Total Iron Concentrations in Different Biological Matrices—Influence of Physical Training
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Anthropometric Measurements
2.3. Sample Collection and Fe Determination
2.4. Statistical Evaluations
2.5. Incremental Test until Exhaustion
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abbaspour, N.; Hurrell, R.; Kelishadi, R. Review on iron and its importance for human health. J. Res. Med. Sci. 2014, 19, 164. [Google Scholar] [PubMed]
- Buratti, P.; Gammella, E.; Rybinska, I.; Cairo, G.; Recalcati, S. Recent Advances in Iron Metabolism: Relevance for Health, Exercise, and Performance. Med. Sci. Sport. Exerc. 2015, 47, 1596–1604. [Google Scholar] [CrossRef]
- Beard, J.; Tobin, B. Iron status and exercise. Am. J. Clin. Nutr. 2000, 72, 594s–597s. [Google Scholar] [CrossRef]
- Collins, J.F. Copper: Basic Physiological and Nutritional Aspects. In Molecular, Genetic, and Nutritional Aspects of Major and Trace Minerals; Collins, J.F., Ed.; Academic Press: Cambridge, UK, 2016; pp. 69–83. ISBN 978-0-12-802168-2. [Google Scholar]
- Muñoz, M.; Villar, I.; García-Erce, J.A. An update on iron physiology. World J. Gastroenterol. WJG 2009, 15, 4617. [Google Scholar] [CrossRef] [PubMed]
- Siah, C.W.; Ombiga, J.; Adams, L.A.; Trinder, D.; Olynyk, J.K. Normal iron metabolism and the pathophysiology of iron overload disorders. Clin. Biochem. Rev. 2006, 27, 5. [Google Scholar] [PubMed]
- Wolinsky, I.; Driskell, J.A. Sports Nutrition: Vitamins and Trace Elements; CRC Press: Boca Raton, FL, USA, 2005; ISBN 1420037919. [Google Scholar]
- Suedekum, N.A.; Dimeff, R.J. Iron and the athlete. Curr. Sports Med. Rep. 2005, 4, 199–202. [Google Scholar] [CrossRef]
- Geissler, C.; Singh, M. Iron, meat and health. Nutrients 2011, 3, 283–316. [Google Scholar] [CrossRef] [PubMed]
- Maynar-Mariño, M.; Grijota, F.J.; Bartolomé, I.; Siquier-Coll, J.; Román, V.T.; Muñoz, D. Influence of physical training on erythrocyte concentrations of iron, phosphorus and magnesium. J. Int. Soc. Sports Nutr. 2020, 17, 1–7. [Google Scholar]
- McKay, A.K.A.; Pyne, D.B.; Burke, L.M.; Peeling, P. Iron Metabolism: Interactions with Energy and Carbohydrate Availability. Nutrients 2020, 12, 3692. [Google Scholar] [CrossRef]
- Martínez, A.C.; Cámara, F.J.N.; Vicente, G.V. Status and metabolism of iron in elite sportsmen during a period of professional competition. Biol. Trace Elem. Res. 2002, 89, 205–213. [Google Scholar] [CrossRef]
- Terink, R.; Ten Haaf, D.; Bongers, C.W.G.; Balvers, M.G.J.; Witkamp, R.F.; Mensink, M.; Eijsvogels, T.M.H.; Gunnewiek, J.M.T.K.; Hopman, M.T.E. Changes in iron metabolism during prolonged repeated walking exercise in middle-aged men and women. Eur. J. Appl. Physiol. 2018, 118, 2349–2357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peeling, P.; Dawson, B.; Goodman, C.; Landers, G.; Trinder, D. Athletic induced iron deficiency: New insights into the role of inflammation, cytokines and hormones. Eur. J. Appl. Physiol. 2008, 103, 381–391. [Google Scholar] [CrossRef]
- DeRuisseau, K.C.; Cheuvront, S.N.; Haymes, E.M.; Sharp, R.G. Sweat iron and zinc losses during prolonged exercise. Int. J. Sport Nutr. Exerc. Metab. 2002, 12, 428–437. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M.B.; Hurrell, R.F. Nutritional iron deficiency. Lancet 2007, 370, 511–520. [Google Scholar] [CrossRef]
