 ± 1.0 | 1.5 ± 3.1 | 0.190 |
IL-3 | 0.58 ± 0.11 | 0.53 ± 0.12 | 0.039 |
IL-4 | 10.6 ± 7.11 | 9.6 ± 10.2 | 0.568 |
IL-5 | 1.8 ± 7.3 | 2.2 ± 10.6 | 0.810 |
IL-6 | 1.4 ± 1.1 | 2.4 ± 3.1 | 0.024 |
IL-7 | 1.4 ± 1.9 | 2.5 ± 3.3 | 0.032 |
IL-8 | 4.7 ± 8.2 | 6.7 ± 10.8 | 0.251 |
IP-10 | 722.8 ± 425.5 | 821.2 ± 454.1 | 0.221 |
MCP-1 | 391.0 ± 154.4 | 435.3 ± 271.8 | 0.295 |
MIP-1 a | 3.6 ± 6.8 | 5.2 ± 9.2 | 0.289 |
MIP-1 b | 22.6 ± 17.2 | 24.8 ± 23.2 | 0.559 |
TNF-a | 18.0 ± 10.3 | 21.1 ± 16.1 | 0.237 |
TNF-b | 11.5 ± 5.2 | 15.9 ± 7.0 | 0.705 |
VEGF | 155.0 ± 54.3 | 197.5 ± 30.8 | 0.337 |
RANTES | 37008 ± 38721 | 38278 ± 33646 | 0.843 |
B | CI 95% | p | |
---|---|---|---|
Model 1 | |||
Age | −0.192 | −0.415; 0.030 | 0.089 |
TC | 0.012 | −0.030; 0.054 | 0.561 |
HDL-C | −0.235 | −0.345; −0.126 | <0.0001 |
EGF | 0.016 | 0.001; 0.030 | 0.037 |
Model 2 | |||
Age | 0.091 | 0.042; 0.140 | <0.0001 |
TC | 0.000 | −0.009; 0.009 | 0.956 |
HDL-C | −0.165 | −0.189; −0.142 | <0.0001 |
EGF | −0.001 | −0.004; 0.002 | 0.571 |
BMI | 1.532 | 1.457; 1.607 | <0.0001 |
B | CI 95% | p | |
---|---|---|---|
Model 1 | |||
Age | −0.184 | −0.396; 0.027 | 0.087 |
TC | 0.018 | −0.022; 0.058 | 0.374 |
HDL-C | −0.273 | −0.378; −0.168 | <0.0001 |
Eotaxin | 0.029 | 0.130; 0.450 | 0.001 |
Model 2 | |||
Age | 0.092 | 0.040; 0.141 | <0.0001 |
TC | 0.000 | −0.009; 0.009 | 0.956 |
HDL-C | −0.163 | −0.187; −0.139 | <0.0001 |
Eotaxin | −0.001 | −0.005; −0.003 | 0.522 |
BMI | 1.537 | 1.458; 1.616 | <0.0001 |
B | CI 95% | p | |
---|---|---|---|
Model 1 | |||
Age | −0.164 | −0.384; 0.055 | 0.139 |
TC | 0.011 | −0.029; 0.052 | 0.578 |
HDL-C | −0.256 | −0.364; −0.149 | <0.0001 |
MCP-1 | 0.008 | 0.002; 0.111 | 0.007 |
Model 2 | |||
Age | 0.090 | 0.042; 0.139 | <0.0001 |
TC | 0.000 | −0.008; 0.009 | 0.940 |
HDL-C | −0.164 | −0.188; −0.141 | <0.0001 |
MCP-1 | 0.000 | −0.002; 0.001 | 0.522 |
BMI | 1.535 | 1.458; 1.611 | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boccardi, V.; Mancinetti, F.; Baroni, M.; Cecchetti, R.; Bastiani, P.; Ruggiero, C.; Mecocci, P. Metabolic Score for Insulin Resistance (METS-IR) and Circulating Cytokines in Older Persons: The Role of Gender and Body Mass Index. Nutrients 2022, 14, 3228. https://doi.org/10.3390/nu14153228
Boccardi V, Mancinetti F, Baroni M, Cecchetti R, Bastiani P, Ruggiero C, Mecocci P. Metabolic Score for Insulin Resistance (METS-IR) and Circulating Cytokines in Older Persons: The Role of Gender and Body Mass Index. Nutrients. 2022; 14(15):3228. https://doi.org/10.3390/nu14153228
Chicago/Turabian StyleBoccardi, Virginia, Francesca Mancinetti, Marta Baroni, Roberta Cecchetti, Patrizia Bastiani, Carmelinda Ruggiero, and Patrizia Mecocci. 2022. "Metabolic Score for Insulin Resistance (METS-IR) and Circulating Cytokines in Older Persons: The Role of Gender and Body Mass Index" Nutrients 14, no. 15: 3228. https://doi.org/10.3390/nu14153228
APA StyleBoccardi, V., Mancinetti, F., Baroni, M., Cecchetti, R., Bastiani, P., Ruggiero, C., & Mecocci, P. (2022). Metabolic Score for Insulin Resistance (METS-IR) and Circulating Cytokines in Older Persons: The Role of Gender and Body Mass Index. Nutrients, 14(15), 3228. https://doi.org/10.3390/nu14153228