- Chaparro, C.M.; Suchdev, P.S. Anemia epidemiology, pathophysiology, and etiology in low-and middle-income countries. Ann. N. Y. Acad. Sci. 2019, 1450, 15. [Google Scholar] [CrossRef]
- Parks, R.B.; Hetzel, S.J.; Brooks, M.A. Iron Deficiency and Anemia among Collegiate Athletes: A Retrospective Chart Review. Med. Sci. Sports Exerc. 2017, 49, 1711–1715. [Google Scholar] [CrossRef]
- Risser, W.L.; Lee, E.J.; Poindexter, H.B.; West, M.S.; Pivarnik, J.M.; Risser, J.M.; Hickson, J.F. Iron deficiency in female athletes: Its prevalence and impact on performance. Med. Sci. Sports Exerc. 1988, 20, 116–121. [Google Scholar] [CrossRef]
- Reinke, S.; Taylor, W.R.; Duda, G.N.; Von Haehling, S.; Reinke, P.; Volk, H.-D.; Anker, S.D.; Doehner, W. Absolute and functional iron deficiency in professional athletes during training and recovery. Int. J. Cardiol. 2012, 156, 186–191. [Google Scholar] [CrossRef]
- Lukaski, H.C.; Hoverson, B.S.; Gallagher, S.K.; Bolonchuk, W.W. Physical training and copper, iron, and zinc status of swimmers. Am. J. Clin. Nutr. 1990, 51, 1093–1099. [Google Scholar] [CrossRef]
- Anđelković, M.; Baralić, I.; Đorđević, B.; Stevuljević, J.K.; Radivojević, N.; Dikić, N.; Škodrić, S.R.; Stojković, M. Hematological and biochemical parameters in elite soccer players during a competitive half season. J. Med. Biochem. 2015, 34, 460. [Google Scholar] [CrossRef]
- Resina, A.; Gatteschi, L.; Giamberardino, M.A.; Imreh, F.; Rubenni, M.G.; Vecchiet, L. Hematological comparison of iron status in trained top-level soccer players and control subjects. Int. J. Sports Med. 1991, 12, 453–456. [Google Scholar] [CrossRef] [PubMed]
- Ostojic, S.M.; Ahmetovic, Z. Indicators of iron status in elite soccer players during the sports season. Int. J. Lab. Hematol. 2009, 31, 447–452. [Google Scholar] [CrossRef] [PubMed]
- DellaValle, D.M.; Haas, J.D. Iron status is associated with endurance performance and training in female rowers. Med. Sci. Sports Exerc. 2012, 44, 1552–1559. [Google Scholar] [CrossRef]
- Ponorac, N.; Popović, M.; Karaba-Jakovljević, D.; Bajić, Z.; Scanlan, A.; Stojanović, E.; Radovanović, D. Professional female athletes are at a heightened risk of iron-deficient erythropoiesis compared with nonathletes. Int. J. Sport Nutr. Exerc. Metab. 2020, 30, 48–53. [Google Scholar] [CrossRef]
- Koehler, K.; Braun, H.; Achtzehn, S.; Hildebrand, U.; Predel, H.-G.; Mester, J.; Schänzer, W. Iron status in elite young athletes: Gender-dependent influences of diet and exercise. Eur. J. Appl. Physiol. 2012, 112, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Malczewska, J.; Raczynski, G.; Stupnicki, R. Iron Status in Female Endurance Athletes and in Non-Athletes. Int. J. Sport Nutr. Exerc. Metab. 2000, 10, 260–276. [Google Scholar] [CrossRef]
- Cook, J.D.; Finch, C.A. Assessing iron status of a population. Am. J. Clin. Nutr. 1979, 32, 2115–2119. [Google Scholar] [CrossRef]
- Daru, J.; Colman, K.; Stanworth, S.J.; De La Salle, B.; Wood, E.M.; Pasricha, S.-R. Serum ferritin as an indicator of iron status: What do we need to know? Am. J. Clin. Nutr. 2017, 106, 1634S–1639S. [Google Scholar] [CrossRef]
- Wish, J.B. Assessing iron status: Beyond serum ferritin and transferrin saturation. Clin. J. Am. Soc. Nephrol. 2006, 1, S4–S8. [Google Scholar] [CrossRef]
- Sherwood, R.A.; Pippard, M.J.; Peters, T.J. Iron homeostasis and the assessment of iron status. Ann. Clin. Biochem. 1998, 35, 693–708. [Google Scholar] [CrossRef]
- Rakhra, G.; Masih, D.; Vats, A.; Verma, S.K.; Singh, V.K.; Rana, R.T.; Kirar, V.; Singh, S.N. Effect of physical activity and age on plasma copper, zinc, iron, and magnesium concentration in physically active healthy males. Nutrition 2017, 43–44, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Siquier-Coll, J.; Bartolomé, I.; Perez-Quintero, M.; Grijota, F.J.; Arroyo, J.; Muñoz, D.; Maynar-Mariño, M. Serum, erythrocyte and urinary concentrations of iron, copper, selenium and zinc do not change during an incremental test to exhaustion in either normothermic or hyperthermic conditions. J. Therm. Biol. 2019, 102425. [Google Scholar] [CrossRef] [PubMed]
- Nachtigall, D.; Nielsen, P.; Fischer, R.; Engelhardt, R.; Gabbe, E.E. Iron Deficiency in Distance Runners. A Reinvestigation Using 59Fe-Labelling and Non-Invasive Liver Iron Quantification. Int. J. Sports Med. 1996, 17, 473–479. [Google Scholar] [CrossRef]
- Piomelli, S.; Seaman, C. Mechanism of red blood cell aging: Relationship of cell density and cell age. Am. J. Hematol. 1993, 42, 46–52. [Google Scholar] [CrossRef]
- Harker, L.A. The kinetics of platelet production and destruction in man. Clin. Haematol. 1977, 6, 671–693. [Google Scholar] [CrossRef]
- Han, D.-D.; Ma, C.; Zhao, L.; Gao, Y.-J.; Su, Y.-H. Relationship between Iron Metabolism and Platelet Parameters in Patients with Iron Deficiency Anemia. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2018, 26, 1738–1741. [Google Scholar]
- Toro-Román, V.; Siquier-Coll, J.; Bartolomé, I.; Grijota, F.J.; Muñoz, D.; Maynar-Mariño, M. Copper concentration in erythrocytes, platelets, plasma, serum and urine: Influence of physical training. J. Int. Soc. Sports Nutr. 2021, 18, 1–8. [Google Scholar] [CrossRef]
- Toro-Román, V.; Siquier-Coll, J.; Bartolomé, I.; Grijota, F.J.; Muñoz, D.; Maynar-Mariño, M. Influence of physical training on intracellular and extracellular zinc concentrations. J. Int. Soc. Sports Nutr. 2022, 19, 110–125. [Google Scholar] [CrossRef]
- Toro-Román, V.; Bartolomé, I.; Siquier-Coll, J.; Robles-Gil, M.C.; Muñoz, D.; Maynar-Mariño, M. Analysis of Intracellular and Extracellular Selenium Concentrations: Differences According to Training Level. Nutrients 2022, 14, 1857. [Google Scholar] [CrossRef]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-Country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef]
- Aibar, A.; García González, L.; Abarca Sos, A.; Murillo, B.; Zaragoza, J. Testing the validity of the International Physical Activity Questionnaire in early spanish adolescent: A modified protocol for data collection. Sport TK Rev. Euroam. Cienc. Del Deport. 2016, 5. [Google Scholar]
- Moreiras, O.; Carbajal, A.; Cabrera, L.; Cuadrado, C. Tablas De Composicion De Alimentos: Guia de prácticas; Pirámide: Madrid, Spain, 2016; ISBN 978-84-368-3623-3. [Google Scholar]
- Esparza, F. Manual de Cineantropometría; Grupo Español de Cineantropometría: Madrid, Spain, 1993; ISBN 9788488100085. [Google Scholar]
- Tomczak, M.; Tomczak, E. The need to report effect size estimates revisited. An overview of some recommended measures of effect size. Trends Sport Sci. 2014, 1, 19–25. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Erlbaum: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Escanero, J.F.; Villanueva, J.; Rojo, A.; Herrera, A.; del Diego, C.; Guerra, M. Iron stores in professional athletes throughout the sports season. Physiol. Behav. 1997, 62, 811–814. [Google Scholar] [CrossRef]
- Martin, N.M.; Conlon, C.A.; Smeele, R.J.M.; Mugridge, O.A.R.; von Hurst, P.R.; McClung, J.P.; Beck, K.L. Iron status and associations with physical performance during basic combat training in female New Zealand Army recruits. Br. J. Nutr. 2019, 121, 887–893. [Google Scholar] [CrossRef]
- Lukaski, H.C.; Siders, W.A.; Hoverson, B.S.; Gallagher, S.K. Iron, copper, magnesium and zinc status as predictors of swimming performance. Int. J. Sports Med. 1996, 17, 535–540. [Google Scholar] [CrossRef] [PubMed]
- Baynes, R.D. Assessment of iron status. Clin. Biochem. 1996, 29, 209–215. [Google Scholar] [CrossRef]
- Malczewska, J.; Bach, W.; Stupnicki, R. The effects of physical exercise on the concentrations of ferritin and transferrin receptor in plasma of female judoists. Int. J. Sports Med. 2000, 21, 175–179. [Google Scholar] [CrossRef]
- Malczewska, J.; Szczepańska, B.; Stupnicki, R.; Sendecki, W. The assessment of frequency of iron deficiency in athletes from the transferrin receptor-ferritin index. Int. J. Sport Nutr. Exerc. Metab. 2001, 11, 42–52. [Google Scholar] [CrossRef]
- Cowell, B.S.; Rosenbloom, C.A.; Skinner, R.; Summers, S.H. Policies on screening female athletes for iron deficiency in NCAA division IA institutions. Int. J. Sport Nutr. Exerc. Metab. 2003, 13, 277–285. [Google Scholar] [CrossRef]
- Dale, J.C.; Burritt, M.F.; Zinsmeister, A.R. Diurnal variation of serum iron, iron-binding capacity, transferrin saturation, and ferritin levels. Am. J. Clin. Pathol. 2002, 117, 802–808. [Google Scholar] [CrossRef]
- Lu, Y.; Ahmed, S.; Harari, F.; Vahter, M. Impact of Ficoll density gradient centrifugation on major and trace element concentrations in erythrocytes and blood plasma. J. Trace Elem. Med. Biol. 2015, 29, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Heitland, P.; Köster, H.D. Human Biomonitoring of 73 elements in blood, serum, erythrocytes and urine. J. Trace Elem. Med. Biol. 2021, 64, 126706. [Google Scholar] [CrossRef] [PubMed]
- Catalani, S.; Marini, M.; Consolandi, O.; Gilberti, M.E.; Apostoli, P. Potenzialità ed utilità del dosaggio di elementi metallici nelle piastrine. G. Ital. Med. Lav. Ergon. 2008, 30, 115–118. [Google Scholar]
- Fernández-Lázaro, D.; Mielgo-Ayuso, J.; Córdova Martínez, A.; Seco-Calvo, J. Iron and physical activity: Bioavailability enhancers, properties of black pepper (bioperine ®) and potential applications. Nutrients 2020, 12, 1886. [Google Scholar] [CrossRef]
- Ottomano, C.; Franchini, M. Sports anaemia: Facts or fiction? Blood Transfus. 2012, 10, 252. [Google Scholar]
- Clénin, G.; Cordes, M.; Huber, A.; Schumacher, Y.O.; Noack, P.; Scales, J.; Kriemler, S. Iron deficiency in sports-definition, influence on performance and therapy. Swiss Med. Wkly. 2015, 145, w14196. [Google Scholar] [CrossRef] [Green Version]
- Calleja, C.A.; Hurtado, M.M.C.; Daschner, Á.; Escámez, P.F.; Abuín, C.M.F.; Pons, R.M.G.; Fandos, M.E.G.; Muñoz, M.J.G.; López-García, E.; Vinuesa, J.M. Informe del Comité Científico de la Agencia Española de Seguridad Alimentaria y Nutrición (AESAN) sobre Ingestas Nutricionales de Referencia para la población española. Rev. Com. Científico AESAN 2019, 43–68. [Google Scholar]
- Ganz, T. Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood 2003, 102, 783–788. [Google Scholar] [CrossRef]
- Hintze, K.J.; McClung, J.P. Hepcidin: A critical regulator of iron metabolism during hypoxia. Adv. Hematol. 2011, 2011, 510304. [Google Scholar] [CrossRef]
- Domínguez, R.; Sánchez-Oliver, A.J.; Mata-Ordoñez, F.; Feria-Madueño, A.; Grimaldi-Puyana, M.; López-Samanes, Á.; Pérez-López, A. Effects of an acute exercise bout on serum hepcidin levels. Nutrients 2018, 10, 209. [Google Scholar] [CrossRef]
- Huggins, R.A.; Fortunati, A.R.; Curtis, R.M.; Looney, D.P.; West, C.A.; Lee, E.C.; Fragala, M.S.; Hall, M.L.; Casa, D.J. Monitoring blood biomarkers and training load throughout a collegiate soccer season. J. Strength Cond. Res. 2019, 33, 3065–3077. [Google Scholar] [CrossRef] [PubMed]
- Mettler, S.; Zimmermann, M.B. Iron excess in recreational marathon runners. Eur. J. Clin. Nutr. 2010, 64, 490–494. [Google Scholar] [CrossRef] [PubMed]
- Gropper, S.S.; Blessing, D.; Dunham, K.; Barksdale, J.M. Iron status of female collegiate athletes involved in different sports. Biol. Trace Elem. Res. 2006, 109, 1–13. [Google Scholar] [CrossRef]
- Karamizrak, S.O.; Işlegen, C.; Varol, S.R.; Taşkiran, Y.; Yaman, C.; Mutaf, I.; Akgün, N. Evaluation of iron metabolism indices and their relation with physical work capacity in athletes. Br. J. Sports Med. 1996, 30, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Sandström, G.; Börjesson, M.; Rödjer, S. Iron deficiency in adolescent female athletes—Is iron status affected by regular sporting activity? Clin. J. Sport Med. 2012, 22, 495–500. [Google Scholar] [CrossRef]
- Schumacher, Y.O.; Schmid, A.; Grathwohl, D.; Bültermann, D.; Berg, A. Hematological indices and iron status in athletes of various sports and performances. Med. Sci. Sports Exerc. 2002, 34, 869–875. [Google Scholar] [CrossRef]
- Constantini, N.W.; Eliakim, A.; Zigel, L.; Yaaron, M.; Falk, B. Iron status of highly active adolescents: Evidence of depleted iron stores in gymnasts. Int. J. Sport Nutr. Exerc. Metab. 2000, 10, 62–70. [Google Scholar] [CrossRef]
- Auersperger, I.; Knap, B.; Jerin, A.; Lainscak, M.; Skitek, M.; Skof, B. The effects of 8 weeks of endurance running on hepcidin concentrations, inflammatory parameters, and iron status in female runners. Int. J. Sport Nutr. Exerc. Metab. 2012, 22, 55–63. [Google Scholar] [CrossRef]
- Tan, D.; Dawson, B.; Peeling, P. Hemolytic effects of a football-specific training session in elite female players. Int. J. Sports Physiol. Perform. 2012, 7, 271–276. [Google Scholar] [CrossRef]
- Nishiie-Yano, R.; Hirayama, S.; Tamura, M.; Kanemochi, T.; Ueno, T.; Hirayama, A.; Hori, A.; Ai, T.; Hirose, N.; Miida, T. Hemolysis Is Responsible for Elevation of Serum Iron Concentration After Regular Exercises in Judo Athletes. Biol. Trace Elem. Res. 2020, 197, 63–69. [Google Scholar] [CrossRef]
- Martínez, A.C.; Villa, G.; Aguiló, A.; Tur, J.A.; Pons, A. Hand strike-induced hemolysis and adaptations in iron metabolism in Basque ball players. Ann. Nutr. Metab. 2006, 50, 206–213. [Google Scholar] [CrossRef]
- Khan, M.A.; Moiz, J.A.; Raza, S.; Verma, S.; MY, S.; Anwer, S.; Alghadir, A. Physical and balance performance following exercise induced muscle damage in male soccer players. J. Phys. Ther. Sci. 2016, 28, 2942–2949. [Google Scholar] [CrossRef]
- Skarpańska-Stejnborn, A.; Basta, P.; Trzeciak, J.; Szcześniak-Pilaczyńska, Ł. Effect of intense physical exercise on hepcidin levels and selected parameters of iron metabolism in rowing athletes. Eur. J. Appl. Physiol. 2015, 115, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Yusof, A.; Leithauser, R.M.; Roth, H.J.; Finkernagel, H.; Wilson, M.T.; Beneke, R. Exercise-induced hemolysis is caused by protein modification and most evident during the early phase of an ultraendurance race. J. Appl. Physiol. 2007, 102, 582–586. [Google Scholar] [CrossRef] [PubMed]
- Sanchis-Gomar, F.; Lippi, G. Physical activity—An important preanalytical variable. Biochem. Medica 2014, 24, 68–79. [Google Scholar] [CrossRef]
- Sawka, M.N.; Montain, S.J. Fluid and electrolyte supplementation for exercise heat stress. Am. J. Clin. Nutr. 2000, 72, 564s–572s. [Google Scholar] [CrossRef]
- Park, M.-J.; Park, P.-W.; Seo, Y.-H.; Kim, K.-H.; Park, S.-H.; Jeong, J.-H.; Ahn, J.-Y. The relationship between iron parameters and platelet parameters in women with iron deficiency anemia and thrombocytosis. Platelets 2013, 24, 348–351. [Google Scholar] [CrossRef]
- Oakes, E.J.C.; Lyon, T.D.B.; Duncan, A.; Gray, A.; Talwar, D.; O’Reilly, D.S.J. Acute inflammatory response does not affect erythrocyte concentrations of copper, zinc and selenium. Clin. Nutr. 2008, 27, 115–120. [Google Scholar] [CrossRef]
- Szygula, Z. Erythrocytic system under the influence of physical exercise and training. Sport. Med. 1990, 10, 181–197. [Google Scholar] [CrossRef]
- Weight, L.M.; Byrne, M.J.; Jacobs, P. Haemolytic effects of exercise. Clin. Sci. 1991, 81, 147–152. [Google Scholar] [CrossRef]
- Robert, M.; Stauffer, E.; Nader, E.; Skinner, S.; Boisson, C.; Cibiel, A.; Feasson, L.; Renoux, C.; Robach, P.; Joly, P. Impact of Trail Running Races on Blood Viscosity and Its Determinants: Effects of Distance. Int. J. Mol. Sci. 2020, 21, 8531. [Google Scholar] [CrossRef] [PubMed]
- Lang, F.; Lang, K.S.; Lang, P.A.; Huber, S.M.; Wieder, T. Mechanisms and significance of eryptosis. Antioxid. Redox Signal. 2006, 8, 1183–1192. [Google Scholar] [CrossRef] [PubMed]
- Kempe, D.S.; Lang, P.A.; Duranton, C.; Akel, A.; Lang, K.S.; Huber, S.M.; Wieder, T.; Lang, F. Enhanced programmed cell death of iron-deficient erythrocytes. FASEB J. 2006, 20, 368–370. [Google Scholar] [CrossRef] [PubMed]
- Neve, J. Human selenium supplementation as assessed by changes in blood selenium concentration and glutathione peroxidase activity. J. Trace Elem. Med. Biol. 1995, 9, 65–73. [Google Scholar] [CrossRef]
Parameters | TG (n = 20) | |
---|---|---|
Position (%) | Goalkeeper | 10.00 |
Defense | 35.00 | |
Midfielder | 40.00 | |
Forward | 15.00 | |
Matches played (n) | 1.00 | |
Trainings (n) | 17.04 ± 4.39 | |
Training sessions (min) | 1534.28 ± 416.71 | |
Training load (RPExmin) | 2778.54 ± 1118.13 |
Parameters | CG (n = 20) | TG (n = 20) |
---|---|---|
Weight (kg) | 73.45 ± 9.04 | 68.59 ± 4.18 * |
Height (m) | 1.79 ± 0.06 | 1.76 ± 0.04 |
Muscle Mass (%) | 44.22 ± 5.71 | 49.03 ± 2.56 * |
Fat Mass (%) | 15.64 ± 5.78 | 9.32 ± 2.76 * |
VO2 max (mL/Kg/min) | 45.61 ± 4.95 | 61.02 ± 4.35 ** |
VE (L/min) | 88.34 ± 11.18 | 120.56 ± 18.79 ** |
Resting HR (bpm) | 67.31 ± 6.49 | 54.41 ± 5.29 * |
Maximum HR (bpm) | 189.3 ± 7.1 | 193.8 ± 6.5 |
Physical activity (MET-hours/weekly) | 27.36 ± 4.45 | 56.13 ± 6.21 ** |
Parameters | CG (n = 20) | TG (n = 20) |
---|---|---|
Energy (kcal/day) | 2112.34 ± 345.78 | 2456.16 ± 504.11 |
Water (L/day) | 1.145 ± 0.241 | 1.421 ± 0.356 |
Carbohydrates (g/kg/day) | 3.11 ± 1.28 | 3.98 ± 1.78 |
Proteins (g/kg/day) | 1.25 ± 0.37 | 1.44 ± 0.41 |
Lipids (g/kg/day) | 1.51 ± 0.47 | 1.64 ± 0.31 |
Fe (mg/day) | 13.67 ± 3.21 | 14.18 ± 2.74 |
Parameters | CG (n = 20) | TG (n = 20) | ES |
---|---|---|---|
Erythrocytes (cell 1012/L) | 4.81 ± 0.72 | 4.76 ± 0.89 | 0.14 |
Hemoglobin (g/dL) | 14.75 ± 0.78 | 14.14 ± 0.95 | 0.08 |
Hematocrit (%) | 43.24 ± 1.04 | 42.65 ± 1.23 | 0.10 |
Platelets (cell 109/L) | 190.23 ± 67.13 | 198.35 ± 60.51 | 0.17 |
Parameters | CG (n = 20) | TG (n = 20) | p | ES |
---|---|---|---|---|
Plasma (μg/L) | 2023.37 ± 514.61 | 2486.51 ± 573.24 | 0.016 | 0.61 |
Serum (μg/L) | 1536.13 ± 416.29 | 1840.00 ± 583.64 | 0.031 | 0.43 |
Urine (μg/L) | 3.77 ± 0.99 | 3.62 ± 1.61 | 0.641 | 0.02 |
Parameters | CG (n = 20) | TG (n = 20) | p | ES |
---|---|---|---|---|
Erythrocytes (mg/L) | 927.38 ± 115.88 | 787.05 ± 85.71 | <0.001 | 1.00 |
Erythrocytes (μg/cell10−6) | 193.21 ± 21.06 | 167.03 ± 17.65 | 0.003 | 0.84 |
Platelets (μg/L) | 54.04 ± 36.79 | 25.34 ± 9.44 | 0.008 | 0.69 |
Platelets (pg/cell 10−3) | 0.284 ± 0.164 | 0.127 ± 0.082 | 0.006 | 0.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grijota, F.J.; Toro-Román, V.; Siquier-Coll, J.; Robles-Gil, M.C.; Muñoz, D.; Maynar-Mariño, M. Total Iron Concentrations in Different Biological Matrices—Influence of Physical Training. Nutrients 2022, 14, 3549. https://doi.org/10.3390/nu14173549
Grijota FJ, Toro-Román V, Siquier-Coll J, Robles-Gil MC, Muñoz D, Maynar-Mariño M. Total Iron Concentrations in Different Biological Matrices—Influence of Physical Training. Nutrients. 2022; 14(17):3549. https://doi.org/10.3390/nu14173549
Chicago/Turabian StyleGrijota, Francisco J., Víctor Toro-Román, Jesús Siquier-Coll, María C Robles-Gil, Diego Muñoz, and Marcos Maynar-Mariño. 2022. "Total Iron Concentrations in Different Biological Matrices—Influence of Physical Training" Nutrients 14, no. 17: 3549. https://doi.org/10.3390/nu14173549
APA StyleGrijota, F. J., Toro-Román, V., Siquier-Coll, J., Robles-Gil, M. C., Muñoz, D., & Maynar-Mariño, M. (2022). Total Iron Concentrations in Different Biological Matrices—Influence of Physical Training. Nutrients, 14(17), 3549. https://doi.org/10.3390/nu14173549